用户名: 密码: 验证码:
新型炔基胺大环化合物的构造及其高阶分子堆积结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大环化合物在药物开发和超分子化学领域有着重要的意义,因为结合的灵活性和结构的特殊性而被称为“明星分子”。在药物开发的研究进程中,大环类药物一直是医药领域的经典研究对象;同时大环化合物又是微型分子反应器的器件,在有机催化领域得到广泛应用;此外,大环化合物是主-客体化学研究领域的重要媒介,是超分子化学的重要组成部分。大环化学的发展给无机化学,有机化学等领域带来了新的气息。而晶体工程学是分子工程学的一个重要组成部分,它涉及分子或化学基团在晶体中的组装行为、晶体的设计及结构与性能的控制,而大环化合物作为晶体结构不可或缺的一类分子模块,能呈现出许多独特的晶体组装模式。本论文研究的中心工作是将炔基胺骨架引入大环化合物中,设计和合成出一系列新型的炔基胺骨架大环结构体。同时基于炔基胺衍生物这类具有特殊拓扑结构的分子,作为开展分子组装研究的模块,去研究其在晶态堆积中的特殊结构形态。本文另一方面的工作是研究基于三元催化剂不同摩尔比例选择性调控合成不同结构的螺环化合物。
     具体内容如下:
     第一章,首先概述了近年来多种大环化合物的创新策略,并集中介绍了含有炔基的大环化合物的研究进程,由此提出了本论文的设想和研究思路。
     第二章,将双位点端炔与双位点环化仲胺通过Mannich缩合反应作为构建大环化合物的设计策略,成功合成了八个新颖的大环产物,分别是[1+2+1]型和[2+4+2]型。并且我们得到了三个[1+2+1]型产物的单晶结构和一个[2+4+2]型产物的单晶结构。
     第三章,我们分别用一个不对称的双端炔底物和三个不对称的双位点仲胺为底物参与反应,成功合成了八个不对称的大环产物。并得到了一个[2+4+2]型产物的单晶结构。
     第四章,我们集成Mannich缩合反应和炔炔偶联反应于一锅的自序化合成策略,以高哌嗪为底物,实现了三组分反应一步选择性调控高效合成同时含有炔基胺和炔炔偶联产物-联二炔骨架的多官能团化合物的目标。
     第五章,串级双环化反应是一个高效的构造复杂结构体的策略,广泛应用于复杂多环结构的天然产物的全合成中。我们以2,7-二萘酚为底物,与双位点仲胺-哌嗪和甲醛三组分反应,成功合成含有色烯骨架和炔基胺骨架的双环化产物。
     第六章,我们在研究炔基胺大环衍生物的晶态堆积过程中,发现了第一例非预期的基于大环化合物的高级组装体-四聚体构筑的超分子三螺旋体,详细的描述了其高级结构形态和自组装驱动力。
     第七章,我们在构造大环基本模块的合成中,有幸发现了第一例基于三元催化剂(GaCl3/InCl3/CuCl)摩尔比例调控选择性合成不同结构的螺环化合物。经过对实验条件的探讨,我们发现,当三元催化剂的摩尔比例为:GaCl3:InCl3:CuCl=1.75:1:1时,我们选择性地合成萘酮螺萘并吡喃产物,而当催化剂摩尔比例换为GaCl3:InCl3:CuCl=1.5:0.75:1时,则选择性地合成萘酮螺萘并呋喃产物。
     第八章,对本篇博士论文的工作进行了总结和展望。
Macrocycles are of high significance in areas as diverse as drug development and supramolecular chemistry. They can be considered as "privileged molecules" because they can combine flexibility and conformational bias. Macrocyclic structures were identified as classic objects of study existing not only in drug development, but also in areas as diverse as material sciences. In addition, macrocyclic compounds were widely applied in organic catalysis as tiny molecular reactors. Moreover, special highlights in great significance of macrocyclic compounds as the medium in host-guest chemistry, it is also an important part of supramolecular chemistry. The development of macrocycles chemistry brings inorganic chemistry and organic chemistry a special highlight. Besides, the crystal engineering is an important section of the molecular engineering, which involves the assembly behavior of molecules or chemical groups in crystal, the design of crystal and the control of the structure and function. The propargylamine backbone was introduced in macrocyclic compound which is the central theme of this work; we designed and synthesized a series of novel macrocycle with propargylamine scaffolds by introducing the propargylamine backbones into this macrocyclic compounds in this thesis. And then this special structures in the crystal were also studied based on the propargylamine derivative being a molecular assembly module which has special molecular topology.
     Another part of this thesis focuses on the selective synthesis of six-membered and five-membered spironaphthalenones by controlling the molar ratio of ternary Ga-In-Cu catalysts.
     The main contents are shown as following:
     In chapter1, the innovative strategies to synthesize macrocycle in recent years were reviewed. The research progress of macrocyclic compounds containing alkynyl group were focused on detailly. Then we put forward our research topics based on the idea of mentioned above.
     In chapter2, the design strategy to construct macrocycles architecture was applied in macrocyclic compounds via Mannich condensation reaction using the two sites of terminal alkynes and double sites of secondary amines; we successfully designed and synthesized eight novel macrocycles containing the series of [1+2+1] type and [2+4+2] type. The single-crystal structures of three [1+2+1] type products and a [2+4+2] type product were obtained.
     In chapter3, eight asymmetric macrocycles were synthesized successfully starting from combining a asymmetric double terminal alkyne with three asymmetric double sites of secondary amine as substrates. The single-crystal structure of [2+4+2] type product was obtained.
     In chapter4, we integrated Mannich condensation reaction and cross-coupling reaction of alkynes in one-pot in this part of the thesis. The polyfunctional macrocycle containing propargylamine and coupling products of alkynes to alkynes and diyne skeletons were synthesized in one-pot by three-component reaction. It is selectively controllable and highly efficient using homopiperazine as a substrate.
     In chapter5, bicyclization reaction played a key role in total synthesis of polycyclic compound on account of high-efficiency. We achieved the objective of bicyclization-macrocycles possessing both propargylamine and chromene skeletons from naphthalene-2,7-terminal dialkyne, piperazine and formaldehyde via three-component reaction. The synthetic strategies of a cascade bicyclization reaction with a high efficiency especially applied in total synthesis of natural products were used to construct complicated macrocycles. We used2,7-dinaphthol and two sites of secondary amine--piperazine and formaldehyde as substrates to realize the three-component reaction. Bicyclic products containing chromene skeleton and alkynyl amine skeleton were obtained successfully in one-pot.
     In chapter6, the unexpected triple helix was firstly discovered based on the tetrameric assembly of a macrocycle during the study of the packing the crystalline structure of the macrocycle derivatives containing propargylamine skeletons. And the senior structural form and self-assembly driving force were described detailedly.
     In chapter7, six-membered and five-membered spironaphthalenones were firstly synthesized selectively by controlling the molar ratio of ternary catalysts during the construction of macrocyclic basic module. The reaction conditions were optimized by adjusting the molar ratio of GaCl3/InCl3/CuCl, additives, reaction temperature and time. Six-membered spironaphthalenone was selectively obtained as the only product when the molar ratio of catalyst GaCl3:InCl3:CuCl=1.75:1:1. When the catalyst molar ratio of GaCl3/InCl3/CuCl was changed to1.5:0.75:1, the five-membered spironaphthalenon was selectively synthesized.
     In chapter8, the summary and prospects of this thesis were given.
引文
[1]Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E. Multiple Multicomponent Macrocyclizations (MiBs): A Strategic Development Toward Macrocycle Diversity. Chem. Rev.2009,109,796-814.
    [2]Katz, L.; Ashley, G. W. Translation and Protein Synthesis:Macrolides. Chem. Rev.2005,105, 499-528.
    [3]Kobayashi, S.; Hori, M.; Wang, G X.; Hirama, M. Formal Total Synthesis of Neocarzinostatin Chromophore. J. Org. Chem.2005,71,636-644.
    [4](a) Subat, M.; Borovik, A. S.; Konig, B. Synthetic Creatinine Receptor: Imprinting of a Lewis Acidic Zinc(II)cyclen Binding Site to Shape Its Molecular Recognition Selectivity. J. Am. Chem. Soc. 2004,126,3185-3190; (b) Ferreira, K. Q.; Cardoso, L. N.; Nikolaou, S.; da Rocha, Z. N.; da Silva, R. S.; Tfouni, E. Solvent Dependent Conformational Isomerism and Ligand Oxidation of Novel Ru(II) Cyclen Complexes. Inorg. Chem.2005,44,5544-5546; (c) Tsukube, H.; Mizutani, Y.; Shinoda, S.; Okazaki, T.; Tadokoro, M.; Hori, K. Side Arm Effects on Cyclen-Alkali Metal Cation Complexation: Highly Selective and Three-Dimensional Encapsulation of Na+ Ion. Inorg. Chem.1999,38, 3506-3512; (d) Gasser, G.; Belousoff, M. J.; Bond, A. M.; Kosowski, Z.; Spiccia, L. Recognition of Thymine and Related Nucleosides by A ZnⅡ-Cyclen Complex Bearing A Ferrocenyl Pendant. Inorg. Chem.2007,46,1665-1674; (e) Clarkson, A. J.; Buckingham, D. A.; Rogers, A. J.; Blackman, A. G.; Clark, C. R. Kinetic Origin of the Chelate Effect. Base Hydrolysis, H-Exchange Reactivity, and Structures of Syn, Anti-[Co(cyclen)(NH3)2]3+ and Syn, Anti-[Co(cyclen)(diamine)]3+ Ions (diamine= H2N(CH2)2NH2, H2N(CH2)3NH2). Inorg. Chem.2000,39,4769-4775; (f) Chen, T.; Wang, X.; He, Y.; Zhang, C.; Wu, Z.; Liao, K.; Wang, J.; Guo, Z. Effects of Cyclen and Cyclam on Zinc(II)-and Copper(II)-Induced Amyloid β-Peptide Aggregation and Neurotoxicity. Inorg. Chem.2009,48, 5801-5809; (g) Meierhofer, T.; Rosnizeck, I. C.; Graf, T.; Reiss, K.; Konig, B.; Kalbitzer, H. R.; Spoerner, M. Cu2+ -cyclen as Probe to Identify Conformational States in Guanine Nucleotide Binding Proteins. J. Am. Chem. Soc.2011,133,2048-2051; (h) Tashiro, S.; Ogura, Y.; Tsuboyama, S.; Tsuboyama, K.; Shionoya, M. Chiral Recognition of a-Amino Acids by an Optically Active (2S,5S,8S,11S)-2,5,8,11-Tetraethyl Cyclen Cobalt(III) Complex. Inorg. Chem.2010,50,4-6; (i) Misaki, H.; Miyake, H.; Shinoda, S.; Tsukube, H. Asymmetric Twisting and Chirality Probing Properties of Quadruple-Stranded Helicates:Coordination Versatility and Chirality Response of Na+, Ca2+, and La3+ Complexes with Octadentate Cyclen Ligand. Inorg. Chem.2009,48,11921-11928.(j)周立宏,王娜,余孝其.大环多胺及其金属配合物与DNA的相互作用[J].化学进展,2007,19(12),1909-1918.
    [5]Li, Y.; Dias, J. R. Dimeric and Oligomeric Steroids. Chem. Rev.1997,97,283-304.
    [6]Schmidtchen, F. P.; Berger, M. Artificial Organic Host Molecules for Anions. Chem. Rev.1997,97, 1609-1646.
    [7](a) Venkataramanan, N. S.; Ambigapathy, S.; Mizuseki, H.; Kawazoe, Y. Theoretical Prediction of the Complexation Behaviors of Antitumor Platinum Drugs with Cucurbiturils. J. Phys. Chem. B 2012, 116,14029-14039; (b) Thangavel, A.; Sotiriou-Leventis, C.; Dawes, R.; Leventis, N. Orientation of Pyrylium Guests in Cucurbituril Hosts. J. Org. Chem.2012,77,2263-2271; (c) El-Sheshtawy, H. S.; Bassil, B. S.; Assaf, K. I.; Kortz, U.; Nau, W. M. Halogen Bonding inside A Molecular Container. J. Am. Chem. Soc.2012,134,19935-19941; (d) Stand, M.; Gargulakova, Z.; Sindelar, V. Glycoluril Dimer Isomerization under Aqueous Acidic Conditions Related to Cucurbituril Formation. J. Org. Chem.2012,77,10945-10948; (e) Ling, X.; Masson, E. Cucurbituril Slippage:Cations as Supramolecular Lubricants. Org. Lett.2012,14,4866-4869; (f) Gupta, S.; Choudhury, R.; Krois, D.; Brinker, U. H.; Ramamurthy, V. Cucurbituril Adamantanediazirine Complexes and Consequential Carbene Chemistry. J. Org. Chem.2012,77,5155-5160; (g) Sundararajan, M.; Sinha, V.; Bandyopadhyay, T.; Ghosh, S. K. Can Functionalized Cucurbituril Bind Actinyl Cations Efficiently A Density Functional Theory Based Investigation. J. Phys. Chem. A 2012,116,4388-4395.
    [8](a) De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Supramolecular Polymerization. Chem. Rev.2009,109,5687-5754; (b) An, H.; Bradshaw, J. S.; Izatt, R. M. Macropolycyclic Polyethers (Cages) and Related Compounds. Chem. Rev. 1992,92,543-572; (c) Moulton, B.; Zaworotko, M. J. From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids. Chem. Rev.2001,101,1629-1658.
    [9]Lehn, J.M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem., Int. Ed.1988,27,89-112.
    [10](a) Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chem., Int. Ed.1988,27,1009-1020; (b) Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B. Triple-Helix Propensity of Hydroxyproline and Fluoroproline:Comparison of Host-Guest and Repeating Tripeptide Collagen Models.J. Am. Chem. Soc.2003,125,11500-11501; (c) Wang, Z.; Feng, Z.; Gao, C. Stepwise Assembly of the Same Polyelectrolytes Using Host-Guest Interaction To Obtain Microcapsules with Multiresponsive Properties. Chem. Mater.2008,20,4194-4199; (d) Wang, J.; Pham, D.-T.; Guo, X.; Li, L.; Lincoln, S. F.; Luo, Z.; Ke, H.; Zheng, L.; Prud'homme, R. K. Polymeric Networks Assembled by Adamantyl and β-Cyclodextrin Substituted Poly(acrylate)s: Host-Guest Interactions, and the Effects of Ionic Strength and Extent of Substitution. Ind. Eng. Chem. Res.2009,49,609-612; (e) Clever, G. H.; Tashiro, S.; Shionoya, M. Light-Triggered Crystallization of A Molecular Host-Guest Complex. J. Am. Chem. Soc.2010,132,9973-9975; (f) Ogoshi, T.; Ikeya, M.; Yamagishi, T. A.; Nakamoto, Y.; Harada, A. Enhancement of Water Solubility of Single-Walled Carbon Nanotubes by Formation of Host-Guest Complexes of Cyclodextrins with Various Guest Molecules. J. Phys. Chem. C 2008,112,13079-13083; (g) Zhang, X.; Chen, T.; Yan, H.-J.; Wang, D.; Fan, Q. H.; Wan, L. J.; Ghosh, K.; Yang, H. B.; Stang, P. J. Engineering of Linear Molecular Nanostructures by A Hydrogen-Bond-Mediated Modular and Flexible Host-Guest Assembly. ACS Nano 2010,4,5685-5692; (h) Bonechi, C.; Donati, A.; Martini, S.; Rossi, C.; Arduini, A.; Pochini, A.; Lonetti, B.; Baglioni, P. Analysis of the P-tert-butylcalix[4]arene Bis-crown Derivative (Dc3)-Acetonitrile Host-Guest Complexing Behavior by Nuclear Magnetic Resonance (NMR) Spectroscopy and Computational Methods. J. Phys. Chem.B 2004,108,7603-7610.
    [11]Adams, R.; Whitehill, L. N. Many-Membered Ring Compounds by Direct Synthesis from Two (?)'-Bifunctional Molecules. J. Am. Chem. Soc.1941,63,2073-2078.
    [12]Ackman, R. G.; Brown, W. H.; Wright, G. F. The Condensation of Methyl Ketones Withfuran. J. Org. Chem.1955,20,1147-1158.
    [13]Pedersen, C. J. The Discovery of Crown Ethers (Noble Lecture). Angew. Chem., Int. Ed.1988,27, 1021-1027.
    [14](a) Pedersen, C. J. Cyclic Polyethers and Their Complexes with Metal Salts. J. Am. Chem. Soc. 1967,89,7017-7036; (b) Krakowiak, K. E.; Bradshaw, J. S.; Zamecka-Krakowiak, D. J. Synthesis of Aza-crown Ethers. Chem. Rev.1989,89,929-972; (c) Gokel, G. W.; Leevy, W. M.; Weber, M. E. Crown Ethers:Sensors for Ions and Molecular Scaffolds for Materials and Biological Models. Chem. Rev.2004,104,2723-2750; (d) An, H.; Bradshaw, J. S.; Izatt, R. M.; Yan, Z. Bis-and Oligo(benzocrown ether)s. Chem. Rev.1994,94,939-991.
    [15](a) Villalonga, R.; Cao, R.; Fragoso, A.:Supramolecular Chemistry of Cyclodextrins in Enzyme Technology. Chem. Rev.2007,707,3088-3116; (b) Takahashi, K. Organic Reactions Mediated by Cyclodextrins. Chem. Rev.1998,98,2013-2034; (c) Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev.1998,98,1977-1996; (d) Hedges, A. R. Industrial Applications of Cyclodextrins. Chem. Rev.1998,98,2035-2044; (e) D'Souza, V. T.; Lipkowitz, K. B. Cyclodextrins:Introduction. Chem. Rev.1998,98,1741-1742; (f) Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chem. Rev. 2006,106,767-781; (g) Li, S.; Purdy, W. C. Cyclodextrins and Their Applications in Analytical Chemistry. Chem. Rev.1992,92,1457-1470; (h) Engeldinger, E.; Armspach, D.; Matt, D. Capped Cyclodextrins. Chem. Rev.2003,103,4147-4174; (i) Breslow, R.; Dong, S. D. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev.1998,98,1997-2012; (g) Lipkowitz, K. B. Applications of Computational Chemistry to the Study of Cyclodextrins. Chem. Rev.1998,98, 1829-1874.
    [16](a) Homden, D. M.; Redshaw, C. The Use of Calixarenes in Metal-Based Catalysis. Chem. Rev. 2008,108,5086-5130; (b) Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. Thiacalixarenes. Chem. Rev.2006,106,5291-5316; (c) Danil de Namor, A. F.; Cleverley, R. M.; Zapata-Ormachea, M. L. Thermodynamics of Calixarene Chemistry. Chem. Rev.1998,98,2495-2526; (d) Svoboda, J.; Konig, B. Templated Photochemistry:Toward Catalysts Enhancing the Efficiency and Selectivity of Photoreactions in Homogeneous Solutions. Chem. Rev.2006,106,5413-5430; (e) Conn, M. M.; Rebek, J. Self-Assembling Capsules. Chem. Rev.1997,97,1647-1668; (f) Ikeda, A.; Shinkai, S. Novel Cavity Design Using Calix[n]arene Skeletons:Toward Molecular Recognition and Metal Binding. Chem. Rev.1997,97,1713-1734; (g) Joseph, R.; Rao, C. P. Ion and Molecular Recognition by Lower Rim 1,3-Di-conjugates of Calix[4]arene as Receptors. Chem. Rev.2011,111,4658-4702; (h) Kim, J. S.; Quang, D. T. Calixarene-Derived Fluorescent Probes. Chem. Rev.2007,707,3780-3799; (i) Dondoni, A.; Marra, A. Calixarene and Calixresorcarene Glycosides:Their Synthesis and Biological Applications. Chem. Rev.2010,110,4949-4977; (j) Kovbasyuk, L.; Kramer, R. Allosteric Supramolecular Receptors and Catalysts. Chem. Rev.2004,104,3161-3188.
    [17]Nijenhuis, W. F.; Van Doom, A. R.; Reichwein, A. M.; De Jong, F.; Reinhoudt, D. N. Urea Transport by Macrocyclic Carriers through A Supported Liquid Membrane. J. Am. Chem. Soc.1991, 113,3607-3608.
    [18]Izatt, S. R.; Hawkins, R. T.; Christensen, J. J.; Izatt, R. M. Cation Transport from Multiple Alkali Cation Mixtures Using A Liquid Membrane System Containing A Series of Calixarene Carriers. J. Am. Chem. Soc.1985,107,63-66.
    [19]Behrend, R.; Meyer, E.; Rusche, F. Liebigs. Ueber Condensationsproducte aus Glycoluril und Formaldehyd.Ann. Chem.1905,339,1-37.
    [20]Freeman, W. A.; Mock, W. L.; Shih, N. Y. Cucurbituril. J. Am. Chem. Soc.1981,103,7367-7368.
    [21](a) Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Molecular and Supramolecular Objects from Glycoluril. Acc. Chem. Res.1999,32,995-1006; (b) Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K. Cucurbituril Homologues and Derivatives:New Opportunities in Supramolecular Chemistry. Acc.Chem. Res.2003,36,621-630; (c) Hernandez-Molina, R.; Sokolov, M. N.; Sykes, A. G Behavioral Patterns of Heterometallic Cuboidal Derivatives of [M3Q4(H2O)9]4+ (M=Mo, W; Q= S, Se). Acc. Chem. Res.2000,34,223-230.
    [22](a) Guilard, R.; Kadish, K. M. Some Aspects of Organometallic Chemistry in Metalloporphyrin Chemistry:Synthesis, Chemical Reactivity, and Electrochemical Behavior of Porphyrins with Metal-carbon Bonds. Chem. Rev.1988,88,1121-1146; (b) Williams, R. J. P. The Properties of Metalloporphyrins. Chem. Rev.1956,56,299-328.
    [23](a) Burrell, A. K.; Officer, D. L.; Plieger, P. G; Reid, D. C. W. Synthetic Routes to Multiporphyrin Arrays. Chem. Rev.2001,101,2751-2796; (b) Beletskaya, I.; Tyurin, V. S.; Tsivadze, A. Y.; Guilard, R.; Stern, C. Supramolecular Chemistry of Metalloporphyrins. Chem. Rev.2009,109, 1659-1713; (c) Drain, C. M.; Varotto, A.; Radivojevic, I. Self-Organized Porphyrinic Materials. Chem. Rev.2009,109,1630-1658; (d) Li, W.-S.; Aida, T. Dendrimer Porphyrins and Phthalocyanines. Chem. Rev.2009,109,6047-6076.
    [24](a) Zarbakhsh, A.; Campana, M.; Mills, D.; Webster, J. R. P. Structural Studies of Aliphatic Substituted Phthalocyanine-Lipid Multilayers. Langmuir 2010,26,15383-15387; (b) Moser, F. H.; Thomas, A. L. Phthalocyanine Compounds. J. Chem. Educ.1964,41,245; (c) Kotiaho, A.; Lahtinen, R.; Efimov, A.; Metsberg, H. K.; Sariola, E.; Lehtivuori, H.; Tkachenko, N. V.; Lemmetyinen, H. Photoinduced Charge and Energy Transfer in Phthalocyanine-Functionalized Gold Nanoparticles. J. Phys. Chem. C 2009,114,162-168; (d) Karan, S.; Mallik, B. Nanoflowers Grown from Phthalocyanine Seeds:Organic Nanorectifiers. J. Phys. Chem. C 2008,112,2436-2447; (e) Coleman, W. F. Molecular Models of Phthalocyanine and Porphyrin Complexes. J. Chem. Educ.2010,87, 346-346; (f) Coleman, W. F. Correction to Molecular Models of Phthalocyanine and Porphyrin Complexes. J. Chem. Educ.2011,88,1211-1211.
    [25](a) Kumar, R.; Guchhait, T.; Mani, G. Synthesis and X-ray Structures of Novel Macrocycles and Macrobicycles Containing N, N-Di(pyrrolylmethyl)-N-methylamine Moiety:Preliminary Anion Binding Study. Inorg. Chem.2012,51,9029-9038; (b) Aime, S.; Cavallotti, C.; Gianolio, E.; Giovenzana, G. B.; Palmisano, G.; Sisti, M. Mannich Reaction as A New Route to Pyridine-Based Polyaminocarboxylic Ligands. Org. Lett.2004,6,1201-1204; (c) Pastushok, V. N.; Bradshaw, J. S.; Bordunov, A. V.; Izatt, R. M. Mannich Reaction as A Key Strategy for the Synthesis of Benzoazacrown Ethers and Benzocryptands. J. Org. Chem.1996,61,6888-6892; (d) Mani, G.; Jana, D.; Kumar, R.; Ghorai, D. Azatripyrrolic and Azatetrapyrrolic Macrocycles from the Mannich Reaction of Pyrrole:Receptors for Anions. Org. Lett.2010,12,3212-3215.
    [26](a) Beck, B.; Larbig, G.; Mejat, B.; Magnin-Lachaux, M.; Picard, A.; Herdtweck, E.; Domling, A.: Short and Diverse Route Toward Complex Natural Product-Like Macrocycles. Org. Lett.2003,5, 1047-1050; (b) Cristau, P.; Vors, J. P.; Zhu, J. A Rapid Access to Biaryl Ether Containing Macrocycles by Pairwise Use of Ugi-4CR and Intramolecular SNAr-Based Cycloetherification. Org. Lett.2001,3, 4079-4082; (c) Faure, S.; Hjelmgaard, T.; Roche, S. P.; Aitken, D. J. Passerini Reaction-Amine Deprotection-Acyl Migration Peptide Assembly: Efficient Formal Synthesis of Cyclotheonamide C. Org. Lett.2009,11,1167-1170; (d) Leon, F.; Rivera, D. G.; Wessjohann, L. A. Multiple Multicomponent Macrocyclizations Including Bifunctional Building Blocks (MiBs) Based on Staudinger and Passerini Three-Component Reactions. J. Org. Chem.2008,73,1762-1767; (e) Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E. Multiple Multicomponent Macrocyclizations (MiBs): A Strategic Development Toward Macrocycle Diversity. Chem. Rev.2009,109,796-814.
    [27](a) Sierra, M. A.; Pellico, D.; Gomez-Gallego, M.; Mancheno, M. J.; Torres, R. Synthesis of Highly Functionalized Macrocycles by the Peripheral Functionalization of Macrocyclic Diimines. J. Org. Chem.2006,71,8787-8793; (b) Flores-Figueroa, A. N.; Kaufhold, O.; Hepp, A.; Fro(?)hich, R.; Hahn, F. E. Synthesis of A Ruthenium(Ⅱ) Complex Containing an [11]ane-P2CNHC (NHC= Imidazolidin-2-ylidene) Macrocycle. Organometallics 2009,28,6362-6369; (c) Ibrahim, Y. A.; Al-Azemi, T. F.; El-Halim, M. D. A.; John, E. Staudinger Ketene-Imine Cycloaddition, RCM Approach to Macrocrocyclic Bisazetidinones. J. Org. Chem.2009,74,4305-4310; (d) Ibrahim, Y. A.; Al-Azemi, T. F.; Abd El-Halim, M. D. Sequential Staudinger Ketene-Imine Cycloaddition, RCM Approach to Highly Rigid Macrocrocyclic Bisazetidinones. J. Org. Chem.2010,75,4508-4513; (e) Menand, M.; Blais, J. C.; Valery, J. M.; Xie, J. De Novo Synthesis of Sugar-Aza-Crown Ethers via A Domino Staudinger Aza-Wittig Reaction. J. Org. Chem.2006,71,3295-3298; (f) Rivera, D. G.; Pando, O.; Bosch, R.; Wessjohann, L. A. A Biomimetic Approach for Polyfunctional Secocholanes: Tuning Flexibility and Functionality on Peptidic and Macrocyclic Scaffolds Derived from Bile Acids. J. Org. Chem.2008,73,6229-6238.
    [28](a) Rivera, D. G.; Wessjohann, L. A. Supramolecular Compounds from Multiple Ugi Multicomponent Macrocyclizations:Peptoid-based Cryptands, Cages, and Cryptophanes. J. Am. Chem. Soc.2006,128,7122-7123; (b) Rivera, D. G.; Wessjohann, L. A. Architectural Chemistry: Synthesis of Topologically Diverse Macromulticycles by Sequential Multiple Multicomponent Macrocyclizations. J. Am. Chem. Soc.2009,131,3721-3732.
    [29]Findlay, S. P. Concerning 2-Carbomethoxytropinone. J. Org. Chem.1957,22,1385-1394.
    [30]Laszlo, K.; Barbara, C. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press,2005,274.
    [31]Beyeh, N. K.; Valkonen, A.; Rissanen, K. Piperazine Bridged Resorcinarene Cages. Org. Lett. 2010,12,1392-1395.
    [32]Leon, F.; Rivera, D. G.; Wessjohann, L. A. Multiple Multicomponent Macrocyclizations Including Bifunctional Building Blocks (MiBs) Based on Staudinger and Passerini Three-Component Reactions. J. Org. Chem.2008,73,1762-1767.
    [33]Hegedus, L. S.; Montgomery, J.; Narukawa, Y.; Snustad, D. C. A Contribution to the Confusion Surrounding the Reaction of Ketenes with Imines to Produce.beta.-lactams. A Comparison of Stereoselectivity Dependence on the Method of Ketene Generation:Acid Chloride/Triethylamine vs Photolysis of Chromium Carbene Complexes. J.Am. Chem. Soc.1991,113,5784-5791.
    [34]Leon, F.; Rivera, D. G.; Wessjohann, L. A. Multiple Multicomponent Macrocyclizations Including Bifunctional Building Blocks (MiBs) Based on Staudinger and Passerini Three-Component Reactions. J. Org. Chem.2008,73,1762-1767.
    [35]Wessjohann, L. A.; Rivera, D. G; Coll, F. Synthesis of Steroid-Biaryl Ether Hybrid Macrocycles with High Skeletal and Side Chain Variability by Multiple Multicomponent Macrocyclization Including Bifiunctional Building Blocks.J.Org. Chem.2006,71,7521-7526.
    [36](a) Schneider, J. P.; Kelly, J. W. Templates That Induce.alpha.-Helical,.beta.-Sheet, and Loop Conformations. Chem. Rev.1995,95,2169-2187; (b) Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev.2011, 111,3736-3827; (c) Svoboda, J.; Konig, B. Templated Photochemistry: Toward Catalysts Enhancing the Efficiency and Selectivity of Photoreactions in Homogeneous Solutions. Chem. Rev.2006,106,5413-5430; (d) Lam, K. S.; Lebl, M.; Krchnak, V. The "One-Bead-One-Compound" Combinatorial Library Method. Chem. Rev.1997,97,411-448; (e) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K. M.; Otto, S. Dynamic Combinatorial Chemistry. Chem. Rev.2006,106,3652-3711;(f)蔡彬,胡炜,杜宝吉,李建江.模板法及其在纳米材料制备领域的应用研究进展[J].材料导报,2010,24(8),107-112;(g)王保国,张妍,李烨,张金利,刘家祺.模板剂在介孔分子筛合成中的作用机理[J].化学工业与工程,2005,22(2),115-119.
    [37]Hoger, S.; Meckenstock, A. D.; Pellen, H. High-Yield Macrocyclization via Glaser Coupling of Temporary Covalent Templated Bisacetylenes. J. Org. Chem.1997,62,4556-4557.
    [38]Kieran, A. L.; Bond, A. D.; Belenguer, A. M.; Sanders, J. K. M. Dynamic Combinatorial Libraries of Metalloporphyrins:Templated Amplification of Disulfide-linked Oligomers. Chem. Commun.2003,2674-2675.
    [39]Gonzalez-Alvarez, A.; Alfonso, I.; Gotor, V. Highly Diastereoselective Amplification from A Dynamic Combinatorial Library of Macrocyclic Oligoimines. Chem. Commun.2006,2224-2226.
    [40]Lankshear, M. D.; Beer, P. D. Interweaving Anion Templation. Acc. Chem. Res.2007,40, 657-668.
    [41](a) Altieri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.; Martel, D.; Paolucci, F.; Slawin, A. M. Z.; Wong, J. K. Y. Electrochemically Switchable Hydrogen-Bonded Molecular Shuttles. J. Am. Chem. Soc.2003,125,8644-8654; (b)李昊,许曦晨,陈嘉伟,杨楚罗,秦金贵.分子机器的研究进展[J].有机化学,2008,28(12),2057-2071.
    [42]Wessjohann, L. A.; Rivera, D. G; Leon, F. Freezing Imine Exchange in Dynamic Combinatorial Libraries with Ugi Reactions: Versatile Access to Templated Macrocycles. Org. Lett.2007,9, 4733-4736.
    [43]Rivera, D. G.; Wessjohann, L. A. Supramolecular Compounds from Multiple Ugi Multicomponent Macrocyclizations:Peptoid-based Cryptands, Cages, and Cryptophanes. J. Am. Chem. Soc.2006,128,7122-7123.
    [44]Zheng, Y. R.; Zhao, Z.; Wang, M.; Ghosh, K.; Pollock, J. B.; Cook, T. R.; Stang, P. J. A Facile Approach toward Multicomponent Supramolecular Structures: Selective Self-Assembly via Charge Separation. J. Am. Chem. Soc.2010,132,16873-16882.
    [45](a) Aoyagi, M.; Tashiro, S.; Tominaga, M.; Biradha, K.; Fujita, M. Spectroscopic and Crystallographic Studies on the Stability of Self-assembled Coordination Nanotubes. Chem. Commun. 2002,2036-2037; (b) Aoyagi, M.; Biradha, K.; Fujita, M. Quantitative Formation of Coordination Nanotubes Templated by Rodlike Guests. J. Am. Chem. Soc.1999,121,7457-7458; (c) Fujita, N.; Biradha, K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. A Porphyrin Prism:Structural Switching Triggered by Guest Inclusion. Angew. Chem., Int. Ed.2001,40,1718-1721; (d) Tashiro, S.; Tominaga, M.; Kusukawa, T.; Kawano, M.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Pd(Ⅱ)-Directed Dynamic Assembly of A Dodecapyridine Ligand into End-Capped and Open Tubes: The Importance of Kinetic Control in Self-Assembly. Angew. Chem., Int. Ed.2003,42,3267-3270; (e) Yamanoi, Y.; Sakamoto, Y.; Kusukawa, T.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. Dynamic Assembly of Coordination Boxes from (en)Pd(Ⅱ) Unit and A Rectangular Panel-Like Ligand: NMR, CSI-MS, and X-ray Studies. J. Am. Chem. Soc.2001,123,980-981; (f) Tominaga, M.; Tashiro, S.; Aoyagi, M.; Fujita, M. Dynamic Aspects in Host-Guest Complexation by Coordination Nanotubes. Chem. Commun.2002,2038-2039; (g) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination:Self-Assembly of Finite Two-and Three-Dimensional Ensembles. Chem. Rev.2011,111,6810-6918.
    [46]Wu, H.; Brittain, S.; Anderson, J.; Grzybowski, B.; Whitesides, S.; Whitesides, G. M. Fabrication of Topologically Complex Three-Dimensional Microstructures:Metallic Microknots. J. Am. Chem. Soc.2000,122,12691-12699.
    [47]Rapenne, G.; Dietrich-Buchecker, C.; Sauvage, J. P. Copper(I)-or Iron(II)-Templated Synthesis of Molecular Knots Containing Two Tetrahedral or Octahedral Coordination Sites. J. Am. Chem. Soc. 1999,121,994-1001.
    [48]Carina, R. F.; Dietrich-Buchecker, C.; Sauvage, J. P. Molecular Composite Knots. J. Am. Chem. Soc.1996,118,9110-9116.
    [49]Ayme, J. F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. A Synthetic Molecular Pentafoil Knot, Nat. Chem.2012,4,15-20.
    [50]Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. Total Synthesis of the First Molecular Moebius Strip. J. Am. Chem. Soc.1982,104,3219-3221.
    [51]Sugai, N.; Heguri, H.; Ohta, K.; Meng, Q.; Yamamoto, T.; Tezuka, Y. Effective Click Construction of Bridged- and Spiro-Multicyclic Polymer Topologies with Tailored Cyclic Prepolymers (kyklo-Telechelics). J. Am. Chem. Soc.2010,132,14790-14802.
    [52](a) Araki, J.; Kagaya, K.; Ohkawa, K. Synthesis and Characterization of Polyrotaxane-Amino Acid Conjugates: A New Synthetic Pathway for Amino-Functionalized Polyrotaxanes. Biomacromolecules 2009,10,1947-1954; (b) Kihara, N.; Hinoue, K.; Takata, T. Solid-State End-Capping of Pseudopolyrotaxane Possessing Hydroxy-Terminated Axle to Polyrotaxane and Its Application to the Synthesis of A Functionalized Polyrotaxane Capable of Yielding A Polyrotaxane Network. Macromolecules 2004,38,223-226; (c) Okada, M.; Harada, A. Preparation of β-Cyclodextrin Polyrotaxane:Photodimerization of Pseudo-Polyrotaxane with 2-Anthryl and Triphenylmethyl Groups at the Ends of Poly(propylene glycol). Org. Lett.2004,6,361-364; (d) Bilig, T.; Oku, T.; Furusho, Y; Koyama, Y; Asai, S.; Takata, T. Polyrotaxane Networks Formed via Rotaxanation Utilizing Dynamic Covalent Chemistry of Disulfide. Macromolecules 2008,41, 8496-8503; (e) Whang, D.; Kim, K. Polycatenated Two-Dimensional Polyrotaxane Net. J. Am. Chem. Soc.1997,119,451-452; (f) Okada, M.; Harada, A. Poly(polyrotaxane):Photoreactions of 9-Anthracene-Capped Polyrotaxane. Macromolecules 2003,36,9701-9703; (g) Yang, C.; Yang, J.; Ni, X.; Li, J. Novel Supramolecular Block Copolymer: A Polyrotaxane Consisting of Many Threaded a-and y-Cyclodextrins with An ABA Triblock Architecture. Macromolecules 2009,42,3856-3859; (h) Yao, Q. X.; Ju, Z. F.; Jin, X. H.; Zhang, J. Novel Polythreaded Coordination Polymer: from An Armed-Polyrotaxane Sheet to A 3D Polypseudorotaxane Array, Photo- and Thermochromic Behaviors. Inorg. Chem.2009,48,1266-1268; (i) Nakazono, K.; Takashima, T.; Arai, T.; Koyama, Y.; Takata, T. High-Yield One-Pot Synthesis of Permethylated a-Cyclodextrin-based Polyrotaxane in Hydrocarbon Solvent through An Efficient Heterogeneous Reaction. Macromolecules 2009,43,691-696; (j) Ogoshi, T.; Nishida, Y.; Yamagishi, T. A.; Nakamoto, Y. High Yield Synthesis of Polyrotaxane Constructed from Pillar[5]arene and Viologen Polymer and Stabilization of Its Radical Cation. Macromolecules 2010,43,7068-7072; (k) Ikeda, T.; Higuchi, M. Electrochromic Properties of Polythiophene Polyrotaxane Film. Langmuir 2011,27,4184-4189; (1)常晓慧,王东凯,闫笑笑.聚轮烷作为药物载体应用的研究进展[J].中国药剂学杂志,2011,9(4),76-83.
    [53]Wu, J.; Leung, K. C.; Stoddart. J. F. Efficient Production of [n]rotaxanes by Using Template-directed Clipping Reactions. PNAS,2007,104,17266-17271.
    [54](a) Nygaard, S.; Hansen, S. W.; Huffman, J. C.; Jensen, F.; Flood, A. H.; Jeppesen, J. O. Two Classes of Alongside Charge-Transfer Interactions Defined in One [2]Catenane. J. Am. Chem. Soc. 2007,129,7354-7363; (b) Li, S.; Liu, M.; Zheng, B.; Zhu, K.; Wang, F.; Li, N.; Zhao, X. L.; Huang, F. Taco Complex Templated Syntheses of A Cryptand/Paraquat [2]Rotaxane and A [2]Catenane by Olefin Metathesis. Org. Lett.2009,11,3350-3353; (c) Arico, F.; Mobian, P.; Kern, J. M.; Sauvage, J. P. Synthesis of A [2]Catenane around A Ru(diimine)32+ Scaffold by Ring-Closing Metathesis of Olefins. Org. Lett.2003,5,1887-1890; (d) Tong, Y.; Hamilton, D. G.; Meillon, J. C.; Sanders, J. K. M. Sn(Ⅳ) Porphyrins as NMR Shift Reagents and Supramolecular Protecting Groups: Preparation of A Carboxylate-Catenane Porphyrin Complex. Org. Lett.1999,1,1343-1346; (e) Forgan, R. S.; Gassensmith, J. J.; Cordes, D. B.; Boyle, M. M.; Hartlieb, K. J.; Friedman, D. C.; Slawin, A. M. Z.; Stoddart, J. F. Self-Assembly of A [2]Pseudorota[3]catenane in Water. J. Am. Chem. Soc.2012,134, 17007-17010; (f) Ibukuro, F.; Fujita, M.; Yamaguchi, K.; Sauvage, J. P. Quantitative and Spontaneous Formation of A Doubly Interlocking [2]Catenane Using Copper(I) and Palladium(II) as Templating and Assembling Centers. J. Am. Chem. Soc.1999,121,11014-11015; (g) Peinador, C.; Blanco, V. c.; Quintela, J. M. A New Doubly Interlocked [2]Catenane. J. Am. Chem. Soc.2008,131,920-921; (h) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley, A. R. Anion-Templated Assembly of A [2]Catenane.J. Am. Chem. Soc.2004,126,15364-15365.
    [55]Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Boyd, S. E.; Credi, A.; Lee, J. Y.; Menzer, S.; Stoddart, J. F.; Venturi, M.; Williams, D. J. Oligocatenanes Made to Orderl. J. Am. Chem. Soc.1998, 120,4295-4307.
    [56](a) Loren, J. C.; Yoshizawa, M.; Haldimann, R. R.; Linden, A.; Siegel, J. S. Synthetic Approaches to A Molecular Borromean Link:Two-Ring Threading with Polypyridine Templates. Angew. Chem., Int. Ed.2003,42,5702-5705; (b)翟新东.Borromean链环分子[J].化学通报,2008,71(12).930-934.
    [57]Chichak, K. S.; Cantrill, S. J.; Pease, A. R. Molecular Borromean Rings. Science,2004,304: 1308-1312.
    [58]Peters, A. J.; Chichak, K. S.; Cantrill, S. J.; Stoddart, J. F. Nanoscale Borromean Links for Real. Chem. Commun.2005,3394-3396.
    [59]Kim, S. Y.; Jung, L. S.; Lee, E.; Kim, J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Macrocycles within Macrocycles: Cyclen, Cyclam, and Their Transition Metal Complexes Encapsulated in Cucurbit[8]uril.Angew. Chem. Int. Ed.2001,40,2119-2121.
    [60]Cao, L. P.; Meng, X. G.; Ding, J. Y.; Chen, Y. F.; Gao, M.; Wu, Y. D.; Li, Y. T.; Wu, A. X.; Isaacs, L. Nanotubular Non-covalent Macrocycle within Non-covalent Macrocycle Assembly:(MeOH)12 Encapsulated in A Molecular Clip Cyclododecamer. Chem. Commun.2010,46,4508-4510.
    [61](a) Zhao, D.; Moore, J. S. Shape-persistent Arylene Ethynylene Macrocycles: Syntheses and Supramolecular Chemistry. Chem. Commun.2003,807-818; (b) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Configurational Assignment of Polyene Macrolide Antibiotics Using the [13C]Acetonide Analysis. Acc. Chem. Rese.1998,31,9-17.
    [62]Gallant, A. J.; MacLachlan, M. J. Ion-Induced Tubular Assembly of Conjugated Schiff-Base Macrocycles. Angew. Chem., Int. Ed.2003,42,5307-5310.
    [63]Fischer, M.; H6ger, S. Synthesis of A Shape-persistent Macrocycle with Intraannular Carboxylic Acid Groups. Tetrahedron 2003,59,9441-9446.
    [64]Baxter, P. N. W. Synthesis and Properties of a Twistophane Ion Sensor: A New Conjugated Macrocyclic Ligand for the Spectroscopic Detection of Metal Ions. J. Org. Chem.2001,66, 4170-4179.
    [65](a) Zhang, J.; Moore, J. S. Nanoarchitectures.6. Liquid Crystals Based on Shape-Persistent Macrocyclic Mesogens. J. Am. Chem. Soc.1994,116,2655-2656; (b) Hoger, S.; Enkelmann, V.; Bonrad, K.; Tschierske, C. Alkyl-Substituted Shape-Persistent Macrocycles:The First Discotic Liquid Crystal Composed of A Rigid Periphery and A Flexible Core. Angew. Chem., Int. Ed.2000,39, 2267-2270.
    [66]Hansen, E. C.; Lee, D. Search for Solutions to the Reactivity and Selectivity Problems in Enyne Metathesis. Ace. Chem. Res. 2006,39,509-519.
    [67]Zhang, W.; Moore, J. S. Arylene Ethynylene Macrocycles Prepared by Precipitation-Driven Alkyne Metathesis. J. Am. Chem. Soc. 2004,126,12796-12796.
    [68]Zhang, W.; Moore, J. S. Reaction Pathways Leading to Arylene Ethynylene Macrocycles via Alkyne Metathesis. J. Am. Chem. Soc. 2005,127,11863-11870.
    [69]Mori, M.; Sakakibara, N.; Kinoshita, A. Remarkable Effect of Ethylene Gas in the Intramolecular Enyne Metathesis of Terminal Alkynes. J. Org. Chem. 1998, 63,6082-6083.
    [70](a) Chen, X.; Thomas, J.; Gangopadhyay, P.; Norwood, R. A.; Peyghambarian, N.; McGrath, D. V. Modification of Symmetrically Substituted Phthalocyanines Using Click Chemistry: Phthalocyanine Nanostructures by Nanoimprint Lithography. J. Am. Chem. Soc. 2009,131,13840-13843; (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. Angew. Chem., Int. Ed. 2002,41,2596-2599.
    [71]Torruae, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1.2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1, 3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67,3057-3064.
    [72]Megiatto, J. D.; Schuster, D. I. General Method for Synthesis of Functionalized Macrocycles and Catenanes Utilizing "Click" Chemistry. J. Am. Chem. Soc. 2008,130,12872-12873.
    [73]Goldup, S. M.; Leigh, D. A.; Long, T.; McGonigal, P. R.; Symes, M. D.; Wu, J. Active Metal Template Synthesis of [2]Catenanes. J. Am. Chem. Soc. 2009,131,15924-15929.
    [74]Dichtel, W. R.; Miljanic, O. S.; Zhang, W.; Spruell, J. M.; Patel, K.; Aprahamian, I.; Heath, J. R.; Stoddart, J. F. Kinetic and Thermodynamic Approaches for the Efficient Formation of Mechanical Bonds. Ace. Chem. Res. 2008,41, 1750-1761.
    [75]Stephens, R. D.; Castro, C. E. The Substitution of Aryl Iodides with Cuprous Acetylides. A Synthesis of Tolanes and Heterocyclicsl. J. Org. Chem. 1963,28,3313-3315.
    [76]Kinder, J. D.; Tessier, C. A.; Youngs, W. J. Synthesis of A Para-Methoxy Substituted Tribenzocyclotriyne. Synlett 1993,149-150.
    [77]Glaser, C. Ber. Preparation of Diethynylbenzenes. Dtsch. Chem. Ges. 1869,2422
    [78]Crowley, J. D.; Goldup, S. M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z.:An Unusual Nickel-Copper-Mediated Alkyne Homocoupling Reaction for the Active- Template Synthesis of [2]Rotaxanes. J. Am. Chem. Soc. 2010,132,6243-6248.
    [79]Ramirez-Lopez, P.; de la Torre, M. A. C.; Montenegro, H. E.; Asenjo, M. A.; Sierra, M. A. A Straightforward Synthesis of Tetrameric Estrone-Based Macrocycles. Org. Lett.2008,10,3555-3558.
    [80]Spruell, J. M.; Paxton, W. F.; Olsen, J. C.; Benitez, D.; Tkatchouk, E.; Stern, C. L.; Trabolsi, A.; Friedman, D. C.; Goddard, W. A.; Stoddart, J. F. A Push-Button Molecular Switch. J. Am. Chem. Soc. 2009,131,11571-11580.
    [81](a) Baxter, P. N. W.; Dali-Youcef, R. Nitrogen Heterocyclic Carbon-Rich Materials: Synthesis and Spectroscopic Properties of Dehydropyridoannulene Macrocycles. J. Org. Chem.2005,70, 4935-4953; (b) Baxter, P. N. W. Cyclic Donor-Acceptor Circuits:Synthesis and Fluorescence Ion Sensory Properties of A Mixed-Heterocyclic Dehydroannulene-Type Cyclophane. J. Org. Chem.2004, 69,1813-1821.
    [82](a) Luu, T.; Morisaki, Y.; Cunningham, N.; Tykwinski, R. R. One-Pot Formation and Derivatization of Di- and Triynes Based on the Fritsch-Buttenberg-Wiechell Rearrangement. J. Org. Chem.2007,72,9622-9629; (b) Bichler, P.; Chalifoux, W. A.; Eisler, S.; Shi Shun, A. L. K.; Chernick, E. T.; Tykwinski, R. R. Mechanistic Aspects of Alkyne Migration in Alkylidene Carbenoid Rearrangements. Org. Lett.2009,11,519-522; (c) Rezaei, H.; Yamanoi, S.; Chemla, R.; Normant, J. F. Fritsch-Buttenberg-Wiechell Rearrangement in the Aliphatic Series. Org. Lett.2000,2,419-421; (d) Knorr, R. Alkylidenecarbenes, Alkylidenecarbenoids, and Competing Species: Which Is Responsible for Vinylic Nucleophilic Substitution, [1+2] Cycloadditions,1,5-CH Insertions, and the Fritsch-Buttenberg-Wiechell Rearrangement. Chem. Rev.2004,104,3795-3850.
    [83]Zhao, Y. L.; Liu, Q.; Zhang, J. P.; Liu, Z. Q. Heteroatom-Substituted Expanded Radialenes: One-Pot Synthesis and Characterization of Expanded 1,3-Dithiolane[n]radialenes. J. Org. Chem.2005, 70,6913-6917.
    [84]Spantulescu, A.; Luu, T.; Zhao, Y.; McDonald, R.; Tykwinski, R. R. Synthesis and Characterization of Cyclic Alkyl Tetraynes. Org. Lett.2008,10,609-612.
    [85]Habermehl, N. C.; Jennings, M. C.; McArdle, C. P.; Mohr, R.; Puddephatt, R. J. Selectivity in the Self-Assembly of Organometallic Gold(Ⅰ) Rings and [2]Catenanes. Organometallics 2005,24, 5004-5014.
    [86]Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B. Calichemicins, A Novel Family of Antitumor Antibiotics.1. Chemistry and Partial Structure of Calichemicin.Gamma.lI.J. Am. Chem. Soc.1987,109,3464-3466.
    [87]Trost, B. M.; Matsubara, S.; Caringi, J. J. Cycloisomerization of.Alpha.,.Omega.-Diynes to Macrocycles. J. Am. Chem. Soc.1989,111,8745-8746.
    [88]Oppolzer, W.; Radinov, R. N.; El-Sayed, E. Catalytic Asymmetric Synthesis of Macrocyclic (E)-Allylic Alcohols from ω-Alkynals via Intramolecular 1-Alkenylzinc/Aldehyde Additions. J. Org. Chem.2001,66,4766-4770.
    [89]Torrent, A.; Gonzalez, I.; Pla-Quintana, A.; Roglans, A.; Moreno-Mafias, M.; Parella, T.; Benet-Buchholz, J. Transition Metal-Mediated Intramolecular [2+2+2] Cycloisomerizations of Cyclic Triynes and Enediynes. J. Org. Chem.2005,70,2033-2041.
    [90]Bofiaga, L. V. R.; Zhang, H. C.; Gauthier, D. A.; Reddy, I.; Maryanoff, B. E. Cobalt-Mediated Macrocyclizations. Facile Synthesis of 2-Oxo Pyridinophanes via [2+2+2] Cycloaddition of a, ω-Diynes and Isocyanates. Org. Lett.2003, 5,4537-4540.
    [91]Werz, D. B.; Fischer, F. R.; Kornmayer, S. C.; Rominger, F.; Gleiter, R. Macrocyclic Cyclophanes with Two and Three a, ω-Dichalcogena-1,4-diethynylaryl Units: Syntheses and Structural Properties. J. Org. Chem.2008,73,8021-8029.
    [92]Miller, A. D.; McBee, J. L.; Tilley, T. D. Zirconocene-Mediated Macrocyclizations of Diynes Containing Di-o-Methylphenylene Spacers. J. Org. Chem.2009,74,2880-2883.
    [1](a) Habata, Y.; Akabori, S.; Bradshaw, J. S.; Izatt, R. M. Synthesis of Armed and Double-Armed Macrocyclic Ligands by the Mannich Reaction: A Short Review, Ind. Eng. Chem. Res.2000,39, 3465-3470; (b) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction:Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols. J. Am. Chem. Soc.2002,124,827-833; (c) Matsuo, J. I.; Tanaki, Y.; Ishibashi, H. Oxidative Mannich Reaction of N-Carbobenzyloxy Amines with 1,3-Dicarbonyl Compounds. Org. Lett.2006,8,4371-4374; (d) List, B. The Direct Catalytic Asymmetric Three-Component Mannich Reaction. J. Am. Chem. Soc.2000,122,9336-9337; (e) C6rdova, A.:The Direct Catalytic Asymmetric Mannich Reaction. Ace. Chem. Res.2004,37,102-112; (f) Toure, B. B.; Hall, D. G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev.2009,109,4439-4486; (g) Shiri, M. Indoles in Multicomponent Processes (MCPs). Chem. Rev.2012,112,3508-3549; (h) Candeias, N. R.; Montalbano, F.; Cal, P. M. S. D.; Gois, P. M. P. Boronic Acids and Esters in the Petasis-Borono Mannich Multicomponent Reaction. Chem. Rev.2010, 110,6169-6193.
    [2]Pastushok, V. N.; Bradshaw, J. S.; Bordunov, A. V.; Izatt, R. M.:Mannich Reaction as A Key Strategy for the Synthesis of Benzoazacrown Ethers and Benzocryptands. J. Org. Chem.1996,61, 6888-6892.
    [3]Mani, G.; Jana, D.; Kumar, R.; Ghorai, D. Azatripyrrolic and Azatetrapyrrolic Macrocycles from the Mannich Reaction of Pyrrole:Receptors for Anions. Org. Lett.2010,12,3212-3215.
    [4]Kumar, R.; Guchhait, T.; Mani, G. Synthesis and X-ray Structures of Novel Macrocycles and Macrobicycles Containing N, N-Di(pyrrolylmethyl)-N-methylamine Moiety: Preliminary Anion Binding Study. Inorg. Chem.2012,51,9029-9038.
    [5](a) Huffrnan, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. Lithium Alkoxides of Cinchona Alkaloids as Chiral Controllers for Enantioselective Acetylide Addition to Cyclic N-Acyl Ketimines.J. Org. Chem.1995,60,1590-1594; (b) Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G. D.; Clardy, J. Crystal and Molecular Structure of Dynemicin A:A Novel 1,5-Diyn-3-ene Antitumor Antibiotic. J. Am. Chem. Soc.1990,112,3715-3716; (c) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. Copper-Catalyzed Reaction of Terminal Alkynes with Nitrones. Selective Synthesis of 1-Aza-1-buten-3-yne and 2-Azetidinone Derivatives. J. Org. Chem.1995,60,4999-5004; (d) Jenmalm, A.; Berts, W.; Li, Y. L.; Luthman, K.; Csoeregh, I.; Hacksell, U. Stereoselective Epoxidation of Phe-Gly and Phe-Phe Vinyl Isosteres. J. Org. Chem.1994,59,11.39-1148.
    [6]Naota, T.; Takaya, H.; Murahasht, S. I. Ruthenium-Catalyzed Reactions for Organic Synthesis. Chem. Rev.1998,98,2599-2660.
    [7]Li, Z.; Li, C. J. CuBr-Catalyzed Efficient Alkynylation of sp3 C-H Bonds Adjacent to a Nitrogen Atom. J. Am. Chem. Soc.2004,126,11810-11811.
    [8]Wei, C.; Li, Z.; Li, C. J. The First Silver-Catalyzed Three-Component Coupling of Aldehyde, Alkyne, and Amine. Org. Lett.2003,5, 4473-4475.
    [9]Wei, C.; Li, C. J. A Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amines via C-H Activation Catalyzed by Gold in Water. J. Am. Chem. Soc.2003,125,9584-9585.
    [10](a) Shi, L.; Tu, Y. Q.; Wang, M.; Zhang, F. M.; Fan, C. A. Microwave-Promoted Three-Component Coupling of Aldehyde, Alkyne, and Amine via C-H Activation Catalyzed by Copper in Water. Org. Lett.,2004,6,1001-1003; (b) Wei, C.; Li, C. J. Enantioselective Direct-Addition of Terminal Alkynes to Imines Catalyzed by Copper(I)pybox Complex in Water and in Toluene. J. Am. Chem. Soc.2002,124,5638-5639; (c) Bisai, A.; Singh, V. K. Enantioselective One-Pot Three-Component Synthesis of Propargylamines. Org. Lett.2006,8,2405-2408.
    [11]Fischer, C.; Carreira, E. M. Direct Addition of TMS-acetylene to Aldimines Catalyzed by A Simple, Commercially Available Ir(Ⅰ) Complex. Org. Lett.2001,3,4319-4321.
    [12]Pin, H. L.; Lei, W. Mercurous Chloride Catalyzed Mannich Condensation of Terminal Alkynes with Secondary Amines and Aldehydes. Chin. J. Chem.2005,23,1076-1080.
    [13]Kantam, L. M.; Laha, S.; Yadav, J.; Bhargava, S. An Efficient Synthesis of Propargylamines via Three-Component Coupling of Aldehydes, Amines and Alkynes Catalyzed by Nanocrystalline Copper(II) Oxide. Tetrahedron Lett.2008,49,3083-3086.
    [14]Zhang, Y.; Li, P.; Wang, M.; Wang, L. Indium-Catalyzed Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amine via C-H Bond Activation. J. Org. Chem.2009,74, 4364-4367.
    [15]Li, C. J.; Wei, C. Highly Efficient Grignard-type Imine Additions via C-H Activation in Water and under Solvent-free Conditions. Chem. Commun.2002,268-269.
    [16]Wei, C.; Li, C. J. Enantioselective Direct-Addition of Terminal Alkynes to Imines Catalyzed by Copper(I)pybox Complex in Water and in Toluene. J. Am. Chem. Soc.2002,124,5638-5639.
    [17]Pereshivko, O. P.; Peshkov, V. A.; Van der Eycken, E. V. Unprecedented Cu(Ⅰ)-Catalyzed Microwave-Assisted Three-Component Coupling of A Ketone, An Alkyne, and A Primary Amine. Org. Lett.2010,72,2638-2641.
    [18]Mitamura, T.; Ogawa, A. Copper(0)-lnduced Deselenative Insertion of N, N-Disubstituted Selenoamides into Acetylenic C-H Bond Leading to Propargylamines. Org. Lett.2009,11, 2045-2048.
    [19]Patterson, A. W.; Ellman, J. A. Asymmetric Synthesis of α, a-Dibranched Propargylamines by Acetylide Additions to N-tert-Butanesulfinyl Ketimines. J. Org. Chem.2006,71,7110-7112.
    [20]Feng, H.; Ermolat'ev, D. S.; Song, G; Van der Eycken, E. V. Microwave-Assisted Decarboxylative Three-Component Coupling of A 2-Oxoacetic Acid, an Amine, and An Alkyne. J. Org. Chem.2011,76,7608-7613.
    [21]Srinivasan, R.; Uttamchandani, M.; Yao, S. Q. Rapid Assembly and in Situ Screening of Bidentate Inhibitors of Protein Tyrosine Phosphatases. Org. Lett.2006,8,713-716.
    [1](a)周红利,苏炳银,杨茂,黄四洲.器官左右不对称模式建立的模型理论[J].安徽农业科学,2012,40(24),12087-1208;(b)王乃兴.不对称现象及其模拟[J].科学中国人;(c) Palmer, A. R. Symmetry Breaking and the Evolution of Development. Science,2004,306,828-833.
    [2](a) Gopalaiah, K.; Kagan, H. B. Use of Nonfunctionalized Enamides and Enecarbamates in Asymmetric Synthesis. Chem. Rev.2011,111,4599-4657; (b) Gaunt, M. J.; Johansson, C. C. C. Recent Developments in the Use of Catalytic Asymmetric Ammonium Enolates in Chemical Synthesis. Chem. Rev.2007,107,5596-5605; (c) North, M.; Usanov, D. L.; Young, C.:Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chem. Rev.2008,108,5146-5226; (d) Walsh, P. J.; Li, H.; de Parrodi, C. A.:A Green Chemistry Approach to Asymmetric Catalysis:Solvent-Free and Highly Concentrated Reactions. Chem. Rev.2007,107,2503-2545; (e) Yamada, K. I.; Tomioka, K. Copper-Catalyzed Asymmetric Alkylation of Imines with Dialkylzinc and Related Reactions. Chem. Rev.2008,108,2874-2886; (f) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations:Applications in Total Synthesis. Chem. Rev.2003,103,2921-2944; (g) Shibasaki, M.; Kanai, M. Asymmetric Synthesis of Tertiary Alcohols and α-Tertiary Amines via Cu-Catalyzed C-C Bond Formation to Ketones and Ketimines. Chem. Rev.2008,108,2853-2873; (h) Dounay, A. B.; Overman, L. E. The Asymmetric Intramolecular Heck Reaction in Natural Product Total Synthesis. Chem. Rev.2003,103,2945-2964; (i) Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Asymmetric Hydrogenation of Heteroarenes and Arenes. Chem. Rev.2011,112,2557-2590; (j)尤思路.手性药物及其不对称催化合成的研究进展[J].西南军医,2010,12(1),109-111.
    [3](a) Kuwano, R.; Kashiwabara, M. Ruthenium-Catalyzed Asymmetric Hydrogenation of N-Boc-Indoles. Org. Lett.2006,8,2653-2655; (b) Shimizu, H.; Nagasaki, I.; Matsumura, K.; Sayo, N.; Saito, T. Developments in Asymmetric Hydrogenation from an Industrial Perspective. Ace. Chem. Res.2007,40,1385-1393; (c) Kuwano, R.; Kameyama, N.; Ikeda, R. Catalytic Asymmetric Hydrogenation of N-Boc-Imidazoles and Oxazoles. J. Am. Chem. Soc.2011,133,7312-7315; (4) Tang, W.; Liu, D.; Zhang, X. Asymmetric Hydrogenation of Itaconic Acid and Enol Acetate Derivatives with the Rh-TangPhos Catalyst. Org. Lett.2002,5,205-207.
    [4](a) Yang, Y; Moinodeen, F.; Chin, W.; Ma, T; Jiang, Z.; Tan, C. H. Pentanidium-Catalyzed Enantioselective a-Hydroxylation of Oxindoles Using Molecular Oxygen. Org. Lett.2012,14, 4762-4765; (b) Srour, H.; Maux, P. L.; Simonneaux, G. Enantioselective Manganese-Porphyrin-Catalyzed Epoxidation and C-H Hydroxylation with Hydrogen Peroxide in Water/Methanol Solutions. Inorg. Chem.2012,51,5850-5856; (c) Baidya, M.; Griffin, K. A.; Yamamoto, H. Catalytic Enantioselective O-Nitrosocarbonyl Aldol Reaction of P-Dicarbonyl Compounds. J. Am. Chem. Soc.2012,134,18566-18569; (d) Yao, H.; Lian, M.; Li, Z.; Wang, Y.; Meng, Q. Asymmetric Direct a-Hydroxylation of β-Oxo Esters Catalyzed by Chiral Quaternary Ammonium Salts Derived from Cinchona Alkaloids.J. Org. Chem.2012,77,9601-9608.
    [5](a) Mahrwald, R. Titanium(Ⅳ) Alkoxide Ligand Exchange with α-Hydroxy Acids:The Enantioselective Aldol Addition. Org. Lett.2000,2,4011-4012; (b) List, B.; Pojarliev, P.; Castello, C. Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and a-Unsubstituted Aldehydes. Org. Lett.2001,3,573-575; (c) Schmid, M. B.; Zeitler, K.; Gschwind, R. M. NMR Investigations on the Proline-Catalyzed Aldehyde Self-Condensation:Mannich Mechanism, Dienamine Detection, and Erosion of the Aldol Addition Selectivity. J. Org. Chem.2011,76,3005-3015; (d) Miura, T.; Imai, K.; Ina, M.; Tada, N.; Imai, N.; Itoh, A. Direct Asymmetric Aldol Reaction with Recyclable Fluorous Organocatalyst. Org. Lett.2010,12,1620-1623.
    [6](a) Fleming, F. F.; Liu, W.; Ghosh, S.; Steward, O. W. Metalated Nitriles:Internal 1,2-Asymmetric Induction. J. Org. Chem.2008,73,2803-2810; (b) Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Okado, K.; Toyo, T.; Shoji, M. Formal Total Synthesis of Fostriecin via 1,4-Asymmetric Induction Using Cobalt-Alkyne Complex. Org. Lett.2008,10,1405-1408; (c) Fuji, K.; Node, M.; Nagasawa, H.; Naniwa, Y.; Terada, S. Asymmetric Induction via Addition-elimination Process:Nitroolefination of Alpha.-substituted Lactones. J. Am. Chem. Soc.1986,108,3855-3856; (d) Hayashi, Y.; Yamaguchi, H.; Toyoshima, M.; Nasu, S.; Ochiai, K.; Shoji, M.1,4-Asymmetric Induction Using A Cobalt Alkyne Complex. Organometallics 2007,27,163-165.
    [7](a) Falardeau, G.; Lachance, H.; St-Pierre, A.; Yannopoulos, C. G.; Drouin, M.; Bedard, J.; Chan, L. Design and Synthesis of A Potent Macrocyclic 1,6-napthyridine Anti-human Cytomegalovirus (HCMV) Inhibitors. Bioorg. Med. Chem. Lett.2005,15,1693-1695; (b)于克贵,周成合,李东红.大环类药物研究进展[J].中国药学杂志,2008,43(7),481-510.
    [8](a) Tsantrizos, Y. S.; Bolger, G.; Bonneau, P.; Cameron, D. R.; Goudreau, N.; Kukolj, G.; LaPlante, S. R.; Llinas-Brunet, M.; Nar, H.; Lamarre, D. Macrocyclic Inhibitors of the NS3 Protease as Potential Therapeutic Agents of Hepatitis C Virus Infection. Angew. Chem., Int. Ed.2003,42,1356-1360; (b) Llinas-Brunet, M.; Bailey, M. D.; Bolger, G.; Brochu, C.; Faucher, A. M.; Ferland, J. M.; Garneau, M.; Ghiro, E.; Gorys, V.; Grand-Maitre, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard, F.; Poirier, M.; Rheaume, M.; Tsantrizos, Y. S.; Lamarre, D. Structure-Activity Study on a Novel Series of Macrocyclic Inhibitors of the Hepatitis C Virus NS3 Protease Leading to the Discovery of BILN 2061. J. Med. Chem.2004,47,1605-1608.
    [9]Minhas, G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J.; Rice, J. E. Synthesis and G-quadruplex Stabilizing Properties of A Series of Oxazole-containing Macrocycles. Bioorg. Med. Chem. Lett.2006, 76,3891-3895.
    [10]Hitotsuyanagi, Y.; Hasuda, T.; Aihara, T.; Ishikawa, H.; Yamaguchi, K.; Itokawa, H.; Takeya, K. Synthesis of [Gly-l]RA-VII, [Gly-2]RA-Ⅶ, and [Gly-4]RA-VII. Glycine-Containing Analogues of RA-Ⅶ, An Antitumor Bicyclic Hexapeptide from Rubia Plants. J. Org. Chem.2004,69,1481-1486.
    [11]丁超,陈云峰,刘明,宋会婷,周红,潘志权.不对称大环双核Ni(Ⅱ)配合物的DNA切割性能研究[J]. Chin. J. Inorg. Chem.2012,28,801-808.
    [12](a) Leznoff, C. C.; Hall, T. W. The Synthesis of A Soluble, Unsymmetrical Phthalocyanine on A Polymer Support. Tetrahedron Lett.1982,23,3023-3026; (b)李桂平,陈伟,贺春英,段武彪.不对称酞菁配合物的合成及应用[J].中国科技论文在线;(c)邱文丰,刘云圻,朱道本.不对称酞菁化合物的合成及研究进展[J].功能材料,2000,31,9-12.
    [13]Srinivasan, R.; Uttamchandani, M.; Yao, S. Q. Rapid Assembly and in Situ Screening of Bidentate Inhibitors of Protein Tyrosine Phosphatases. Org. Lett.2006,8,713-716.
    [1](a) Domling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev.2005,106,17-89; (b) Toure, B. B.; Hall, D. G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev.2009,109,4439-4486; (c) Wessjohann, L. A.; Rivera, D. G.; Vercillo, O. E. Multiple Multicomponent Macrocyclizations (MiBs):A Strategic Development Toward Macrocycle Diversity. Chem. Rev.2009,709,796-814; (d) Shiri, M. Indoles in Multicomponent Processes (MCPs). Chem. Rev.2012,772,3508-3549; (e) Domling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev.2012,112,3083-3135.
    [2]Peng, C.; Cheng, J.; Wang, J. Palladium-Catalyzed Cross-Coupling of Aryl or Vinyl Iodides with Ethyl Diazoacetate. J. Am. Chem. Soc.2007,729,8708-8709.
    [3]Zhou, L.; Ye, F.; Zhang, Y.; Wang, J. Pd-Catalyzed Three-Component Coupling of N-Tosylhydrazone, Terminal Alkyne, and Aryl Halide. J. Am. Chem. Soc.2010,132,13590-13591.
    [4]Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Pd-Catalyzed Carbonylation of Diazo Compounds at Atmospheric Pressure: A Catalytic Approach to Ketenes. J. Am. Chem. Soc.2011,133,4330-4341.
    [5](a) Zhu, Y.; Zhai, C.; Yue, Y.; Yang, L.; Hu, W. One-pot Three-Component Tandem Reaction of Diazo Compounds with Anilines and Unsaturated Ketoesters:A Novel Synthesis of 2, 3-dihydropyrrole Derivatives. Chem. Commun.2009,1362-1364; (b) Wang, Y.; Zhu, Y.; Chen, Z.; Mi, A.; Hu, W.; Doyle, M. P. A Novel Three-Component Reaction Catalyzed by Dirhodium(ll) Acetate:Decomposition of Phenyldiazoacetate with Arylamine and Imine for Highly Diastereoselective Synthesis of 1,2-Diamines. Org. Lett.2003,5,3923-3926; (c) Wang, Y.; Chen, Z.; Mi, A.; Hu, W. Novel C-C Bond Formation through Addition of Ammonium Ylides to Arylaldehydes: A Facile Approach to [small beta]-aryl-[small beta]-hydroxy [small alpha]-amino Acid Frameworks. Chem. Commun.2004,2486-2487; (d) Jiang, J.; Xu, H. D.; Xi, J. B.; Ren, B. Y.; Lv, F. P.; Guo, X.; Jiang, L. Q.; Zhang, Z. Y.; Hu, W. H. Diastereoselectively Switchable Enantioselective Trapping of Carbamate Ammonium Ylides with Imines. J. Am. Chem. Soc.2011,133,8428-8431.
    [6](a) Lu, C. D.; Liu, H.; Chen, Z. Y.; Hu, W. H.; Mi, A. Q. Three-Component Reaction of Aryl Diazoacetates, Alcohols, and Aldehydes (or Imines):Evidence of Alcoholic Oxonium Ylide Intermediates. Org. Lett.2004,7,83-86; (b) Qian, Y.; Xu, X.; Jiang, L; Prajapati, D.; Hu, W. A Strategy to Synthesize Taxol Side Chain and (-)-epi Cytoxazone via Chiral Bronsted Acid-Rh2(OAc)4 Co-catalyzed Enantioselective Three-Component Reactions. J. Org. Chem.2010,75,7483-7486; (c) Guo, Z.; Cai, M.; Jiang, J.; Yang, L.; Hu, W. Rh2(OAc)4-AgOTf Cooperative Catalysis in Cyclization/Three-Component Reactions for Concise Synthesis of 1,2-Dihydroisoquinolines. Org. Lett.2010,12,652-655; (d) Zhu, Y.; Zhai, C.; Yang, L.; Hu, W. Copper(ii)-catalyzed Highly Diastereoselective Three-Component Reactions of Aryl Diazoacetates with Alcohols and Chalcones: An Easy Access to Furan Derivatives. Chem. Commun.2010,46,2865-2867; (e) Hu, W.; Xu, X.; Zhou, J.; Liu, W. J.; Huang, H.; Hu, J.; Yang, L.; Gong, L. Z. Cooperative Catalysis with Chiral Bronsted Acid-Rh2(OAc)4:Highly Enantioselective Three-Component Reactions of Diazo Compounds with Alcohols and Imines. J. Am. Chem. Soc.2008,130,7782-7783; (f) Ji, J.; Zhang, X.; Zhu, Y.; Qian, Y.; Zhou, J.; Yang, L.; Hu, W. Diastereoselectivity Switch in Cooperatively Catalyzed Three-Component Reactions of An Aryldiazoacetate, An Alcohol, and α, β, γ-Unsaturated a-Keto Ester. J. Org. Chem.2011,76,5821-5824.
    [7](a) Sun, X.; Wang, C.; Li, Z.; Zhang, S.; Xi, Z. Zirconocene-Mediated Intermolecular Coupling of One Molecule of Si-Tethered Diyne with Three Molecules of Organonitriles:One-Pot Formation of Pyrrolo[3,2-c]pyridine Derivatives via Cleavage of C:N Triple Bonds of Organonitriles. J. Am. Chem. Soc.2004,126,7172-7173; (b) Zhang, W. X.; Zhang, S.; Xi, Z. Zirconocene and Si-Tethered Diynes: A Happy Match Directed toward Organometallic Chemistry and Organic Synthesis. Acc. Chem. Res. 2011,44,541-551; (c) Zhang, S.; Zhao, J.; Zhang, W. X.; Xi, Z. One-Pot Synthesis of Pyrrolo[3, 2-d]pyridazines and Pyrrole-2,3-diones via Zirconocene-Mediated Four-Component Coupling of Si-Tethered Diyne, Nitriles, and Azide. Org. Lett.2011,13,1626-1629; (d) Zhang, S.; Zhang, W. X.; Zhao, J.; Xi, Z. Cleavage and Reorganization of Zr-C/Si-C Bonds Leading to Zr/Si-N Organometallic and Heterocyclic Compounds. J. Am. Chem. Soc.2010,132,14042-14045.
    [8](a) Gu, Y.; De Sousa, R.; Frapper, G.; Bachmann, C.; Barrault, J.; Jerome, F. Catalyst-free Aqueous Multicomponent Domino Reactions from Formaldehyde and I,3-dicarbonyl Derivatives. Green Chem.2009,11,1968-1972; (b) Tan, J. N.; Li, M.; Gu, Y. Multicomponent Reactions of 1, 3-Disubstituted 5-Pyrazolones and Formaldehyde in Environmentally Benign Solvent Systems and Their Variations with More Fundamental Substrates. Green Chem.2010,12,908-914.
    [9](a) Xiao, Y.; Zhang, J. Tetrasubstituted Furans by A Pd(Ⅱ)-Catalyzed Three-Component Michael Addition/Cyclization/Cross-Coupling Reaction. Angew Chem., Int. Ed.2008,47,1903-1906; (b) Li, W.; Zhang, J. Tetrasubstituted Furans by Pdll/CuI-cocatalyzed Three-Component Domino Reactions of 2-(1-alkynyl)-2-alken-1-ones, Nucleophiles and Diaryliodonium Salts. Chem. Commun.2010,46, 8839-8841.
    [10](a) Cui, S. L.; Lin, X. F.; Wang, Y. G. Novel and Efficient Synthesis of Iminocoumarins via Copper-Catalyzed Multicomponent Reaction. Org. Lett.2006,8,4517-4520; (b) Song, W.; Lu, W.; Wang, J.; Lu, P.; Wang, Y. A Facile Route to y-Nitro Imidates via Four-Component Reaction of Alkynes with Sulfonyl Azides, Alcohols, and Nitroolefins. J. Org. Chem.2010,75,3481-3483; (c) Jin, H.; Xu, X.; Gao, J.; Zhong, J.; Wang, Y. Copper-Catalyzed One-Pot Synthesis of Substituted Benzimidazoles. Adv. Synth. Catal 2010,352,347-350; (d) Cui, S. L.; Wang, J.; Wang, Y. G. Copper-Catalyzed Multicomponent Reaction: Facile Access to Functionalized 5-Arylidene-2-imino-3-pyrrolines. Org. Lett.2007,9,5023-5025; (e) Cui, S. L.; Wang, J.; Wang, Y. G. Copper-Catalyzed Multicomponent Reaction:Facile Access to Novel Phosphorus Amidines. Org. Lett 2008,10,1267-1269; (f) Wang, J.; Wang, J.; Zhu, Y.; Lu, P.; Wang, Y. Copper-cascade Catalysis: Synthesis of 3-Functionalized Indoles. Chem. Commun 2011,47,3275-3277; (g) Shen, Y.; Cui, S.; Wang, J.; Chen, X.; Lu, P.; Wang, Y. Copper-Catalyzed Three-Component Synthesis of 2-Iminodihydrocoumarins and 2-Iminocoumarins. Adv. Synth. Catal.2010,352,1139-1144.
    [11]Jeganmohan, M.; Bhuvaneswari, S.; Cheng, C. H. A Cooperative Copper-and Palladium-Catalyzed Three-Component Coupling of Benzynes, Allylic Epoxides, and Terminal Alkynes. Angew Chem., Int. Ed.2009,48,391-394.
    [12]Xu, X.; Zhou, J.; Yang, L.; Hu, W. Selectivity Control in Enantioselective Four-Component Reactions of Aryl Diazoacetates with Alcohols, Aldehydes and Amines:An Efficient Approach to Synthesizing Chiral [small beta]-amino-[small alpha]-hydroxyesters. Chem. Commun.2008, 6564-6566.
    [13]Wang, Y.; Han, R. G.; Zhao, Y. L.; Yang, S.; Xu, P. F.; Dixon, D. J. Asymmetric Organocatalytic Relay Cascades: Catalyst-Controlled Stereoisomer Selection in the Synthesis of Functionalized Cyclohexanes. Angew Chem., Int. Ed.2009,48,9834-9838.
    [14]Wang, Y.; Yu, D. F.; Liu, Y. Z.; Wei, H.; Luo, Y. C.; Dixon, D. J.; Xu, P. F. Multiple-Organocatalyst-Promoted Cascade Reaction:A Fast and Efficient Entry into Fully Substituted Piperidines. Chem. Eur. J.2010,16,3922-3925.
    [15]Zhao, J.; Larock, R. C. Synthesis of Substituted Carbazoles by A Vinylic to Aryl Palladium Migration Involving Domino C-H Activation Processes. Org. Lett.2005,7,701-704.
    [16]Pirali, T.; Tron, G. C.; Zhu, J. One-Pot Synthesis of Macrocycles by A Tandem Three-Component Reaction and Intramolecular [3+2] Cycloaddition. Org. Lett.2006,8,4145-4148.
    [17](a) Pippel, D. J.; Young, L. K.; Letavic, M. A.; Ly, K. S.; Naderi, B.; Soyode-Johnson, A.; Stocking, E. M.; Carruthers, N. I.; Mani, N. S. Synthesis of A Histamine H3 Receptor Antagonist-Manipulation of Hydroxyproline Stereochemistry, Desymmetrization of Homopiperazine, and Nonextractive Sodium Triacetoxyborohydride Reaction Workup. J. Org. Chem.2010,75, 4463-4471; (b) Cheung, Y. Y.; Zamorano, R.; Blobaum, A. L.; Weaver, C. D.; Conn, P. J.; Lindsley, C. W.;Niswender, C. M.; Hopkins, C. R. Solution-Phase Parallel Synthesis and SAR of Homopiperazinyl Analogs as Positive Allosteric Modulators of mGlu4. ACS. Comb. Sci.2011,13, 159-165; (c) Wlodarczyk, N.; Le Broc-Ryckewaert, D.; Gilleron, P.; Lemoine, A.1.; Farce, A.; Chavatte, P.; Dubois, J.1.; Pommery, N.; Henichart, J. P.; Furman, C.; Millet, R. g. Potent Farnesyltransferase Inhibitors with 1,4-Diazepane Scaffolds as Novel Destabilizing Microtubule Agents in Hormone-Resistant Prostate Cancer. J. Med. Chem.2011,54,1178-1190; (d) Pippel, D. J.; Mills, J. E.; Pandit, C. R.; Young, L. K.; Zhong, H. M.; Villani, F. J.; Mani, N. S. First, Second, and Third Generation Scalable Syntheses of Two Potent H3 Antagonists. Org. Process Res. Dev.2011,15, 638-648; (e) Hirayama, F.; Koshio, H.; Ishihara, T.; Hachiya, S.; Sugasawa, K.; Koga, Y.; Seki, N.; Shiraki, R.; Shigenaga, T.; Iwatsuki, Y.; Moritani, Y.; Mori, K.; Kadokura, T.; Kawasaki, T.; Matsumoto, Y.; Sakamoto, S.; Tsukamoto, S. i. Discovery of N-[2-Hydroxy-6-(4-methoxybenzamido)phenyl]-4-(4-methyl-1,4-diazepan-1-yl)benzamide (Darexaban, YM150) as A Potent and Orally Available Factor Xa Inhibitor. J. Med. Chem.2011,54, 8051-8065; (f) Haddach, M.; Michaux, J.; Schwaebe, M. K.; Pierre, F.; O'Brien, S. E.; Borsan, C.; Tran, J.; Raffaele, N.; Ravula, S.; Drygin, D.; Siddiqui-Jain, A.; Darjania, L.; Stansfield, R.; Proffitt, C.; Macalino, D.; Streiner, N.; Bliesath, J.; Omori, M.; Whitten, J. P.; Anderes, K.; Rice, W. G.; Ryckman, D. M. Discovery of CX-6258. A Potent, Selective, and Orally Efficacious Pan-Pim Kinases Inhibitor. ACS Med. Chem. Lett.2011,3,135-139;(g)王道林,钱建华,刘琳,邢锦娟.高哌嗪的新合成法[J].化学试剂,2006,28(5),311-31;(h)蔡留青,李丽荣,李长多.高哌嗪生产应用与发展前景[J].化工中间体,2008,9,12-16.
    [1](a) Hossein, N. R.; Mamaghani, M.; Tabatabaeian, K.; Shirini, F. An Expeditious Regioselective Synthesis of Novel Bioactive Indole-Substituted Chromene Derivatives Via One-Pot Three-Component Reaction. Bioorg. Med. Chem. Lett.2012,22,5956-5960; (b)于广燕,肖涛.色酮及硫色酮类抗真菌化合物的研究进展[J].中国抗生素杂志,2011,36(7),381-186.
    [2](a) Hernandez-Torres, G.; Urbano, A.; Carreno, M. C.; Colobert, F. O. Stereocontrolled Generation of the (2R) Chroman Core of Vitamin E: Total Synthesis of (2R,4'RS,8'RS)-a-Tocopherol. Org. Lett.2009,11,4930-4933; (b) Yu, S.; Nehus, Z. T.; Badger, T. M.; Fang, N. Quantification of Vitamin E and y-Oryzanol Components in Rice Germ and Bran. J. Agric. Food Chem.2007,55, 7308-7313; (c) Koufaki, M.; Theodorou, E.; Galaris, D.; Nousis, L.; Katsanou, E. S.; Alexis, M. N. Chroman/Catechol Hybrids:Synthesis and Evaluation of Their Activity against Oxidative Stress Induced Cellular Damage. J. Med. Chem.2005,49,300-306; (d) Solladie, G.; Moine, G. Application of Chiral Sulfoxides in Asymmetric Synthesis:The Enantiospecific Synthesis of the Chroman Ring of Alpha.-Tocopherol (Vitamin E). J. Am. Chem. Soc.1984,106,6097-6098.
    [3](a) Kato, A.; Minoshima, Y.; Yamamoto, J.; Adachi, I.; Watson, A. A.; Nash, R. J. Protective Effects of Dietary Chamomile Tea on Diabetic Complications. J. Agric. Food Chem.2008,56, 8206-8211; (b) Cespedes, C. L.; Avila, J. G.; Martinez, A.; Serrato, B.; Calderon-Mugica, J. C.; Salgado-Garciglia, R. Antifungal and Antibacterial Activities of Mexican Tarragon (Tagetes lucida). J. Agric. Food Chem.2006,54,3521-3527; (c) Tian, L. W.; Pei, Y.; Zhang, Y. J.; Wang, Y. F.; Yang, C. R.7-O-Methylkaempferol and -quercetin Glycosides from the Whole Plant of Nervilia Fordii. J. Nat. Prod.2009,72,1057-1060.
    [4](a) Lin, V. C. H.; Chou, C. H.; Lin, Y. C.; Lin, J. N.; Yu, C. C.; Tang, C. H.; Lin, H. Y.; Way, T. D. Osthole Suppresses Fatty Acid Synthase Expression in HER2 -Overexpressing Breast Cancer Cells through Modulating Akt/mTOR Pathway. J. Agric. Food Chem.2010,55,4786-4793; (b) Lee, W. H.; Lin, R. J.; Lin, S. Y.; Chen, Y. C.; Lin, H. M.; Liang, Y. C. Osthole Enhances Glucose Uptake through Activation of AMP-Activated Protein Kinase in Skeletal Muscle Cells. J. Agric. Food Chem. 2011,59,12874-12881; (c) Joa, H.; Vogl, S.; Atanasov, A. G.; Zehl, M.; Nakel, T.; Fakhrudin, N.; Heiss, E. H.; Picker, P.; Urban, E.; Wawrosch, C.; Saukel, J.; Reznicek, G.; Kopp, B.; Dirsch, V. M. Identification of Ostruthin from Peucedanum Ostruthium Rhizomes as an Inhibitor of Vascular Smooth Muscle Cell Proliferation. J. Nat. Prod.2011,74,1513-1516.
    [5](a) Tremblay, J. F. Faulty Drug Kills Five People In China. Chem. Eng. News Archive 2006,84, 11; (b) Tremblay, J. F. CHINA Executives Stand Trial for Manufacture of Lethal Drug. Chem. Eng. News Archive.2007,55,11.
    [6](a) Wang, B.; Xu, C.; Xie, J.; Yang, Z.; Sun, S. pH Controlled Release of Chromone from Chromone-Fe304 Nanoparticles. J. Am. Chem. Soc.2008,130,14436-14437; (b) Feng, Y.; Blunt, J. W.; Cole, A. L. J.; Munro, M. H. G. The Isolation of Two New Chromone Derivatives from the New Zealand Fungus Tolypocladium extinguens. J. Nat. Prod.2002,65,1681-1682; (c) Matos, M. A. R.; Sousa, C. C. S.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F. Energetics of Coumarin and Chromone. J. Phys. Chem. B 2009,113,11216-11221; (d) Chai, G.; Qiu, Y.; Fu, C.; Ma, S. Efficient Assembly of Chromone Skeleton from 2,3-Allenoic Acids and Benzynes. Org. Lett.2011,13, 5196-5199; (e) Ismail, I. S.; Nagakura, Y.; Hirasawa, Y.; Hosoya, T.; Lazim, M. I. M.; Lajis, N. H.; Shiro, M.; Morita, H. Chrotacumines A-D, Chromone Alkaloids from Dysoxylum Acutangulum. J. Nat. Prod.2009,72,1879-1883; (f) Yu, D.; Chen, C.-H.; Brossi, A.; Lee, K. H. Anti-AIDS Agents. 60. Substituted 3 'R,4'R-Di-O-(-)-camphanoyl-2',2'-dimethyldihydropyranot2,3-f]chromone (DCP) Analogues as Potent Anti-HIV Agents. J. Med. Chem.2004,47,4072-4082.
    [7]Deng, Y.; Fu, C.; Ma, S. Selectivity Manipulation of Bicyclization Reactions of 1,5-Bis(1, 2-allenylketone)s:Pd versus Rh and Electronic Effect. Chem. Eur. J.2011,17,4976-4980.
    [8]Pearson, A. J.; Kim, E. H.; Sun, H. A Synthetic Pathway to Diquinane and Angular Triquinane Systems via An Iron Carbonyl Promoted Tandem [6+2] ene Type Reaction. Tetrahedron 2010,66, 4943-4946.
    [9]Zhao, W.; Zhang, J. Rhodium-catalyzed Tandem Nucleophilic Addition/Bicyclization of Diyne-enones with Alcohols:A Modular Entry to 2,3-fused Bicyclic Furans. Chem. Commun.2010, 46,4384-4386.
    [10]Eckert, M.; Monnier, F.; Shchetnikov, G. T.; Titanyuk, I. D.; Osipov, S. N.; Toupet, L.; Derien, S.; Dixneuf, P. H. Tandem Catalytic Carbene Addition/Bicyclization of Enynes. One-Step Synthesis of Fluorinated Bicyclic Amino Esters by Ruthenium Catalysis. Org. Lett.2005,7,3741-3743.
    [11]Luo, Y.; Wu, J. Generation of Indeno[1,2-c]pyrroles via A Pd-Catalyzed Reaction of 2-Alkynylbromobenzene with Propargylic Sulfonamide. Org. Lett.2012,14,1592-1595.
    [12]Zhang, L.; Xu, X.; Tan, J.; Pan, L.; Xia, W.; Liu, Q. Tandem Michael Addition/Intramolecular Isocyanide [3+2] Cycloaddition:Highly Diastereoselective One Pot Synthesis of Fused Oxazolines. Chem. Commun.2010,46,3357-3359.
    [13]Zhang, L. J.; Xu, X. X.; Xia, W. M.; Liu, Q. Bicyclization of Isocyanides:A Synthetic Strategy for Fused Pyrroles. Adv. Synth. Catal.2011,353,2619-2623.
    [14]万红敬,黄红军,李志广,张敏.串联反应在合成环状化合物中的应用[J].大学化学,2008,23(3),28-35.
    [1](a) Simonyi, M.; Bikadi, Z.; Zsila, F.; Deli, J. Supramolecular Exciton Chirality of Carotenoid Aggregates. Chirality 2003,15,680-698; (b)袁菁,张莉,黄昕,姜思光,刘鸣华.手性超分子组装研究进展[J].化学进展,2005,17(5),780-788.
    [2]Verbiest, T.; Van Elshocht, S. V.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A. Strong Enhancement of Nonlinear Optical Properties through Supramolecular Chirality. Science 1998,282,913-915.
    [3]Jha, S. K.; Cheon, K. S.; Green, M. M.; Selinger, J. V. Chiral Optical Properties of a Helical Polymer Synthesized from Nearly Racemic Chiral Monomers Highly Diluted with Achiral Monomers. J. Am. Chem. Soc.1999,121,1665-1673.
    [4]Ogoshi, H.; Mizutani, T. Multifunctional and Chiral Porphyrins:Model Receptors for Chiral Recognition. Acc. Chem. Res.1998,31,81-89.
    [5]Borovkov, V. V.; Lintuluoto, J. M.; Fujiki, M.; Inoue, Y. Temperature Effect on Supramolecular Chirality Induction in Bis(zinc porphyrin). J. Am. Chem. Soc.2000,122,4403-4407.
    [6]Yashima, E.; Goto, H.; Okamoto, Y. Metal-Induced Chirality Induction and Chiral Recognition of Optically Active, Regioregular Polythiophenes. Macromolecules 1999,32,7942-7945.
    [7]Tsukube, H.; Shinoda, S. Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates. Chem. Rev.2002,102,2389-2404.
    [8](a) Lang, J.; Liu, M. Layer-by-Layer Assembly of DNA Films and Their Interactions with Dyes. J. Phys. Chem. B 1999,103,11393-11397; (b)潘秀娟,蒋皓,王亚丽,邹纲,张其锦.手性聚二炔组装体[J].化学进展,2010,22(10),2014-2023.
    [9]Jiang, S.; Liu, M. Aggregation and Induced Chirality of an Anionic meso-Tetraphenylsulfonato Porphyrin (TPPS) on a Layer-by-Layer Assembled DNA/PAH Matrix. J. Phys. Chem. B 2004,108, 2880-2884.
    [10]Borovkov, V. V.; Lintuluoto, J. M.; Inoue, Y. Stoichiometry-Controlled Supramolecular Chirality Induction and Inversion in Bisporphyrin Systems. Org. Lett.2002,4,169-171.
    [11]Borovkov, V. V.; Yamamoto, N.; Lintuluoto, J. M.; Tanaka, T.; Inoue, Y. Supramolecular Chirality Induction in Bis(zinc porphyrin) by Amino Acid Derivatives: Rationalization and Applications of the Ligand Bulkiness Effect. Chirality 2001,13,329-35.
    [12]Inouye, M.; Waki, M.; Abe, H. Saccharide-Dependent Induction of Chiral Helicity in Achiral Synthetic Hydrogen-Bonding Oligomers. J. Am. Chem. Soc.2004,126,2022-2027.
    [13](a) Purrello, R.; Raudino, A.; Monsu Scolaro, L.; Loisi, A.; Bellacchio, E.; Lauceri, R. Ternary Porphyrin Aggregates and Their Chiral Memory. J. Phys. Chem. B 2000,104,10900-10908; (b) Bellacchio, E.; Lauceri, R.; Gurrieri, S.; Scolaro, L. M.; Romeo, A.; Purrello, R. Template-Imprinted Chiral Porphyrin Aggregates. J. Am. Chem. Soc.1998,120,12353-12354; (c) Seifert, J. L.; Connor, R. E.; Kushon, S. A.; Wang, M.; Armitage, B. A. Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates. J. Am. Chem. Soc.1999,121,2987-2995; (d) Smith, J. O.; Olson, D. A.; Armitage, B. A. Molecular Recognition of PNA-Containing Hybrids:Spontaneous Assembly of Helical Cyanine Dye Aggregates on PNA Templates. J. Am. Chem. Soc.1999,121,2686-2695; (e) Wang, M.; Silva, G. L.; Armitage, B. A. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. J. Am. Chem. Soc.2000,122,9977-9986.
    [14](a) Gao, E. Q.; Bai, S. Q.; Wang, Z. M.; Yan, C. H. Two-Dimensional Homochiral Manganese(Ⅱ)-Azido Frameworks Incorporating an Achiral Ligand:Partial Spontaneous Resolution and Weak Ferromagnetism. J. Am. Chem. Soc.2003,125,4984-4985; (b) Gao, E. Q.; Yue, Y. F.; Bai, S. Q.; He, Z.; Yan, C. H. From Achiral Ligands to Chiral Coordination Polymers:Spontaneous Resolution, Weak Ferromagnetism, and Topological Ferrimagnetism. J.Am. Chem. Soc.2004,126, 1419-1429.
    [15]Pauling, L., Corey, R. B.,& Branson, H. R. Proc. Narl. Acad. Sci. U.S.A.1951,37,205-211.
    [16]Watson J.; Crick, F.:A Structure for Deoxyribose Nucleic Acid. Nature,1953,171,737-738.
    [17]Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R. Understanding the Role of Helical Chains in the Formation of Noncentrosymmetric Solids. J. Am. Chem. Soc.2001,123,7742-7743.
    [18]Dong, L.; Chu, W.; Zhu, Q.; Huang, R. Three Novel Homochiral Helical Metal-Organic Frameworks Based on Amino Acid Ligand: Syntheses, Crystal Structures, and Properties. Crystal Growth & Design 2010,11,93-99.
    [19]Xiao, D. R.; Wang, E. B.; An, H. Y.; Li, Y. G.; Xu, L. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character. Crystal Growth & Design 2007,7,506-512.
    [20]Qi, Y.; Luo, F.; Batten, S. R.; Che, Y. X.; Zheng, J. M. Syntheses and Crystal Structures of a Series of Novel Helical Coordination Polymers Constructed from Flexible Bis(imidazole) Ligands and Metal Salts. Crystal Growth & Design 2008,8,2806-2813.
    [21]Tsai, H. L.; Yang, C. I.; Wernsdorfer, W.; Huang, S. H.; Jhan, S. Y.; Liu, M. H.; Lee, G. H. Mn4 Single-Molecule-Magnet-Based Polymers of A One-Dimensional Helical Chain and A Three-Dimensional Network: Syntheses, Crystal Structures, and Magnetic Properties. Inorg. Chem. 2012,51,13171-13180.
    [22]Han, L.; Valle, H.; Bu, X. Homochiral Coordination Polymer with Infinite Double-Stranded Helices. Inorg. Chem.2007,46,1511-1513.
    [23]Li, S. L.; Tan, K.; Lan, Y. Q.; Qin, J. S.; Li, M. N.; Du, D. Y.; Zang, H. Y.; Su, Z. M. pH-Dependent Binary Metal-Organic Compounds Assembled from Different Helical Units: Structural Variation and Supramolecular Isomers. Crystal Growth & Design 2010,10,1699-1705.
    [24]Liu, J. Q.; Huang, Y. S.; Zhao, Y. Y.; Jia, Z. B. Molecular Tectonics of Entangled Metal-Organic Frameworks Based on Different Conformational Carboxylates Mixed with a Flexible N, N'-Type Ligand. Crystal Growth & Design 2010,11,569-574.
    [25]Jiang, J. J.; Zheng, S. R.; Liu, Y.; Pan, M.; Wang, W.; Su, C. Y. Self-Assembly of Triple Helical and meso-Helical Cylindrical Arrays Tunable by Bis-Tripodal Coordination Converters. Inorg. Chem. 2008,47,10692-10699.
    [26]Lin, M. J.; Jouaiti, A.; Kyritsakas, N.; Hosseini, M. W. Molecular Tectonics:from 1-D Interwoven Racemic Chains to Quadruple-stranded Helices. Chem. Commun.2010,46,115-117.
    [27]Xu, C.; Li, L.; Wang, Y.; Guo, Q.; Wang, X.; Hou, H.; Fan, Y. Three-Dimensional Cd(II) Coordination Polymers Based on Semirigid Bis(Methylbenzimidazole) and Aromatic Polycarboxylates: Syntheses, Topological Structures and Photoluminescent Properties. Crystal Growth & Design 2011,11,4667-4675.
    [28]Jiang, H. L.; Liu, B.; Xu, Q. Rational Assembly of d10 Metal-Organic Frameworks with Helical Nanochannels Based on Flexible V-Shaped Ligand. Crystal Growth & Design 2009,10,806-811.
    [29](a) El-ghayoury, A.; Peeters, E.; Schenning, A. P. H. J.; Meijer, E. W. Quadruple Hydrogen Bonded Oligo(-phenylene vinylene) Dimers. Chem. Commun.2000,1969-1970; (b) Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E. W. Hierarchical Order in Supramolecular Assemblies of Hydrogen-Bonded Oligo(p-phenylene vinylene)s. J. Am. Chem. Soc.2000,123,409-416; (c)王晓钟,陈英奇,陈新志,蒋锡夔,黎占亭.有机分子识别和聚集体组装中的非共价键协同作用[J].化学进展,2005,17(3),451458.
    [30]Xu, Y. X.; Wang, G. T.; Zhao, X.; Jiang, X. K.; Li, Z. T. Folding of Aromatic Amide-Based Oligomers Induced by Benzene-1,3,5-tricarboxylate Anion in DMSO. J. Org. Chem.2009,74, 7267-7273.
    [31](a) Hou, J. L.; Shao, X. B.; Chen, G. J.; Zhou, Y. X.; Jiang, X. K.; Li, Z. T. Hydrogen Bonded Oligohydrazide Foldamers and Their Recognition for Saccharides. J. Am. Chem. Soc.2004,126, 12386-12394; (b) Li, C.; Wang, G. T.; Yi, H. P.; Jiang, X. K.; Li, Z. T.; Wang, R. X. Diastereomeric Recognition of Chiral Foldamer Receptors for Chiral Glucoses. Org. Lett.2007,9,1797-1800.
    [32]Zhang, B.; Yuan, T.; Jiang, H.; Lei, M. Molecular Dynamics Simulations on the Stability and Assembly Mechanisms of Quadruple and Double Helical Aromatic Amide Foldamers. J. Phys. Chem. B2009,113,10934-10941.
    [33]Gan, Q.; Ferrand, Y.; Bao, C.; Kaufftnann, B.; Grelard, A.; Jiang, H.; Hue, I. Helix-Rod Host-Guest Complexes with Shuttling Rates Much Faster than Disassembly. Science 2011,331, 1172-1175.
    [1]魏荣宝,刘博,刘洋,郭金晶,张大为.具有生理活性的含氧、氮、硫杂原子螺环化合物的研究进展[J].有机化学,2008,28(9),1501-1514.
    [2]丁研,田喆,朱能.具有抗菌活性的螺环化合物研究进展[J].有机化学,2010,30(8),1156-1163.
    [3]Uroos, M.; Lewis, W.; Blake, A. J.; Hayes, C. J. Total Synthesis of (+)-Cymbodiacetal:A Re-evaluation of the Biomimetic Route. J. Org. Chem.2010,75,8465-8470.
    [4]Supsana, P.; Tsoungas, P. G.; Aubry, A.; Skoulika, S.; Varvounis, G. Oxidation of 1-acyl-2-naphthol Oximes: Peri-and O-cyclisation and Spiro Cyclodimerisation of Naphthoquinone Nitrosomethide Intermediates. Tetrahedron 2001,57,3445-3453.
    [5]Karmakar, R.; Mal, D. N-Methylanilinium Trifluoroacetate-prbmoted Prins Reaction of a-methylene-a-tetralone Dimers: Generation of New Molecular Scaffolds. Tetrahedron Lett.2011,52, 6098-6102.
    [6]Liao, D.; Li, H.; Lei, X. Efficient Generation of Ortho-Quinone Methide:Application to the Biomimetic Syntheses of (±)-Schefflone and Tocopherol Trimers. Org. Lett.2011,14,18-21.
    [7]Shaikh, A. k.; Cobb, A. J. A.; Varvounis, G. Mild and Rapid Method for the Generation of Ortho-(Naphtho)quinone Methide Intermediates. Org. Lett.2012,14,584-587.
    [8]Kasturi, T. R.; Sattigeri, J. A.; Pragnacharyulu, P. V. P.; Cameroon, T. S.; Pradeep, B. Reaction of Spironaphthalenones with Hydroxylamine Hydrochloride: Part IV. Tetrahedron 1995,51,3051-3060.
    [9]Khoramabadi-zad, A.; Shiri, A.; Derakhshan-Panah, F.; Salimi, Z. Chloramine-T and N-chlorosuccinimide:Novel Reagents for Diastereoselective Oxidation of Bisnaphthols. Mol. Diver. 2010,14,829-832.
    [10]Agbaria, K.; Aleksiuk, O.; Biali, S. E.; Bohmer, V.; Frings, M.; Thondorf, I. Spirodienone Derivatives of A Spherand-Type Calixarene. J. Org. Chem.2001,66,2891-2899.
    [11]Wu, P. C.; Losurdo, M.; Kim, T. H.; Garcia-Cueto, B.; Moreno, F.; Bruno, G.; Brown, A. S. Ga-Mg Core-Shell Nanosystem for A Novel Full Color Plasmonics. J. Phys. Chem. C 2011,115, 13571-13576.
    [12]Wang, Z.; Huang, B.; Yu, L.; Dai, Y.; Wang, P.; Qin, X.; Zhang, X.; Wei, J.; Zhan, J.; Jing, X.; Liu, H.; Whangbo, M.-H. Enhanced Ferromagnetism and Tunable Saturation Magnetization of Mn/C-Codoped GaN Nanostructures Synthesized by Carbothermal Nitridation. J. Am. Chem. Soc. 2008,130,16366-16373.
    [13](a) Masuda, Y.; Kondo, M.; Koumoto, K. Site-Selective Deposition of In2O3 Using A Self-Assembled Monolayer. Crystal Growth & Design 2008,9,555-561; (b) Geaney, H.; Kennedy, T.; Dickinson, C.; Mullane, E.; Singh, A.; Laffir, F.; Ryan, K. M.:High Density Growth of Indium seeded Silicon Nanowires in the Vapor phase of a High Boiling Point Solvent. Chem. Mater.2012,24, 2204-2210.
    [14](a) Seitz, O.; Dai, M.; Aguirre-Tostado, F. S.; Wallace, R. M.; Chabal, Y. J. Copper-Metal Deposition on Self Assembled Monolayer for Making Top Contacts in Molecular Electronic Devices. J. Am. Chem. Soc.2009,131,18159-18167; (b) Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z.; Schmid, M.; Steinrilck, H. P.; Gottfried, J. M.; Lin, N. Coordination and Metalation Bifunctionality of Cu with 5,10,15,20-Tetra(4-pyridyl)porphyrin:Toward A Mixed-Valence Two-Dimensional Coordination Network. J. Am. Chem. Soc.2012,134,6401-6408.
    [15](a) Traub, M. C.; Biteen, J. S.; Michalak, D. J.; Webb, L. J.; Brunschwig, B. S.; Lewis, N. S. High-Resolution X-ray Photoelectron Spectroscopy of Chlorine-Terminated GaAs(III)A Surfaces. The J. Phys. Chem. B 2006,110,15641-15644; (b) Hu, C. C.; Teng, H. Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation. J. Phys. Chem. C 2010,114,20100-20106.
    [16](a) Han, S. Y.; Herman, G. S.; Chang, C. H. Low-Temperature, High-Performance, Solution-Processed Indium Oxide Thin-Film Transistors. J. Am. Chem. Soc.2011,133,5166-5169; (b) Chen, C.; Chen, D.; Jiao, X.; Chen, S. In2O3 Nanocrystals with a Tunable Size in the Range of 4-10 nm:One-Step Synthesis, Characterization, and Optical Properties. J. Phys. Chem. C 2007,111, 18039-18043.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700