用户名: 密码: 验证码:
聚氨酯/纳米无机复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯作为一类性能优异的多用途高分子合成材料,广泛应用在涂料、建筑、机械、胶黏剂、合成革等行业。由于组成聚氨酯的软、硬链段化学结构的不同,其热力学不相容会引发微相分离,严重影响聚氨酯的性能,从而限制了聚氨酯产业的发展。为了拓展其应用,制备高性能的聚氨酯合成材料,需要对其进行改性。通常改性的方法有两种:(1)通过异氰酸酯与多元醇的逐步聚合反应改变其化学结构;(2)在聚氨酯中加入有机或无机填料。
     近年来,聚合物/无机纳米复合材料具有的潜在优越性能,引起了科学界的广泛关注。由于纳米材料的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,即使在较低的添加量下,聚合物/无机纳米复合材料仍会表现出比普通聚合物更优越的性能。
     纳米CaCO3是一种无毒、无刺激性、无气味的白色软质填料,与其它普通填料相比,处于较低的价位。近年来,随着纳米材料和纳米技术的兴起,纳米CaCO3已经广泛应用于各种聚合物中,尤其是国内众多万吨级的纳米碳酸钙生产线的建成,更是迫切要求在包括聚氨酯在内的一系列领域中获得应用,但是,有关CaCO3在聚氨酯中应用的研究还不多。经过纳米SiO2改性的聚合物具有质轻、高强度、高韧性等优点,是科学界应用最广泛的无机填料之一。因此,制备综合性能优异的聚氨酯/纳米SiO2复合材料显得尤为重要。聚氨酯是一种易燃的高分子材料,提高阻燃性是聚氨酯行业重要的研究内容之一。纳米硼酸锌是一种高热稳定性的无毒阻燃剂,具有比重小、易分散、粒度小、无毒性、受热稳定性好等显著特点。因此,把纳米硼酸锌添加到聚氨酯基体中提高其阻燃性是可行的。基于以上原因,本论文在聚氨酯体系中,选用纳米碳酸钙(CaCO3)、纳米二氧化硅(SiO2)和纳米硼酸锌(ZB)为无机填料。
     纳米粒子在聚氨酯中应用的关键是纳米粒子在基体中的均匀分散以及与基体具有好的相容性。本论文(1)利用多聚磷酸为磷酸化试剂,通过酯化反应,合成了系列酯含量高的磷酸酯表面活性剂;(2)用系列表面活性剂对无机纳米粒子进行表面改性,改善了无机纳米粒子的表面性能;(3)将改性后的纳米粒子首先分散在聚氨酯的反应单体多元醇中,制备出均匀分散的分散液,随后通过原位聚合法制备出分散性良好的聚氨酯/纳米无机复合材料。在此基础上,方面研究了合成表面改性剂的最佳条件,探讨了改性后无机纳米粒子的表面性能及相互作用机理;另一方面研究了不同种类纳米粒子的加入对聚氨酯内部结构、热稳定性及力学性能的影响,着重探讨了经聚丙二醇磷酸酯改性的纳米粒子在聚氨酯中的均匀分散以及界面之间的相互作用。
     本论文首次用聚氨酯的反应单体多元醇与多聚磷酸通过酯化反应,制备出色泽好、单酯含量高的多元醇磷酸酯;无机纳米粉体经其表面改性后,由于修饰在表面的长链烷氧基与多元醇相同,使无机纳米粉体能够均匀地分散在多元醇中;随后通过原位聚合反应,进一步均匀分散在聚氨酯中,在根本上解决了无机纳米粉体在聚氨酯中分散不均的难题。所述多元醇可以是合成聚氨酯的各种醇类,其与多聚磷酸合成多元醇磷酸酯的工艺简单、原料易得、环保、成本低廉。所采用的无机填料来源广、易加工、改性过程成本低;工艺简单、安全无污染,适用于聚氨酯的产业化发展。
     本论文将油酸改性的纳米硼酸锌通过原位聚合法添加到聚氨酯中,制备出分散性能良好的聚氨酯/纳米硼酸锌复合材料。由于聚氨酯易燃,而硼酸锌是一种高热稳定性的无毒阻燃剂,因此,把两者复合起来适用于阻燃型聚氨酯的发展。本论文还将经油酸改性的纳米碳酸钙通过原位聚合法添加到水性聚氨酯中,制备出的水性聚氨酯/纳米碳酸钙复合材料综合性能良好,为无机纳米粒子在水性聚氨酯中的应用奠定了基础。
Polyurethane (PU) is one of the most important and versatile class of polymer materials in industry, which has been widely used in adhesives, synthetic leather, construction, automatic applications, etc. Hence, it has received wide attention for its synthesis, morphology, chemical and mechanical properties. PU generally consists of a soft segment which is a high molecular weight macrodiol and a hard segment which is composed of diisocyanate and low molecular weight diol or diamine. Due to the difference in the chemical structure of the soft and hard segment, microphase separation takes easily arising from the thermodynamic incompatibility in PU. The domain morphology in such phase-separated structures achieved by phase separation or phase mixing has a great influence on the PU properties, which has limited its wide engineering usages. To extend the application fields of PU, researches are compelled to search for alternative PU with higher performance.In general, there are two approaches:the first is to change the molecular structure of polyurethane by modification of its basic building blocks. The second is to introduce the inorganic filler into the polyurethane matrix. Nanocomposites attract increasing interests because of their potential of providing novel performances. The tremendous interfacial area in a polymer nanocomposite helps to influence the composites properties to a great extent even at rather low filler loading. However, the homogeneous dispersion of nanoparticles is very difficult to achieve, because nanoparticles with high surface energy tend to easily agglomerate. To break up the agglomerates, studies have been carried out on the approaches of in situ polymerization of monomers in the presence of nanoparticles and other intercalation polymerization techniques.
     In this paper, a-chlorohydrin phosphate ester and a high molecular weight poly (propylene glycol) phosphate ester (PPG-P) were firstly obtained by polyphosphoric acid (PPA). Secondly, phosphate betaine was obtained by the reaction ofa-chlorohydrin phosphate and tertiary amine.
     PPG and TDI were used as main materials, nano-CaCO3, nano-SiO2, nano-ZB were used as fillers to prepare PU nanocomposites.In this paper, we prepared PU/CaCO3, PU/SiO2, PU/ZB and WPU/CaCO3 nanocomposites via in-situ polymerization.
     In polyurethane/CaCO3 nanocomposites experiments, it was found that PPG-P had successfully attached on the surface of nano-CaCO3 and influenced the decomposition of CaCO3. Well-dispersed and long-term stable nano-CaCO3/polyol dispersions were prepared by a mechanochemical approach with the aid of poly (propylene glycol) phosphate ester (PPG-P). Polyurethane (PU)/CaCO3 nanocomposites were prepared by further in situ polymerization with 6wt% nano-CaCO3. The microstructure and dispersion of nano-CaCO3 in the nanocomposites were investigated. It was found that well dispersion was obtained up to 6 wt% of the surface treated CaCO3 loading for PU/CaCO3 nanocomposite. The segmented structures of PU were not interfered by the presence of nano-CaCO3 in these nanocomposites as evidenced by Fourier transform infrared. Compared with the pure PU, a significant improvement in thermal stability was observed with the addtion of 6wt% of the surface treated CaCO3. The experimental results suggested that the properties of nanocomposites were correlated with the dispersion of nano-CaCO3 in PU and the interfacial interactions between nano-CaCO3 and polymer matrix.
     In polyurethane/SiO2 nanocomposites experiments, it was found that PPG-P had successfully grafted onto the surface of nano-SiO2 and influenced the dispersion and decomposition of nano-SiO2. Then a series of polyurethane (PU) nanocomposites with the blank SiO2 and the surface treated SiO2 have been successfully prepared via in situ polymerization. The surface modification of nano-SiO2, the microstructure and the properties of nanocomposites were investigated by FTIR, SEM, XRD and TGA. The dispersion quality of SiO2 nanoparticles in PU has greatly improved by the addition of PPG-P. The segmented structure of PU has not been affected by the presence of SiO2 in these nanocomposites. The incorporation of the surface treated SiO2 into PU doesn't improve the first decomposition temperature, but does improve the second decomposition temperature, and in the mass rang of 3 wt% to 10 wt%, the thermal stability of polyurethane increases with increasing nano-SiO2 content due to more interaction between nano-SiO2 particles and macromolecular chains
     A series of polyurethane/zinc borate nanocomposites were successfully prepared via in situ polymerization. The PPG-P and OA had successfully grafted onto the surface of ZB and the dispersion quality of ZB nanoparticles in PU has greatly improved by the addition of 1% OA. The segmented structure of PU has not been affected by the presence of ZB in these nanocomposites. Moreover, the incorporation of ZB nanoparticles modified with OA greatly improved the thermal property of PU without disrupting the intrinsic structure of PU, in the range of 1%-4%, the proper amount of OAZB incorporating into PU is 2%.
     A series of WPU/CaCO3 nanocomposites have been successfully prepared via in situ polymerization. OA has greatly improved the surface characteristics of nanoparticles, from hydrophilic to hydrophobic. SEM examination of the fractured surfaces of nanocomposites showed that OA-CaCO3 achieved well dispersion in WPU matrix. FTIR analysis suggested no major changes in the chemical structure of WPU in the presence of 2 wt% CaCO3. Thermal stability of WPU measured by TGA was greatly improved with the addition of OA-CaCO3. Meanwhile, the mechanical properties of the nanocomposites, examined by tensile tests, showed higher tensile strength than that of the pure WPU, especially incorporation of OA-CaCO3.
     This paper also investigated the modification of nano-filler by PPG-P and proposed a simple model for the dispersion of nano-filler in PU matrix with the modification of PPG-P. The long alkyl chain of PPG-P is the same as PU matrix', thus, nanoparticles modified with it can exhibit good dispersion and compatibility with PU matrix. The process of preparing phosphate ester is simple and the cost is low, moreover, the source of inorganic filler used is wide, easily to processing and the cost is low, thus, it is useful for the development of PU industry.
引文
[1]BUCKLEY C P, PRISACARIU C, MARTIN C. Elasticity and inelasticity of thermoplastic polyurethane elastomers:Sensitivity to chemical and physical structure [J]. Polymer,2010,51:3213-3224.
    [2]CHEN C H; MA C C M. Pultruded fibre-reinforced polyurethane composites. III. Static mechanical, thermal, and dynamic mechanical properties [J]. Comp Sci Technol.,1994,52:427-432.
    [3]WARNES L A A. Some acoustical properties of certain polyurethane elastomers [J]. Ultrasonics,1989,27(2):97-100.
    [4]LEE Y M, LEE J C, KIM B K. Effect of soft segment length on the properties of polyurethane anionomer dispersion [J]. Polymer,1994,35:1095-1099.
    [5]SEEMAN N C. DNA Nicks and Nodes and Nanotechnology [J]. Nano Lett.,2001, 1:22-26.
    [6]MIHAIL C R, KARN B. Environmentally Responsible Development of Nanotechnology [J]. Environ. Sci. Technol.,2005,39:106A-112A.
    [7]LI S, WHITE T, FU Y Q, et al. Discriminating Lattice Structural Effects from Electronic Contributions to the Superconductivity of Doped MgB2 with Nanotechnology [J]. J. Phys. Chem. B.,2004,108:16415-1641.
    [8]LLOYD S M, LAVE L B, MATTHEWS H S. Life Cycle Benefits of Using Nanotechnology To Stabilize Platinum-Group Metal Particles in Automotive Catalysts [J]. Environ. Sci. Technol.,2005,39:1384-1392.
    [9]GIORGI R, DEI L, BAGLIONI P, et al. Nanotechnologies for conservation of cultural heritage:paper and canvas deacidification [J]. Langmuir,2002,18:8198-8203.
    [10]KARIM A, LIU D W, DOUGLAS J F, et al. Modification of the phase stability of polymer blends by fillers [J]. Polymer,2000,41:8455-8458.
    [11]Xie X L, Liu Q X, Mai Y W. Rheological and mechanical properties of PVC/ CaCO3 nanocomposites.prepared by in situ polymerization [J]. Polymer,2004,45: 6665-6673.
    [12]ZHANG Q X, YU Z Z, MAI Y W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier [J]. Polymer, 2004,45:5985-5994.
    [13]BAILLY M, KONTOPOULOU M. Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix [J]. Polymer, 2009,50:2472-2480.
    [14]FIRESTONE M A, SHANK M L, BOHN P W, et al. Film Architecture in Biomolecular Assemblies. Effect of Linker on the Orientation of Genetically Engineered Surface-Bound Proteins [J]. J. Am. Chem. Soc.,1996,118:9033-9041.
    [15]DEO P, SOMASUNDARAN P. Interactions of Hydrophobically Modified Polyelectrolytes with Nonionic Surfactants [J]. Langmuir,2005,21,3950-3956.
    [16]郝增恒,卢健,盖国胜.纳米碳酸钙包覆微米硅灰石复合矿物颗粒研究[J].非金属矿,2003,26(6):19-20.
    [17]邵长生,沈钟,王敏,等.CaC03的表面改性及其在橡胶中的应用[J].江苏化工,1996,24(4):16-20.
    [18]孟翠省.纳米技术在高分子材料中的应用[J].化工新型材料,2001,29(2):3-6.
    [19]陈先勇,周贵云,唐琴.纳米碳酸钙制备的研究[J].湖北民族学院学报自然科学版,2004,22(4):21-23.
    [20]徐伟平,黄锐,范五一,等.大分子偶联剂对纳米碳酸钙复合材料性能的影响[J].中国塑料,1999,13(9):27-31.
    [21]张毅,马秀清,田苗,等.纳米的表面改性及其与聚合物基的复合[J].塑料,2003,32(3):59-64.
    [22]胡庆福,胡晓波,刘宝树,等.沉淀碳酸钙制造及其改性处理技术[J].非金属矿,1999(2):33-35.
    [23]裘锋,陈烨璞.用于碳酸钙表面改性的改性剂的研究进展[J].化工矿物与加工,2004,33(6):3-6.
    [24]RAO A V, KULKARNI M M, SETH T, et al. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes [J]. App. Surf. Sci,2003, 206(1-4):262-270.
    [25]FENG B, YONG A K, AN H. Effect of various factors on the particle size of calcium carbonate formed in a precipitated process [J]. Mat. Sci. Eng-A,2007, 445-446:170-179.
    [26]SAMUEL I, STUPP PAUL V, Braun. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors [J]. Science,1997,277(29):1242-1248.
    [27]GAO X, XU J, CHEN Z, DENG C, et al. Improved mechanical properties and structure of PP/nano-CaCO3 blends prepared by low-frequency vibration injection molding [J]. Polym Int,2008,57:23-27.
    [28]毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社,2004.
    [29]余天石,黄志明,汤继忠,等.氯乙烯-丙烯腈共聚物/二氧化硅纳米复合材料的制备[J].聚氯乙烯,2008,36(8):8-10.
    [30]陈亚东,张时魁,张永春,等.PUR弹性体/超细滑石粉复合材料的结构及性能研究[J].工程塑料应用,2008,36(9):20-23.
    [31]GONZALEZ J, ALBANO C, DIAZ B, et al. Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO3 [J]. Eur Polym J,2002,38:2465-2475.
    [32]HOJJATI B, SUI R, CHARPENTIER P A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization [J]. Polymer,2007,48(20):5850-5858.
    [33]ZHOU B, JI X, JIANG Z, et al. Mechanical and thermal properties of poly-ether ether ketone reinforced with CaCO3 [J]. Eur. Polym. J.,2004,40(10):2357-2363.
    [34]王成毓,赵敬哲,王子忱,等.模拟生物矿化过程原位合成活性纳米碳酸钙[J].高等学校化学学报,2005,26(1):13-15.
    [35]陈小萍,刘俊康,刘丽萍,等.系列磷酸酷表面活性剂改性纳米碳酸钙及其在聚氯乙烯中的应用[J].江南大学学报(自然科学版),2002,1(3):265-268.
    [36]毛传斌,李恒德,王浩,等.无机材料的仿生合成[J].化学进展,1998(3):12-20.
    [37]SHENG Y, ZHOU B, WANG Z C. Influence of octadecyl dihydrogen phosphate on the formation of active super-fine calcium carbonate [J]. Colloid Interface Sci., 2004,272(2):326-329.
    [38]WANG C Y, SHENG Y, WANG Z C. A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ [J]. Mat. Sci. Eng-C,2007,27(l):42-45.
    [39]张智宏,沈钟,邵长生.新型季铵盐型表面活性剂应用研究[J].日用化学工业,1999(3):1-3.
    [40]LIU M X, GAN LH, CHEN G, et al. A novel synthesis of two-dimensional nanopattemed TiO2 thin film [J]. Chin.Chem.Lett.,2006,17(8):1085-1088.
    [41]WU S, TAO B, SHEN Y P, et al. Chemical vapor deposition mechanism of copper films on silicon substrates [J]. Chin.j.Chem.Phys.,2006,19(3):248-252.
    [42]余双平,邓淑华,黄慧民,等.超微粉体表面改性技术进展[J].广东工业大学学报,2003,20(2):70-76.
    [43]魏美玲,任卫.超细陶瓷粉的表面化学包覆改性的研究[J].现代陶瓷技术,2000(1):3-5.
    [44]THIO Y S, ARGON A S, COHEN R E. Role of interfacial adhesion strength on toughening polypropy-lene with rigid particles [J]. Polymer,2004,45(10): 3139-3148.
    [45]GOTOH Y, OHKOSHI Y, NAGURA M, et al. Preparation and optical absorption property of poly(Acrylicacid)/copper sulfide nanocomposite films [J]. Polymer,2001, 33(3):303-305.
    [46]刘吉平.纳米科学与技术[M].北京:科学出版社,2002:75-223.
    [47]王永康.纳米材料科学与技术[M].杭州:浙江大学出版社,2002:2-3.
    [48]曹茂盛.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版,2001.
    [49]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社,2001.
    [50]马玉宝.纳米技术的发展与展望[J].胜利油田职工大学学报,2003,17(3):20-21.
    [51]叶林忠.CaC03增韧R-PVC材料的性能研究[J].合成树脂及塑料,1995,4:43~4
    [52]CAROTENUTO L. Dense/porous layered hydroxylapatite ceramicfor orthopedic device coating prepared by tape casting technique [J]. Appl.Compos.Mater., 1998,6:171-181.
    [53]熊传溪.超微细Al203增韧增强聚苯乙烯的研究[J].高分子材料科学与程,1994(4):69.
    [54]STEIN R. Nanocomposites of rigid polyamide dispersed in flexible vinyl polymer [J]. Polymer,1997,15:3855-3860.
    [55]Dufresne A. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer, 2004(5):7624-7626.
    [56]CAMAKARIS J. Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems [J]. Polymer,2005,1:193-201.
    [57]欧玉春,杨锋.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J].高分子学报,1997(2):199-04.
    [58]SUN S H, LI C Z, ZHANG L, et al. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites [J]. Euro. Polym. J.,2006,42(7):1643-1652.
    [59]华中一.科学。纳米科学与技术,2000,52(5):6-10.
    [60]曹学均.美国国家纳米技术计划.国外科技动态,2000,6:18-19.
    [61]张福强,王立新,王新,等.PPy/Si02纳米复合材料的合成与导电性能[J].高分子材料科学与工程,1998,14(6):47.
    [62]王立新,张福强,王新,等.PPy/SiO2纳米复合材料的合成与表征[J].合成树脂及塑料,1998,15(2):52.
    [63]YEGANEH H, SHAMEKHI M A. Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability [J]. Polymer, 2004,45(2):359-365.
    [64]BEGEMANN M. Polyurethane Elastomers [J]. Kunststoffe-Synthetics,2001, 91(11):35-36.
    [65]FOKS J,JANIK H,WINIECKI S,et a1. Morphology and thermal properties ofpolyurethanes prepared under different conditions [J]. Eur. Polym. J.,1989, 25(1):31-37.
    [66]BAKIKANI M, HEPBURN C. The relative thermal stability of polyurethane elastomers:effect of diisocyanate structure, cellular [J]. Polymer,1987,6(2):41-45.
    [67]刘意,张力,刘敬芹.聚氨酯涂料的研究进展[J].辽宁化工,2002,31(3):107-112.
    [68]MARTIN M, MICHAEL S, EBERHARD J, et al. Recent developments in aqueous two-component polyurethane (2K-PUR) coatings [J]. Prog. Org. Coat.,2000,40: 99-109.
    [69]HIROSE M, ZHOU J H, NAGAI K. The structure and properties of acrylic-polyurethane hybrid emulsions [J]. Prog. Org. Coat.,2000,38:27-34
    [70]DAVID A L, DENISE E F, RICHARD J Q. Optimization of acrylic polyols for low VOC two-component water reducible polyurethane coatings using tertiary isocyanate crosslinkers [J]. Prog. Org. Coat.,1999,35:109-116.
    [71]LEBARON P C, WANG Z, THOMAS J P. Polymer-layered silicate nanocomposites: An overview [J]. Appl. Clay Sci.,1999,15(1):11-29.
    [72]WANG Z, THOMAS J P. Nanolayer reinforcement of elastomeric polyurethane [J]. Chem. Mater,1998,10:3769-3771.
    [73]Ruijian Xu.Evangelos Manias.Alan J Snyder New biomedical Poly(urethane urea)-layered silicate nanocomposites [J]. Macromolecules,2001,34(2):337-339.
    [74]包建华,张福东.聚氨酯/蒙脱土纳米复合材料力学性能研究[J].长春工业大学学报,2007,28(04):477-481.
    [75]李坚,许然,姚超.纳米二氧化钛改性聚氨酯乳液性能初探[J].中国胶黏剂,2005,14(05):6-9.
    [76]胡津昕,刘德山,孙多先.水性聚氨酯-Ti02复合物的制备与研究[J].塑料工业,2004,32(05):16-19.
    [77]刘富春,韩恩厚,柯伟.纳米TiO2/聚氨酯复合涂层的光催化活性研究[J].功能材料,2005,36(01):129-132.
    [78]李茂华,桌道成,丁武成.聚氨酯/Ti02纳米复合材料冲蚀磨损特性研究[J],润滑与密封,2004(06):59-61.
    [79]倪平,李静,索继拴.Ti02增强聚氨酯弹性体的制备和表征[J].聚氨酯工业,2004,19(02):6-9.
    [80]焦宁宁,王建明.聚合物纳米复合材料(V)[J].石化技术与应用,2001,19(5):340-343.
    [81]PETROVIC Z S, AVNI I, WADDON A. Structure and properties of polyurethane-silica nanocomposites [J]. J. Appl. Polym. Sci.,2000,76:133-151.
    [82]NUNES R C R.PEREIRA R A. FONSECA J L C X-ray studies on compositions of polyurethane and silica [J]. Polym. Test.,2001,20:707-712.
    [83]NUNES R C R, FONSECA J L C, PEREIRA M R. Polymer-filler interactions and mechanical properties of a polyurethane elastomer [J].Polym. Test.,2000,19:93-103.
    [84]张颖,侯文生,魏丽乔.纳米Si02的表面改性及其在聚氨酯弹性体中的应用[J].功能材料,2006,37(08):1287-1291.
    [85]孙多先,贾海东,郭长海.水性聚氨酯包封原生Si02纳米复合材料的制备及表征[J].现代化工,2003,23(01):41-43.
    [86]张志华,沈军,吴广明.Si02不同的掺杂方式对聚氨酯树脂材料性能的影响[J].材料导报,2003(17):127-130.
    [87]黄国波,童筱莉,邬润德.无机纳米粒子原住复合聚氨酯研究[J].化工新型材料,2003,31(01):12-14.
    [88]邬润德,童筱莉,黄国波.聚氨酯/无机纳米粒子复合材料的改性研究[J].中国胶粘剂,2004,13(01):4-6.
    [89]曹琪,刘朋生.CaC03填充型聚丁二烯聚氨酯弹性体的研究[J].塑料工业,2003,31(09):42-44.
    [90]李丽霞,吕志平,王东凯.聚氨酯/纳米碳酸钙弹性体的制备与力学性能的研究[J].太原理工大学学报,2003,34(6):638-641.
    [91]邹德荣.纳米CaC03对聚烯烃聚氨酯弹性体性能影响[J].聚氨酯工业,2002,17(03):14-17.
    [92]陈宝书,栾道成,杨红艳.聚氨酯/纳米CaCO3复合材料的制备与性能研究[J].西华大学学报,2006,25(01):11-13.
    [93]Mahfuz H, Rangari V K, Islam M S. Synthesis and mechanical characterization of nanoparticles infused polyurethane foams [J]. Compos Part A-Appl. S.,2004, 35(04):453-460.
    [94]喻光辉,曾繁涤.聚氨酯/碳纳米管复合材料力学及电性能研究[J].工程塑料应用,2005,33(06):11-14.
    [95]胡剑青,李建华,洪若瑜.纳米ZnO/聚氨酯复合涂层的制备及其性能研究[J].上海涂料,2007,46(09):8-12.
    [96]刘桂霞,孙多先,洪广言.纳米CeO2/阴离子聚氨酯复合材料[J].高分子材料科 学与工程,2003,19(04):192-195.
    [97]SABZI M, MIRABEDINI S M, ATAI M, et al. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating [J]. Prog. Org. Coat.,2009,65:222-228.
    [98]JEON H T, JANG M K, KIM K H, et al. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process. Colloid Surf A: Physicochem. Eng. Aspects,2007,302:559-567.
    [99]YEH J M, YAO C T, WUA C P, et al. Preparation and properties of amino-terminated anionic waterborne-polyurethane-silica hybrid materials through a sol-gel process in the absence of an external catalyst. Eur. Polym. J.,2008,44:2777-2783.
    [100]XIA H S, SHAW S J, SONG M. Relationship between mechanical properties and exfoliation degree of clay in polyurethane nanocomposites [J]. Polym Int., 2005,54:1392-1400.
    [101]XIA H S, SONG M. Preparation and characterization of polyurethane-carbon nanotube composites [J]. Soft Matter,2005,1:386-394.
    [102]马继盛,漆宗能,胡友良,等.插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J].高等学校化学学报,2001,10(22):1767-1770.
    [1]强西怀,廖银念,高慧,等.长链脂肪醇醚(5)磷酸酯合成新方法的研究[J].日用化学工业,2005,35(6):357-360.
    [2]李旭明,颜杰,易家宝,等.单十二烷基磷酸酯合成工艺研究[J].云南大学学报,2008(30):355-358.
    [3]张心亚,陈焕钦.磷酸酯表面活性剂在乳液形成中的应用[J].日用化学工业,2003,33(3):147-152.
    [4]杨鋐.磷酸酯的合成及其在精炼剂中的应用[J].精细石油化工,1995(4):7-9.
    [5]陈贵锐,杨素珍,王晓梅.单烷基磷酸酯体系洁面乳基础配方的研究[J].食品与药品,2008,10(3):39-43.
    [6]兰云军,石碧.磷酸酯的合成及其在皮革加脂中的应用[J].中国皮革,2001,30(1):29-31.
    [7]罗云莲.烷基磷酸酯型抗静电剂的合成[J].皮革化工,2001,18(2):40-43.
    [8]刘义.单烷基磷酸酯在沐浴露中的应用研究[J].日用化学工业,2002,32(3):81-82.
    [9]刘波,黄芳.磷酸酯表面活性剂的合成[J].丹东纺专学报,2004,11(3):16-18
    [10]王彦林,房晓敏,丁涛,等.卤代双磷酸酯阻燃剂的合成研[J].塑料工业,2003,31(11):12-14.
    [11]王学川,王固霞,宋世鹏.聚醚改性硅氧烷磷酸酯的合成[J].中国皮革,2007,36(3):57-60.
    [12]刘红,李国威,魏少华.磷酸酯甜菜碱表面活性剂的研究[J].科技进展,1998,12(12):19-21.
    [13]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991:130-496.
    [14]农兰平.新型磷酸酯甜菜碱两性表面活性剂的合成与复配技术研究[D].广州:华南理工大学化学工程,2003.
    [15]方云.两性表面活性剂[M].北京:中国轻工业出版社,2001:110-219.
    [16]何元君,张铸勇.烷基酰胺磷酸酯甜菜碱的合成及性能[J].华东理工大学学报.1998,24(6):741-745.
    [17]穆云,郭晓辉.合成甜菜碱的新工艺研究[J].化学与生物工程,2005(7):48-49.
    [18]何元军,张铸勇.甜菜碱系两性表面活性剂的合成与应用[J].日用化学工业,1995(3):29-32.
    [19]李希友,邹志深,王仲妮,等.新型甜菜碱两性表面活性剂的合成[J].表面活性剂工业,1995(3):42-44
    [20]李明罡.功能型纳米氧化锌及其磷酸酯系列表面修饰剂的合成研究[D].长春:吉林大学化学学院,2007.
    [21]张曲.电位滴定法测定脂肪烷基二甲基甜菜碱含量[J].石油与天然气化工1999,28(3):223-224.
    [1]WU Y L, NATANSOHN A,.Rochon P. Photoinduced Birefringence and Surface Relief Gratings in Novel Polyurethanes with Azobenzene Groups in the Main Chain [J]. Macromolecules,2004,37:6090-6095.
    [2]JEONG H M, KIM B K, CHOI Y J. Synthsis and properties of thermotropic liquid crystalline polyurethane elastomers [J]. Polymer,2000,41:1849-1855.
    [3]FURUKAWA M, SHIIBA T, MURATA S. Mechanical properties and hydrolytic stability of polyesterurethane elastomers with alkyl side groups [J]. Polymer,1999,40: 1791-1798.
    [4]XIA H S, SONG M. Preparation and characterization of polyurethane-carbonnanotube composites [J]. Soft Matter,2005,1:386-394.
    [5]KARIM A, LIU D W, AMIS E J, et al. Modification of the phase stability of polymer blends by fillers [J]. Polymer,2000,41:8455-8458.
    [6]BAILLY M, KONTOPOULOU M. Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix [J]. Polymer,2009,50:2472-2480.
    [7]RAY S S, OKAMOTO M. Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Prog Polym Sci,2003,28:1539-1641.
    [8]CHRISSOPOULOU K, ALTINTZI I, THEOPHILOU N. Controlling the miscibility of polyethylene/layered silicate nanocomposites by altering the polymer/surface interactions [J]. Polymer,2005,46:12440-12451.
    [9]ZHAO Z F, TANG T, HUANG B T, et al. Effects of Surfactant Loadings on the Dispersion of Clays in Maleated Polypropylene [J]. Langmuir,2003,19:7157-7159.
    [10]ZERDA A S, CASKEY T C, LESSER A J. Highly Concentrated, Intercalated Silicate Nanocomposites:Synthesis and Characterization [J]. Macromolecules, 2003,36:1603-1608.
    [11]JEON H T, JANG M K, KIM K H, et al. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process, Colloid Surf. A: Physicochem.Eng.Aspects, vol.302, pp.559-567,2007.
    [12]HALE W R, DOHRER K K, SAND I D, et al. A diffusion model for water vapor transmission through microporous polyethylene/CaCO3 films [J]. Colloid Surf. A: Physicochem.Eng.Aspects,2001,187:483-491.
    [13]CHEN Y H, JALLO L L, DAVE R, et al. Characterization of particle and bulk level cohesion reduction of surface modified fine aluminum powders [J]. Colloid Surf. A: Physicochem.Eng.Aspects,2010,361:66-80.
    [14]SHANGA J Y, FLURY M,. ZOLLARS R L, et al. Contact angles of aluminosilicate clays as affected by relative humidity and exchangeable cations, Colloid Surf. A: Physicochem.Eng. Aspects,2010,353:1-9.
    [15]ZHANG Q X, YU Z Z, MAI Y W, et al. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier [J]. Polymer, 2004,45:5985-5994.
    [16]CHEN C H, SUN Y Y. Mechanical Properties of Blocked Polyurethane /EpoxyInterpenetrating Polymer Networks [J]. J Appl Polym Sci,2006,101:1826-1832.
    [17]MICHEL F S, PIGNON F, MAGNIN A. Rheometric properties of micron-sized CaCO3 suspensions stabilised by a physical polyol/silica gel for polyurethane foams [J]. Rheol Acta,2005,44:644-653.
    [18]VRSALJKO D, LESKOVAC M, KOVACEVIC V, et al. Interphase phenomena in nanoparticulate filled polyurethane/poly(vinyl acetate) polymer systems [J]. Polym Eng Sci,2008,48:1931-1938.
    [19]SMARSLY B, GARNWEITNER G, BRINKER C J, et al. Preparation and characterization of mesostructured polymer-functionalized sol-gel-derived thin films [J]. Prog Org Coat,2003,47:393-400.
    [20]FIRESTONE M A, SHANK M L, BOHN P W, et al. Film Architecture in Biomolecular A ssemblies. Effect of Linker on the Orientation of Genetically Engineered Surface-Bound Proteins [J]. J Am Chem Soc,1996,118:9033-9041.
    [21]DEO P, SOMASUNDARAN P. Interactions of Hydrophobically Modified Polyelectrolytes with Nonionic Surfactants [J]. Langmuir,2005,21:3950-3956.
    [22]SUBRAMANI S, CHOI S W, KIM J H, et al. Aqueous dispersion of novel silylated silylated (polyurethane-acrylic hybrid/clay) nanocomposite [J]. Polymer,2007,48: 4691-4703.
    [23]YAN X X, XU G Y. Synergy effect of silane and CTAB on corrosion-resistant property of low infrared emissivity Cu/polyurethane coating formed on tinplate [J]. Surf Coat Tech,2010,204:1514-1520.
    [24]DAI X H, GUO X L, ZHANG X L, et al. Study on Structure and Orientation Action of Polyurethane Nanocomposites, Macromolecules [J].2004,37:5615-5623.
    [25]张杰.聚四氢呋喃醚二醇聚氨酯弹性体结构-耐磨关系的研究.北京:北京化工大学材料学,2000.
    [26]赵丽娜.碳酸钙的形貌控制及表面改性研究[D].长春:吉林大学化学学院,2009.
    [27]EI-SHAHAWI M S, ALDHAHERI S M. Preconcentration and separation of acaricides by polyether based polyurethane foam [J]. Analytica Chimica Acta,1996, 2(2-3):277-287.
    [28]赵勐.聚氨酯泡沫塑料/纳米SiO2复合材料的制备与研究.秦皇岛:燕山大学材料科学与工程学院,2007.
    [1]陈兴明.纳米二氧化硅粉体材料的研制[D].四川:四川大学材料物理与化学学院,2003.
    [2]毋伟,陈建峰.复合法纳米二氧化硅表面聚合物接枝改性[J].过程工程学报,2002(2):471-476.
    [3]LEDER G, LADWIG T, VALTER V, et al. New effects of fumed silica in moderncoatings [J]. Prog. Org. Coat.,2002,45:139-144.
    [4]WANG T L, YANG C H, SHIEH Y T, et al. Synthesis and properties of conducting organic/inorganic polyurethane hybrids [J]. Eur. Polym. J.,2009, 45:387-397.
    [5]CHEN G D, ZHOU S X,. GU G X, et al. Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites [J]. Colloid Surf A:Physicochem. Eng. Aspects,2007,296:29-36.
    [6]BONILLA G, MENDOZA A M, WIDMAIER J M, et al. Ternary interpenetrating networks of polyurethane-poly(methyl methacrylate)-silica:Preparation by the sol-gel process and characterization of films [J]. Eur. Polym. J., 2006,42:2977-2986.
    [7]WANG J L, WANG C, JIAO G S, et al. Study of SiO2/PMMA/CE tri-component interpenetrating polymer network composites [J]. Materials Science and Engineering A,2010,527:2045-2049.
    [8]FAN L Z, NAN C W, ZHAO S J. Effect of modified SiO2 on the properties of PEO-based polymer electrolytes [J]. Solid State Ionics,2003,164:81-86.
    [9]SABZI M, MIRABEDINI S M, J. ATAI M, et al. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating [J], Prog. Org. Coat.,2009,65:222-228.
    [10]LI X, CAO Z, DANG H, et al. Surface-modification in situ of nano-SiO2 and its structure and tribological properties [J]. Appl. Surf. Sci.,2006,252:7856-7861.
    [11]XU X, LI B, WANG H, et al. The interface structure of nano-SiO2/PA66 composites and its influence on material's mechanical and thermal properties [J]. Appl. Surf. Sci.,2007,254:1456-1462.
    [12].HABSUDA J, SIMON G P, CSER F, et al. Sol-gel derived composites from poly(silicic acid) and 2-hydroxyethylmethacrylate:thermal, physical and morphological properties [J]. Polymer,2002,43:4627-4638.
    [13]LU H D, HU Y, LI M, et al. Structure characteristics and thermal properties of silane-graf ted-polyethylene/clay nanocomposite prepared by reactive extrusion [J]. Compos. Sci. Technol.,2006,66(15):3035-3039.
    [14]WU W, CHEN J F, LEI S, et al. Polymer graf ting modify-cation of the surface of nano silicon dioxide [J]. J. Univ. Sci. Technol B,2002,9(6):426-427.
    [15]SHEN J, ZHANG Z H, WU G M, et al. Preparation and characterization of polyurethane/SiO2 nano-composite materials [J]. J. Chem. Indu. Eng.,2002,53 (11):258-259.
    [1]SHEN J, ZHANG Z, WU G J. Preparation and characterization of polyurethane doped with nano-sized SiO2 derived from sol-gel process [J]. Chem Eng Jpn., 2003,36:1270-1275,
    [2]REHAB A, SALAHUDDIN N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay [J]. Mater Sci Eng A,2005,399:368-376.
    [3]HOWARD G T. Biodegradation of polyurethane:a review [J]. Int Biodeterior Biodegradation,2002,49:245-252.
    [4]OPREA S, OPREA V. Mechanical behavior during different weathering tests of the polyurethane elastomers films [J]. Eur Polym J,2002,38:1205-1210.
    [5]FENG Y, LI C. Study on oxidative degradation behaviors of polyesterurethane network [J]. Polym Degrad Stab,2006,91:1711-1716.
    [6]SARKAR D, LOPINA S T. Oxidative and enzymatic degradations of 1-tyrosine based Polyurethanes [J]. Polym Degrad Stab,2007,92:1994-2004.
    [7]http://www.el.greatlakes.com/fr/common/jsp/index.jsp,04.07.2008.
    [8]MARTIN C, HUNT B J, EBDON J R, et al. Synthesis, crosslinking and flame retardance of polymers of boron-containing difunctional styrenic monomers [J]. React Funct Polym,2006,66:1047-1054.
    [9]GOOSEY E. Brominated flame retardants:their potential impacts and routes into the environment [J]. Circuit World,2006,32:32-35.
    [10]LI S, LONG B, TIAN Y, et al. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene [J]. J. Solid State Chem,2010,183:957-962.
    [11]TIAN Y, HE Y, WANG Z, et al. In situ and one-step synthesis of hydrophobic zinc borate nanoplatelets [J]. Colloid Surf. A:Physicochem.Eng.Aspects, 2008,312:99-103.
    [12]ZHENG Y, TIAN Y, MA H, et al. Synthesis and performance study of zinc borate nanowhiskers [J]. Colloid Surf. A:Physicochem.Eng. Aspects, 2009,339:178-184.
    [13].WALLSTROM S, DOWLING K, KARLSSON S. Development and comparison of test methods for evaluating formation of biofilms on silicones [J]. Polym Degrad Stab,2002,78:257-262.
    [14]SCHWEIG A, JAVOR T. Anti-bacterial additive. US Patent 2007,0167543.
    [15].KOYTEPE S, VURAL S, SECKIN T. Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials [J]. Mater Res Bull,2009,44:369-376.
    [16].GENOVESE A, SHANK R A. Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate [J]. Polym Degrad Stab,2007,92:2-13.
    [17]BRAUN U, SCHARTEL B, FICHERA M A, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fiber reinforced polyamide 6,6 [J]. Polym Degrad Stab,2007,92:1528-1545.
    [18]DE FENZO A, FORMICOLA C, ANTONUCCIV, et al. Effects of zinc-based flame retardants on the degradation behaviour of an aerospace epoxy matrix [J]. Polym Degrad Stab,2009,9:1354-1363.
    [19]YILDIZ B, SEYBIBEYOGLU M O, GUNER F S. Polyurethane-zinc borate composites with high oxidative stability and flame retardancy [J]. Polym Degrad Stab,2009,94:1072-1075.
    [20]GAO X, ZHOU B, WANG Z. Synthesis and characterization of well-dispersed polyurethane/CaC03 Nanocomposites [J]. Colloid Surf. A:Physicochem. Eng. Aspects,2010,371:1-7.
    [1]XIA H, SONG M. Preparation and characterization of polyurethane-carbon nanotube composites [J]. Soft Matter,2005,1:386-394.
    [2]WU Y, NATANSOHN A, ROCHON P. Photoinduced birefringence and surface relief gratings in novel polyurethanes with azobenzene groups in the main chain [J]. Macromolecules,2004,37:6090-6095.
    [3]VRSALJKO D, LESKOVAC M, BLAGOJEVIC S L, et al. Interphase phenomena in nanoparticulate filled polyurethane/poly(vinyl acetate) polymer systems [J]. Polym.Eng.Sci.,2008,48:1931-1938.
    [4]GAO X Y, ZHOU B, WANG Z C, et al. Synthesis and characterization of well-dispersed polyurethane/CaCO3 nanocomposites [J]. Colloid Surf A: Physicochem. Eng. Aspects,2010,371:1-7.
    [5]YANG C H, YANG H J, WEN T C, et al. Mixture design approaches to IPDI-H6XDI-XDI ternary diisocyanate-based waterborne polyurethanes [J]. Polymer,40 (1999) 871-885.
    [6]KUAN H C, MA C C M, CHANG W P, et al. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite [J]. Compos. Sci. Technol.,2005,65:1703-1710.
    [7]MOORE, DOUGLAS R. Aqueous polyurethane dispersions useful for preparing polymers with improved moisture resistance properties. US Patent 2003; 6524978.
    [8]SHIMIZU, HYOUE, SHIRAKI, et al. Polyurethane resin water dispersion and aqueous polyurethane adhesive. US Patent 2005; 6881788.
    [9]CAO X D, CHANG P R, HUNEAULT M A. Preparation and properties of plasticized starch modified with poly(ε-caprolactone) based waterborne polyurethane [J]. Carbohyd. Polym.,2008,71:119-125.
    [10]HEIDARIAN M, SHISHESAZ M R., KASSIRIHA S M, et al. Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process [J]. Prog. Org. Coat.,2010,68:180-188.
    [11]SARIER N, ONDER E. Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams [J]. Thermochim. Acta,2010,510:113-121.
    [12]MADHAVAN K, REDDY B S R. Structure-gas transport property relationships of poly(dimethylsiloxane-urethane) nanocomposite membranes [J]. J. Membr. Sci.,2009,342:291-299.
    [13]TROUTIER-THUILLIEZ A L, TAVIOT-GUEHO C, CELLIER J, et al. Layered particle based polymer composites for coatings:Part Ⅰ-Evaluation of inorganic layered particles [J]. Prog. Org. Coat.,2009,64:182-192.
    [14]HINTZE-BRUENING H, TROUTIER-THUILLIEZ A L, LEROUX F. Layered particle based polymer composites for coatings:Part Ⅱ-Stone chip resistant automotive coatings [J]. Prog. Org. Coat.,2009,64:193-204.
    [15]AVELLA M, COSCO S, DI LORENZO M L, et al. Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating [J]. Euro. Polym. J.,2006,42:1548-1557.
    [16]KOTEK J, KELNAR I, BALDRIAN J, et al. Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers [J]. Euro. Polym. J, 2004,40:679-684.
    [17]LI Y, ZHAO Z F, RICHARD LAU Y T, et al. Preparation and characterization of coverage-controlled CaCO3 nanoparticles [J]. J. Colloid Interf. Sci.,2010, 345:168-173.
    [18]XIONG C, LU S, WANG D, et al. Microporous polyvinyl chloride:novel reactor for PVC/CaCO3 nanocomposites [J]. Nanotechnology,2005,16:1787-1792.
    [19]XIE X, LIU Q, LI R K, et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization [J]. Polymer,2004,45:6665-6673.
    [20]ZHOU B, LEE J S, KIM J H, et al. Preparation of porous CaCO3/PAM composites by CO2 in water emulsion templating method [J]. Euro. Polym. J.,2007,43:4814-4820.
    [21]LI Q, DONG L, DENG W, et al. Solvent-free fluids based on rhombohedral nanoparticles of calcium carbonate [J]. J. Am. Chem. Soc.,2009,131:9148-9149.
    [22]CHEN X, ZHU Y C, WANG Z C, et al. Hydrophilic CaCO3 nanoparticles designed for poly (ethylene terephthalate) [J]. Powder Technol.,2010,204:21-26.
    [23]SHENGTU B Q, LI J P, WENG Z X. Effect of oleic acid-modified nano-CaCO3 on the crystallization behavior and mechanical properties of polypropylene [J]. Chinese J. Chem. Eng.,2006,14:814-818.
    [24]MA X K, ZHOU B, WANG Z C, et al. Study on CaCO3/PMMA nanocomposite microspheres by soapless emulsion polymerization [J]. Colloid Surf A:Physicochem. Eng. Aspects,2008,312:190-194.
    [25]WANG C, ZHAO X, WANG Z, et al. Biomimetic nucleation and growth of hydrophobic vaterite nanoparticles with oleic acid in a methanol solution [J]. Appl. Surf. Sci.,2007,253:4768-4772.
    [26]REBAB A, SALAHUDDIN N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay [J]. Mater. Sci. Eng. A,2005,399:368-376.
    [27]徐奉林,方旋.矿物填料与高聚物的界面结构研究[J].浙江地质,1998(14):74-84.
    [28]严海彪,潘国元.活性碳酸钙填充改性PVC复合材料[J].湖北工学院学报,2003(18):4749.
    [29]翟庆洲,裘式纶.纳米材料研究进展I-纳米材料结构与化学性质[J].化学研究与应用,1998(10):226-235.
    [30]张乃枝,孙振亚.重质碳酸钙矿物表面改性研究及应用[J].湖北化工,1999(4):25-27.
    [31]马晓坤.无机纳米粒子的表面修饰及功能性无机/有机复合微球的制备[D].吉林:吉林大学化学学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700