用户名: 密码: 验证码:
激光等离子体相互作用机理与大气吸气式激光推进数值计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大气吸气式激光推进光船为研究对象,采用数值计算方法对激光作用下等离子体吸收波的形成和演化机制与光船工作过程进行了研究。
     建立了不同条件下的控制方程组,计算了各空气组元的初始密度。对激光推进中热化学非平衡/平衡流的物理化学模型进行比较分析,在热化学非平衡流中选择了Park建立的三温度11组元空气化学反应模型,在热化学平衡流中选择了Gupta建立的高温平衡空气模型,并分析了相应的能量交换模型、输运模型等。
     分析了有限差分NND格式和有限体积NND格式,讨论了热化学非平衡流计算中的耦合法和解耦法,研究了求解化学反应源项和能量源项的点隐式方法,并给出了求解无粘通量项的LU-SGS隐式方法。
     探讨了数值计算中的等离子体点火模型。采用三温度11组元热化学非平衡空气模型,考虑了激光在等离子体中的逆韧致吸收和共振吸收机制,用有限差分NND格式对控制方程组进行数值离散,编制完成了相应的一维计算程序,耦合计算了一维平面波、一维柱面波和一维球面波条件下等离子体吸收波的形成和演化机制。详细研究了等离子体吸收波中各种参数的变化情况。研究中发现一有趣现象,在聚焦条件下,随着等离子体吸收波向前推进,最大电子数密度将减少而最大电子温度将增加。根据等离子体吸收波的结构特征,提出了两种计算激光能量沉积过程的简化模型:1)电子数密度限制器模型;2)等离子体吸收波波速模型。
     基于电子数密度限制器模型,数值计算了激光推进光船工作过程。为了提高计算效率,采用三温度11组元热化学非平衡空气模型计算激光能量在等离子体中的沉积过程,并用平衡空气模型求解激光结束后的后续流场。将组分生成项和能量源项与流动控制方程组进行解耦计算,对控制方程组采用有限体积NND格式进行数值求解,编制完成了相应的二维计算程序。研究了热化学非平衡/平衡空气模型的转换时刻,发现热化学非平衡效应对光船推进性能有重要影响;对Schall的光船实验进行数值模拟,所得数值计算结果与实验结果吻合;研究了单脉冲能量、脉冲宽度等激光参数对光船推进性能的影响。
     将等离子体吸收波波速模型推广到球冠等离子体吸收波波速模型和二维等离子体吸收波波速模型,结合高温平衡空气模型,实现了不同激光入射条件下激光推进光船工作过程数值模拟,编制完成了相应的二维计算程序。研究了速度系数对流场参数和光船推进性能的影响,分析了聚焦后激光具有二维分布特征时的流场特性,发现激光空间分布可能对流场具有重要影响。
For an air-breathing laser propulsion lightcraft, the mechanism of formation and evolvement of plasma absorptive wave in lightcraft due to laser and air interaction, and the operating process were investigated by means of numerical computation and simulation in this dissertation.
     The governing equations were established under different conditions and cases, and the initializing conditions were also given. Physical and chemical models of thermo-chemical nonequilibrium flow and equilibrium flow in laser propulsion were analyzed and discussed. Park's reaction model with three-temperature and 11 air species was chosen to solve thermo-chemical nonequilibrium flow. Gupta's high temperature equilibrium air model was chosen to solve thermo-chemical equilibrium flow. Then, some corresponding energy exchange mechanisms and transport models were discussed.
     Some numerical methods such as the finite difference NND scheme and finite volume NND scheme were analyzed in detail. The uncoupled method and coupled one used to solve thermo-chemical nonequilibrium flow were discussed. The dot implicit method used to solve source terms of species and energy in chemical reaction was studied. Then, the LU-SGS implicit method was given to solve the non-viscous flux.
     The ignition model of plasma in numerical computation was discussed. The governing equations based on thermo-chemical non-equilibrium model with three-temperature and 11 air species were discretized numerically by finite difference NND scheme. The inverse bremsstrahlung absorption and plasma resonance absorption were considered when laser is transmitted in air plasma. The corresponding computing codes were implemented to simulate the formation and evolvement of plasma absorptive wave at one dimension plane/ cylindrical/ spherical wave. The variations of some key parameters in plasma absorptive wave were studied in detail. An interesting phenomenon was found, that is, when laser is focused, the maximum electron density decreases with the progress of plasma absorptive wave, but the maximum electron temperature increases. Two simplified models based on the characteristics of plasma absorptive wave were proposed to solve the absorptive process and aggradation of laser energy: 1) the limited electron density model. 2) the velocity model of plasma absorptive wave.
     The operating process of laser propulsion lightcraft was computed based on the limited electron density model. In order to improve the computational efficiency, the absorptive process and aggradation of laser energy was solved by the thermo-chemical non-equilibrium model with three-temperature and 11 air species, and the followed flow field was solved by the high temperature equilibrium air model. The governing equations uncoupled with the source terms of species and energy were discretized numerically by finite volume NND scheme. The corresponding two dimensional programs were implemented. The time when the thermo-chemical non-equilibrium model was switched to equilibrium air model was studied. The results show that thermo-chemical non-equilibrium effect has significant influence on the propulsion performance of lightcraft. The predicted coupling coefficients for the lightcraft by simulation are coincident reasonably well with those of tests done by Schall. In addition, the influence of some laser parameters such as single pulse energy and pulse width on the propulsion performance of lightcraft was also discussed.
     The velocity model of plasma absorptive wave was extended to spheral and two dimensional cases. The operating process of laser propulsion lightcraft in different incident laser was simulated based on high temperature equilibrium air model. The corresponding two dimensional programs were also implemented. The influence by velocity coefficient on the flow field parameters and the propulsion performance of lightcraft was studied. The flow field characteristic was analyzed when the focused laser has two- dimensional distribution feature. The results show that the space distribution of laser may have significant influence on the flow field.
引文
[1]徐福祥,林华宝,候深渊.卫星工程概论.北京:中国宇航出版社,2003.
    [2]Kantrowitz A.The World,the Flesh and the Devil.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [3]郑志远,鲁欣,张杰.激光等离子体推进技术的研究进展.物理学和高新技术,32(8),2003.
    [4]吴刚,张育林,程谋森.微型卫星激光推进发射及其关键技术.上海航天,No.2,2002.
    [5]Katsurayama H,Hirooka Y,Komurasaki K,et.al.Feasibility Study of a Laser Ramjet Single-Stage-to-Orbit Vehicle.AIAA 2003-0497.
    [6]郑志远,张杰,李英俊.激光等离子体推进在火箭推进技术领域的应用前景.物理学与高新技术,31(12),2002.
    [7]辜建辉,徐启阳,李再光等.激光推进原理与技术.推进技术,(2),1995.
    [8]王骐,李琦,尚铁梁.激光推进原理与发展状况.激光与红外,33(1),Feb.2003.
    [9]Mead F B,Jr,Larson C W,Knecht S D.An Overview of the Experimental 50-cm Laser Ramjet(X-50LR) Program.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [10]Resendes D P,Mota S,Mendonca J T,et.al.Laser Propulsion for ESA Missions:Ground to Orbit Launch Project Overview-Part 1.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [11]许德胜,郭振华,S.Messacud等.论光动力飞行器.激光技术,23(2),1999.
    [12]Nastoyashchii A F.Laser Application in the Control of Satellite Orbit.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [13]Michaelis M M,Hey J D.Pioneers of Propulsion Saenger,Marx,Moeckel and Kantrowitz.Proc.of SPIE Vol.4760,2002.
    [14]Kantrowitz A.Propulsion to Orbit by Ground-Based Lasers.Astronautics and Aeronautics,10(5),May 1972.
    [15]Richard J C.Myrabo L N.Analysis of Laser-Generated Impulse in an Airbreathing Pulsed Detonation Engine Part 1.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [16]Richard J C.Myrabo L N.Analysis of Laser-Generated Impulse in an Airbreathing Pulsed Detonation Engine Part 2.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [17]Jones L W.A Brief Histoy of Laser Propulsion at the Marshall Space Flight Center.CP664,First International Symposium on Beamed Energy Propulsion, 2003.
    [18]Nebolsine P E,Pirri A N.Laser Propulsion:The Early Years.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [19]李修乾,洪延姬,何国强.激光推进器概念设计研究现状及发展趋势.强激光与粒子束,17(3),Mar.2005.
    [20]何振.激光推进及激光发射微小卫星概念研究.国防科学技术大学研究生院工学硕士学位论文,2004.
    [21]Myrabo L N,Messitt D G,Mead F B Jr.Ground and Flight Tests of a Laser Propelled Vehicle.AIAA 98-1001.
    [22]Myrabo L N.Brief History of the Lightcraft Technology Demonstrator(LTD)Project.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [23]Hasson V,Mead F B Jr.,Larson C W,et.al.Launching of Micro-satellites Using Ground-based High-power Pulsed Lasers.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [24]Bohn W L,Schall W O.Laser Propulsion Activities in Germany.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [25]Rachuk V S,Guterman V Y,Ivanov A V.Experimental Investigations of Laser Propulsion by Using Gas-Dynamic Laser.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [26]Urabe N,Kim S,Sasoh A,et.al.Vertical Launch Performance of Laser-driven In-Tube Accelerator.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [27]Niino M.Activities of Laser Propulsion in Japan.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [28]Katsurayama H,Ushio M,Komurasaki K,et.al.Analytical Study on Flight Performance of an Air-Breathing RP Laser Launcher.AIAA 2004-3585.
    [29]Komurasaki K,Arakawa Y,Hosoda S,et.al.Fundamental Researches on Laser Powered Propulsion.AIAA 2002-2200.
    [30]Raizer Y P,Thbulewicz A.Laser-Induced Discharge Phenomena.Studies in Soviet Science,Edited by Vlases G C,and Pietrzyk Z A,Consultants Bureau,New York,1977.
    [31]泽尔道维奇,莱依捷尔.力学名著译丛:激波和高温流体动力学现象物理学(上册).北京:科学出版社,1980.
    [32]Mori K,Katsurayama H,Hirooka Y,et.al.Conversion of Blast Wave to Impulse in a Pulsed-laser Thruster.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [33]孙承纬.激光驱动空间飞行器的原理分析.激光的热和力学效应学术会议论 文集,广西北海,2000.
    [34]Pirri A N,Root R G,Wu P K S.Plasma Energy Transfer To Metal Surfaces Irradiated By Pulsed Lasers.AIAA Journal,16(12),1978.
    [35]龚平,唐志平.大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲击,23(6),Nov.,2003.
    [36]龚平.大气呼吸模式激光推进的研究.中国科学技术大学博士学位论文,2004.
    [37]谢多夫[苏].力学中的相似方法与量纲理论.北京:科学出版社,1982.
    [38]Feikema D.Analysis of the Laser Propelled Lightcraft Vehicle.AIAA 2000-2348.
    [39]Apollonov V V,Tishchenko V N.Stable Generation and Merging of Shock Waves for Lightcraft Applications Part 1.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [40]Apollonov V V,Tishchenko V N.Stable Generation and Merging of Shock Waves for Lightcraft Applications Part 2.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [41]Li Q,Hong Y J,She J H,et.al.Thrust Generating Mechanism of Nozzle Powered by Single Laser Pulse.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [42]Mazumder J,Rockstroh T J,Krier.Spectroscopic Studies of Plasma during CW Laser Gas Heating in Flowing Argon.Journal of Applied Physics.62(15),Dec.1987.
    [43]Uehara S,Inoue T,Komurasaki K,et al.An Experimental Study on Energy Conversion Process of an in-Space CW Laser Thruster.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [44]Myrabo L N,Libeau M A,Meloney E D,et.al.Pulsed Laser Propulsion Performance of 11-cm Parabolic 'Bell' Engines within the Atmosphere.AIAA 2002-2732.
    [45]Schall W O,Bohn W L,Eckel H A,et.al.Lightcraft Experiments in Germany.Proc.of SPIE Vol.4065,2000.
    [46]Schall W O,Eckel H A,Riede W.Laser Propulsion Experiments with a High-Power Pulsed CO2 Laser.Proc.of SPIE Vol.5120,2003.
    [47]Mori K,Sasoh A,Myrabo L N.Experimental Investigation of Airbreathing Laser Propulsion Engines:CO_2TEA vs.EDL.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [48]Mori K,Sasoh A,Myrabo L N.Pulsed Laser Propulsion Performance of 11-cm Parabolic 'Bell' Engines:CO_2TEA vs.EDL.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [49]郑义军.龚平.谭荣清等.大气模式激光推进耦台系数的实验研究.中国激光, 32(7),July 2005.
    [50]郑义军,龚平,谭荣清等.TEA CO_2激光推进耦合系数的实验研究.光电子.激光,16(5),May 2005.
    [51]Tan R Q,Lin J,Hughes J,et.al.Experimental Study of Coupling Coefficients for Propulsion on TEA CO2 Laser.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [52]Tan R Q,Zheng Y J,Ke C J,et.al.Experimental Study on Laser Propulsion of Air-breathing Mode.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [53]唐志平,龚平,胡小军等.大气吸气模式激光推进的实验研究.航空学报,26(1),Jan.2005.
    [54]Zhiping Tang,Jian Cai,Ping Gong,et.al.Experimental Study of the Momentum Coupling Coefficient with the Pulse Frequency.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [55]翟冰洁,左都罗,卢宏.空气呼吸模式激光推进实验研究.光学与光电技术,3(1),Feb,2005.
    [56]Ming Wen,Yanji Hong,Zhengrui Cao,et.al.Experimental and Numerical Investigation of Effects of Laser Pulse Waveform on Lightcrafl Performance.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [57]Schall W O,Eckel H A,Mayerhofer W,et al.Comparative lightcraft impulse measurements.Proc.of SPIE Vol.4760,2002.
    [58]Sterling E,Lin J,Sinko J,et.al.Laser-Driven Mini-Thrusters.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [59]Knecht S D,Larson C W,Mead F B.Comparison of Ablation Performance in Laser Lightcraft and Standardized Mini-Thruster.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [60]Sasoh A.In-Tube Laser Propulsion.AIAA 2000-2344.
    [61]Sasoh A,Kister M,Urabe N,et.al.LITA(Laser-Driven In-Tube Accelerator)Operation under Elevated Pressures.AIAA 2001-3666.
    [62]Kim S,Urabe N,Torikai H,et.al.In-Tube Laser Propulsion Configurations.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [63]Sasoh A,Yu X L,Ohtani T,et.al.Laser Impulse Generation in Flight.AIAA 2004-650.
    [64]Sasoh A,Ohtani T,Yu X L.Detailed Impulse Generation Mechanisms in the Laser-Driven In-Tube Accelerator.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [65]Mori K,Katsurayama H,Hirooka Y,et.al.An Experimental Study on the Energy Balance in the Repetitively Pulsed Laser Propulsion.AIAA 2003-496.
    [66]Mori K,Hirooka Y,Katsurayama H,et.al.Effect of the Refilling Processes on the Thrust Generation of a Laser Pulsejet.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [67]Ageichik A A,Egorov M S,Rezunkov Y A,et.al.Experimental Study on Thrust Characteristics of Airspace Laser Propulsion Engine.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [68]Irtuganov V M,Kalinin V P,Sergeev V V,et.al.Experimental Investigation of Air-breathing Mode of Laser Propulsion with Elongate Cylindrical Models and CO_2 Lasers of Different Pulse Durations.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [69]Rezunkov Y A,Safronov A L.Ageichik A A,et.al.Performance Characteristics of Laser Propulsion Engine Operating both in CW and in Repetitively-Pulsed Modes.CP830,Fourth International Symposium on Beamed Energy Propulsion.2006.
    [70]Jones J E,Wang T S.Time Dependent Measurements of Electron Temperature and Density in a Laser Lightcraft.AIAA 2001-3796.
    [71]Mori K,Komurasaki K,Arakawa.Laser Plasma Production and Expansion in a Supersonic Flow.AIAA 2002-0634.
    [72]Ushio M,Kawamura K,Komurasaki K,et.al.Blast Wave Energy Conversion Process in a Line-Focusing Laser Supported Detonation Waves.AIAA 2006-1356.
    [73]Ushio M,Kawamura K.Komurasaki K,et.al.Energy Conversion Process in Laser Supported Detonation Waves Induced by a Line-Focusing Laser.CP830,Fourth International Symposium on Beamed Energy Propulsion.2006.
    [74]Kim S,Kim Y T,Jeung I S.Numerical Simulation and Experiment on Supersonic Air-Breathing Laser-Spike Propulsion Vehicle.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [75]郑志远,鲁欣,张杰等.激光等离子体动量转换效率的实验研究.物理学报,54(1),Jan.2005.
    [76]Mead F B Jr,Myrabo L N,Messitt D G.Flight and Ground Tests of a Laser-Boosted Vehicle.AIAA 98-3735.
    [77]Myrabo L N.World Record Flights of Beam-Riding Rocket Lightcraft Demonstration of"Disruptive" Propulsion Technology.AIAA 2001-3798.
    [78]郑义军,谭荣清.张阔海等.激光推进自由飞行实验.中国激光,33(2).Feb.2006.
    [79]Katsurayama H,Komurasaki K,Arakawa Y.Computational Performance Estimation of Laser Ramjet Vehicle.AIAA 2002-3778.
    [80]Katsurayama H.Ushio M.Komurasaki K.et al.Analytical Study on Flight Performance of a RP Laser Launcher.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [81]Golovachov Y P,Kurakin Y A,Rezunkov,et.al.Numerical Analysis of Gasdynamic Aspects of Laser Propulsion.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [82]曹正蕊,洪延姬,李倩等.单脉冲能量对光船推进性能的影响.热科学与技术,4(2),Jun.2005.
    [83]Gong P,Tang Z P.Numerical Simulation for Laser Propulsion of Air Breathing Mode Considering Moving Boundaries and Multi-Pulses.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [84]Pang J S,Jeung I S,Choi J Y.A Numerical Study on Laser-Driven Ram Accelerator.AIAA 2000-3491.
    [85]Choi J Y,Sasoh A,Jeung I S,et.al.Numerical and Experimental Studies of Laser-Driven Ram Accelerator.AIAA 2001-3924.
    [86]Choi J Y,Sasoh A,Jeung I S,et.al.Numerical Study of Laser-Induced Pulsed Air-Breathing Propulsion.AIAA 2002-2202.
    [87]Kim S,Cho H,Choi J Y,et.al.Flow Characteristics of Two-Dimensional Supersonic Laser Propulsion Vehicle.AIAA 2002-2204.
    [88]Kim S D,Pang J S,Jeung I S,et.al.Numerical Simulation of Flow Characteristics of Supersonic Airbreathing Laser Propulsion Vehicle.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [89]Kim S,Jeung I S,Choi J Y.Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [90]Kim S,Jeung I N,Choi J Y.Numerical Study on Thrust Performance Evaluation of Laser Propulsion during Supersonic-Hypersonic Flight.CP766,Third International Symposium on Beamed Energy Propulsion,2005.
    [91]Protasov Y,Protasov Y,Telekh.Laser Propulsion Radiative Gasdynamic and Thermophysical Interchamber Processes of Double-Stage Laser Rocket Thruster.AIAA 2000-3485.
    [92]Sharikov I V,Surzhikov S T.A Numerical Analysis of Momentum Transfer to a Surface from Expanding Laser Plasma.AIAA 2005-751.
    [93]Molvik G A,Choi D,Merkle C L.A Two-Dimension Analysis of Laser Heat Adition in a Constant Absorptivity Gas.AIAA Journal,23(7),pp.1053-1060,1985.
    [94]Raizer Y P,Surzhikov S T.Continuous Laser-Sustained Plasma and Laser Sustained Combustion-State of the Art.AIAA 95-1999.
    [95]Conrad R,Raizer Y P,Surzhikov S T.Continuous Optical Discharges Stabilized by Gas Flow in Weakly Focused Laser Beam.AIAA Journal,34(8),pp.1584-1588,1996.
    [96]Surzhikov S T.Radiative Gasdynamics of Laser Propulsion Thruster Nozzles.AIAA 99-3550.
    [97]Surzhikov S T.Laser Plasma Generator with Non-Stationary Vortex Gas Stream.AIAA 2000-2630.
    [98]Surzhikov S T.Instabilities of Subsonic Laser Supported Waves.AIAA 2006-3562.
    [99]Surzhikov S,Kuzenov V,Capitelli M,et.al.Numerical Analysis of Near-Surface Laser Plasma in Gases and Vacuum.AIAA 2006-1174.
    [100]Morales P M,Toyoda K,Komurasaki K,et.al.CFD Simulation of a 2-KW Class Laser Thruster.AIAA 2001-0650.
    [101]郑力铭,朱定强,徐旭等.激光推进火箭发动机吸收室的数值模拟.推进技术,23(5),Oct.2002.
    [102]王海兴,陈熙.激光推进的初步数值模拟研究.工程热物理学报,Vol.25,Suppl.,Sep.,2004.
    [103]Fujiwara T,Miyasaka T.Laser-Supported Detonation Concept as a Space Thruster.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [104]Shiraishi H.Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave.CP702,Second International Symposium on Beamed Energy Propulsion,2004.
    [105]Shiraishi H.Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [106]Ohnishi N,Ogino Y.Sawada K,et.al.Numerical Analysis of Laser-Driven In-Tube Accelerator Operation.AIAA 2005-749.
    [107]Ohnishi N,Ogino Y,Sawada,et.al.Toward the Optimal Operation of Laser-Driven In-Tube Accelerator.AIAA 2006-1360.
    [108]Ogino Y,Ohnishi N,Sasoh A,et.al.BlastWave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [109]Ogino Y,Ohnishi N,Sawada K,et.al.Numerical Analysis of Expanding Nonequilibrium Plasma in a Gas-driven Laser Propulsion.AIAA 2006-1358.
    [110]Wang T S,Chert Y S,Liu J,Myrabo L N,and Mead F B Jr.Performance Modeling of an Experimental Laser Propelled Lightcraft.AIAA 2000-2347.
    [111]Liu J,Chen Y S,Wang T S.Accurate Prediction of Radiative Heat Transfer in Laser Induced Air Plasmas.AIAA 2000-2370.
    [112]Wang T S,Chen Y S,Liu J,Myrabo L N,and Mead F B Jr.Advanced Performance Modeling of Experimental Lightcrafts.AIAA 2001-0648.
    [113]Wang T S,Mead F B Jr.and Larson C W.Analysis of the Effect of Pulse Width on Laser Lightcraft Performance,AIAA 2001-3664.
    [114]Wang T S,Rhodes R.Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation for Airbreathing Laser Propulsion.AIAA 2002-2203.
    [115]Chen Y S,Liu J,Wang T S.Numerical Modeling of Laser Supported Propulsion with an Aluminum Surface Breakdown Model.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [116]柳军.热化学非平衡流及其辐射现象的实验和数值计算研究.国防科学技术大学研究生院博士学位论文,2004.
    [117]张劲柏.高超音速热化学非平衡流动的反应模型研究及其数值模拟,北京航空航天大学博士学位论文,2001.
    [118]黄华.耦合辐射的非平衡流场数值研究.国防科学技术大学博士学位论文,1999.
    [119]Park C.,"Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles," Progress in Astronautics and Aeronautics,96:511-537,1985.
    [120]Gnoffo P A,Gupta R N,Shinn J L.Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium.NASA TP 2867,N89-16115,1989.
    [121]欧阳水吾,谢中强.高温非平衡空气绕流.北京:国防工业出版社.2001.
    [122]瞿章华.不同扩散模型对再入体等离子体鞘电子密度分布的影响.国防科技大学学报,1993.
    [123]Vincenti W G,Kruger C H.Introduction to Physical Gas Dynamics.Robert E.Krieger Publishing Company.1965.
    [124]瞿章华,曾明,刘伟,柳军.高超声速空气动力学.长沙:国防科技大学出版社,2001
    [125]Hansen C F.Approximations for the Thermodynamic and Transport Properties of High-Temperature Air.NASA TR-RS0.1959.
    [126]Tannehill J C,Mugge P H.Improved Curve Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Methods.NASA CR-2470,1974.
    [127]Liu Y,Vinokur M.Equilibrium Gas Flow Computations.I.Accurate and Efficient Calculation of Equilibrium Gas Properties.AIAA 89-1736.
    [128]Gazaix M.Hypersonic Inviscid and Viscous Flow Computations with a New Optimized Thermodynamic Equilibrium Model. AIAA 93-0893.
    [129]Wilmer Neuenschwander. Explicit Relationships for the Thermodynamic Properties of Molecular and Dissociated Air Mixtures to 25,000 Degree R. AIAA 89-1735.
    [130] Srinivasan S, Tannehill J C, Weilmuenster K J. Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air. NASA RP-1181, 1987.
    [131] Srinivasan S, Tannehill J C. Simplified Curve Fits for the Transport Properties of Equilibrium Air. NASA CR-178411, 1987.
    [132] Gupta R N, Lee K P, Thompson R A, Yos J M. Calculations and Curve Fits of Thermodynamic and Transport Properties for Equilibrium Air to 30000K. NASA RP-1260, 1991.
    [133] Thompson R A, Lee K P, Gupta R N. Computer Codes for the Evaluation of Thermodynamic and Transport Properties for Equilibrium Air to 30000 K. NASA TM-104107. 1991.
    [134] Limbaugh C C. Calculations of air chemistry in the Electron-Beam Heated Hypersonic Wind Tunnel. II - Current experiments. AIAA 2002-3131.
    [135] Gupta R N, Yos J M, Thompson R A. A Review of Reacting Rates and Thermodynamic and Transport Properties for The 11 Species Air Model For Chemical And Thermal Non-Equilibrium Calculation to 30000 K. NASA TM-101528, 1989.
    [136] Gupta R N, Yos J M. Thompson R A. A Review of Reacting Rates and Thermodynamic and Transport Properties for an 11 Species Air Model For Chemical and Thermal Non-Equilibrium Calculation to 30000 K. NASA RP-1232,1990.
    [137] Bortner M H. Suggested Standard Chemical Kinetics for Flow Field Calculations-A Consensus Opinion. AMRAC Proceedings. Volume XIV. Part I.Doc. No. 4613-135-X (Contract SD-91). Inst. of Science and Technology. Univ.of Michigan. Apr. 18-19. 1966:569-581 (Available from DTIC as AD 372 900).
    [138] Dunn M G, Kang S W. Theoretical and Experimental Studies of Reentry Plasmas.NASA CR-2232, 1973.
    [139] Park C. Assessment of Two-Temperature Kinetic Model for Ionizing Air. In AIAA 22nd Thermophysics Conference. AIAA 87-1574.
    [140] Park C. Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York,1990.
    [141] Park C. Review of Chemical-Kinetic Problems of Future NASA Missions, I:Earth Entries. Journal of Thermophysics and Heat Transfer, 7(3), pp. 385-398.1993.
    [142] Park C, Jaffe R L, Partridge H. Chemical-Kinetic Parameters of Hyperbolic Earth Entry. Journal of Thermophysics and Heat Transfer. 15(1). pp. 76-89, Jan-Mar, 2001.
    [143]Walpot L M G F.LORE:Description and Validation of a New Developed Three-dimensional Thermo-chemical Nonequilibrium Navier-Stokes Solver.Memorandum M-815.Faculty of Aerospace Engineering,TUDelft.Oct.1997.
    [144]Millikan R C,White D R.Systematics of Vibrational Relaxation.Journal of Chemical Physics,39(12),pp.3209-3213,1963.
    [145]Lee J H.Electron Impact Vibrational Relaxation in High Temperature Nitrogen.AIAA Paper 92-0807.
    [146]Park C,Lee S H.Validation of Multi-Temperature Nozzle Flow Code NOZNT.AIAA Paper 93-2862.
    [147]Roberts T.Implementation Into TINA Modelling for the Electron/Electronic Energy Equation.AIAA 96-1851.
    [148]Appleton J P,Bray K N C,the Conservation Equations for a Non-Equilibrium Plasma.Journal of Fluid Mechanics,Vol.20,Part 4,pp 659-672,Dec 1964.
    [149]Capitelli M,Gorse C,Longo S,Giordano D.Transport Properties of High Temperature Air Species.AIAA 98-2936.
    [150]Fertig M,Dohr A,Fruhauf H H.Transport Coefficients for High Temperature Nonequilibrium Air Flows.AIAA 98-2937.
    [151]Selle S,Riedel U.Transport Coefficients of Reacting Air at High Temperature.AIAA 2000-0211.
    [152]Blottner F C.Chemically Reacting Viscous Flow Program for Component Gas Mixtures.Sandia Lab.Rept,SC-RR-70-754,Dec.1971.
    [153]Wood W A,Eberhardt S.Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows.AIAA 95-0158.
    [154]Candler G V,MacCormack R W.The Computation of Hypersonic Ionized Flows in Chemical and Thermal Nonequilibrium.AIAA 88-0511.
    [155]Harten A.High Resolution Schemes for Hyperbolic Conservation Laws.Journal of Computational Physics,49,pp.357-393,1983.
    [156]Yee H C.Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications,Journal of Computational Physics,68,pp.151,1987.
    [157]Liou M S.A Generalized Procedure for Constructing an Upwind-Based TVD Scheme.AIAA 87-0355.
    [158]张涵信,沈孟育.计算流体力学——差分方法的原理和应用.北京:国防工业出版社,2003.
    [159]李人宪.有限体积法基础.北京:国防工业出版社,2005.
    [160]张来平,张涵信.NND格式在非结构网格中的推广.力学学报.28(2),May 1996.
    [161]Stoll P,Gerlinger P,Bruggemann D.Domain Decomposition for an Implicit LU-SGS Scheme using Overlapping Grids.AIAA 97-1896.
    [162]G.贝克菲等著,庄国良,诸成译.激光等离子体原理.上海:上海科学技术出版社,1981.
    [163]常铁强,张钧,张家泰等.激光等离子体相互作用与激光聚变.长沙:湖南科学技术出版社,1991.
    [164]孙承纬主编.激光辐照效应.北京:国防工业出版社,2002.
    [165]张钧,常铁强.激光核聚变靶物理基础.北京:国防工业出版社,2004.
    [166]朱定强,郑力铭,蔡国飚.激光推进技术中激光与工质相互作用.北京航空航天大学学报,30(7),July 2004.
    [167]Smith D C.Laser Induced Gas Breakdown and Plasma Interaction.AIAA 2000-0716.
    [168]Canavan G H,Proctor W A,Nielsen P E,Rockwood S D.CO_2 Laser Air Breakdown Calculation.IEEE J.Quantum Electronics,Vol.8,pp.564,1972.
    [169]Edwards A L,Fleck J A Jr.Two-Dimensional Modeling of Aerosol-Induced Breakdown.Journal of Applied Physics,50(6),pp.4307-4313,1979.
    [170]Myrabo L N,Borkowski C A,Kaminski D A.Analytical Investigation of an Airbreathing,Repetitively Pulsed LSC-wave Thruster Part 1.CP830,Fourth International Symposium on Beamed Energy Propulsion,2006.
    [171]Larson C W,Mead F B,Jr.Energy Conversion in Laser Propulsion.AIAA 2001-0646.
    [172]Larson C W,Kalliomaa W M,Mead F B Jr.Energy conversion in laser propulsion Ⅱ.AIAA 2002-2205.
    [173]Larson C W,Mead F B Jr,Kalliomaa W M.Energy conversion in laser propulsion Ⅲ.CP664,First International Symposium on Beamed Energy Propulsion,2003.
    [174]阿弗肯[美]著,曹富田 译.矢量、张量与矩阵.北京:计量出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700