用户名: 密码: 验证码:
过冷Fe-Ni合金熔体凝固组织和凝固行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔融玻璃并结合循环过热的方法,使Fe-15at.%Ni、Fe-22.5at.%Ni合金分别获得了300K和320K的过冷度,系统研究了这些合金凝固组织随过冷度的变化规律以及深过冷熔体中亚稳相的析出行为。采用BCT模型分析了过冷熔体中晶体的生长方式以及凝固组织的演化规律,借助经典形核理论和瞬态形核理论详细讨论了过冷Fe-Ni合金的合金中亚稳相δ与稳定相γ竞争形核的热力学及动力学机制,提出了过冷Fe-Ni合金中形成亚稳相的临界条件。采用XRD和TEM技术分析了合金相结构,借助于VSM研究了合金的软磁性能。结果表明:
     1.Fe-Ni合金在所能达到的过冷度范围先后呈现出粗大树枝晶、第一类粒状晶、细小树枝晶和第二类粒状晶,发生了两次粒化现象,即由粗大树枝晶向第一粒状晶转变和细小树枝晶向第二类粒状晶转变的过程。
     2.通过对合金凝固组织演化规律分析表明:凝固组织第一类粒化机制为枝晶熔断机制,第二类粒化机制为枝晶碎断+再结晶机制,即由于固液界面前沿液相不能及时补充凝固收缩造成的体积差,使初生枝晶在收缩应力下发生碎断,由于晶体缺陷和变形能存在,组织发生再结晶从而形成具有平直晶界的等轴晶组织。
     3.通过对组织观察,发现过合金冷度超过某一临界过冷度时有亚稳相枝晶核的析出,并且亚稳枝晶核的数量随过冷度的增加而增多,亚稳相枝晶核多分布于晶粒内部少量沿晶界分布,亚稳相析出的临界过冷度Fe-15at.%Ni合金为110K,Fe-22.at.%Ni合金为185K。
     4.采用经典形核理论和瞬态形核理论分析了过冷Fe-Ni合金熔体中亚稳相δ和稳定相γ竞争形核行为,当熔体过冷度大于某一临界过冷度时亚稳相将做为初生相优先形核,理论分析计算与试验结果定性吻合。
     5.过冷Fe-Ni合金亚稳相和稳定相在冷却过程中相结构发生了变化,即凝固组织中γ相转变为马氏体,亚稳相δ相一部分转变为α铁素体,其余部分先转变为γ相,然后γ相转变为马氏体。
     6.对Fe-Ni合金的软磁性能测定分析表明,采用深过冷快速凝固技术有利于提高软磁合金的饱和磁感应强度Bs和降低剩余磁感应强度Br,这为制备高性能软磁材料提供了新的方法和途径。
Fe-15at.%Ni and Fe-22.5at.%Ni alloy melts were bulk undercooled up to 300K and 320K respectively by combining the glass fluxing technique with superheating-cooling cycles. The solidification microstructure evolution with undercooling and solidification behaviors of metastable phase were investigated systematically. The growth pattern of crystal and evolution behavior of Solidification Structure were described based BCD model. Based on the classical nucleation theory and the time-dependent nucleation theory, the thermodynamics and the kinetics for the competitive nucleation of the metastable 8 and the stable phases y have been calculated, the critical condition that the metastable phase appeared in Fe-Ni alloy was brought forward. The Phases structure and soft magnetic Properties were studied by using XRD、TEM and VSM, respectively. The main research work and conclusions are Presented as follows:
     1. The solidification structures with coarser dendrites, the first granular grains, finer dendrites and the second granular grains were appeared orderly in Fe-Ni alloy. The granulations of solidification microstructure would take place twice at a large Undercooling range, where the first is that the coarse dendrite turned into the first granular grain under the smaller undercoolings and the second is that the finer dendrite turned into the second granular grain under the higher undercoolings.
     2. The analysis of microstructure evolution in Fe-Ni alloy showed that the first granulation mechanism is mainly controlled by dendrite re-melting within the smaller undercooling, and the second by dendrite breaking-up and recrystallizing within the larger undercooling. That is Primary dendrite broken under theshrinkage stress because the forefront of solid-liquid phase interface can not add the size difference by the Solidification shrinkage in time, solidification structure occurred recrystallization and form Equiaxed grains with Straight grain boundaries due to Crystal defects and deformation energy.
     3. The metastable dendrite cores were appeared in melts when the melts temperature exceeded the critical undercooling by the observation of solidification microstructures, and the amount of metastable dendrite cores increase with the increasing of undercooling. Most of such dendrite cores are distributed in the grains, while some of them lie in the grain boundaries. The critical undercooling of metastable in the Fe-15at.%Ni alloy is 110K and the Fe-22.5at.%Ni alloy is 180K.
     4. The competitive nucleation behavior in undercooled melts was analyzed with classic nucleation theory and time-dependent theory, respectively, when the melts temperature is greater than the critical undercooling, the metastable phase will nucleate preferential and solidify as primary phase from the undercooled melts. The results of calculations based the theories are accordance with the experimental results qualitatively.
     5. The structures of metastable phase and stable phase changes in the cooling process of melt. The stable phaseγtransform to martensite, Part of the metastable phase 5 transform to ferrite, the rest transform toγ, firstly, and then transform to martensite.
     6. The measures of soft magnetic properties of Fe-Ni alloy showed that it is propitious to for high undercooling and rapid solidification to enhance saturation induction density B_s and reduce residual magnetic flux density B_r, which provided new ways and approachs for the preparation of high-performance soft magnetic materials.
引文
[1]陈国钧 吕健 陈殿金.金属软磁材料的现状和发展思考,97磁性产品出口战略研讨会,76-85
    [2]Duwez P,Klement W,Duwez RNon-crystalline struct in solidined gold-silicon alloy[J].Nature,1960,187:869-870
    [3]Yoshizawa Y,Oguma S,Yamauchi K.Fe-based soft magnetic alloys composed of ultrafine grain structure[J].J Appl Phys,1988,64(10):44-60
    [4]Herzer G..Influence of nanocrystalline soft magnetic alloy structure on technological magnetism[J].Magn,1989,25(5):3327
    [5]宛得福,罗世华.磁性物理[M1.北京:电子工业出版社,1987:225-234
    [6]Scide M,Eckert J,Bauer H D,et all.Mechanical Alloyed Zr based Metallic Glasses with significant supercooled Liquid Region[J].Materials Science Forum,1996,227:119-124
    [7]Grahl H,Roth S,Eckert J,et all.Stability and Magnetic Properties of Based Amorphous Alloys with Supercooled Liquid Region[J].Journal of Magnetism and Materrials,2003,254:23-25
    [8]Chiriac H,Lupu N,New Bulk.Amorphous Magnetic Materials[J].Physica B,2001,200:293
    [9]RuSIan Z VALIEV,Igor V Alexandrov.Development of severe Plastic Deformation Techniques for the Fabrication of Bulk Nanostruc tured Materials[J].Ann Chim Sci Mat,2002,27(3):3-14
    [10]Guo W H,Kui H W.Bulk nanostructured alloy formation with controllable grain size[J1.Acta Maler,2000,48:2117-2120
    [11]Shen T D,Schwarz R B.Bulk ferromagnetic glasses in the Fe_(65)Gr_4Mo_4Ga_4P_(12)C_5B_(15)Syslem.ActaMater[J],2001,75:837-847
    [12]D.Turnbull,Solid State Phys.,3,1956,225
    [13]徐祖报,相交原理,北京,科学出版社,1988,4
    [14]李明军,深过冷Fe-Co合金中的亚稳相及其凝固行为,西北工业大学博士论文,1999年
    [15]D.Tumbull.Metastable Structures in Metallurgy.Metall.Mater.Trans.A.1981, 12(5): 695
    [16] D. Schechtman.I.Blech, D. Gratias. et al. Spectral structure for a class of one-dimensional quasilattices. Phys. Rev. Lett. 1984, 53:1951
    [17] D.M. Herlach. Non-equilibrium solidification of undercooled metallic melts. Mater.Sci. Eng.R 1994,12(4-5):177-272
    [18] T. Volkmann, W. Loser, and D.M.Herlach, Nucleation and phase selection in Undercooled Fe-Cr-Ni Melts: Part I. Theoretical Analysis of Nucleation Behavior.Metall. Mater. Trans, 1997, 28 A: 2201
    [19] T. Volkmann, W. Loser, and D.M.Herlach, Nucleation and Phase Selection in Undercooled Fe-Cr-Ni Melts: Part 11. Containerless Solidification Experiments.Metall. Mater. Trans. 1997, 28 A: 2311
    [20] Toshihiko Koseki, Flemings Merton C, Solidification of undercooled Fe-Cr-Ni alloys: part I Thermal behavior. Metall. Mater. Trans., 1995, 26A: 2991
    [21] Toshihiko Koseki, Flemings Merton C, Solidification of undercooled Fe-Cr-Ni alloys: partll Micro structural evolution, Metall. Mater. Trans., 1997, 27A: 3226
    [22] Toshihiko Koseki, Flemings Merton C, Solidification of undercooled Fe-Cr-Ni alloys: partIII Phase selection in chill castiong. Metall. Mater. Trans., 1997, 28A:2385
    
    [23] E.L.Hall, S.C. Huang., Acta Metall. Mater., 1990,38: 539
    [24] Y.C.Liu, GC. Yang, X.F.Guo. J.H.Yang, D.S.Xu, YH.Zhou., Microstructure and mechanical properties of the hypercooled Ti_(50)Al_(50)alloy. Mater. Res. Bull., 2001 36(5-6): 963
    [25] J.Gao, D.M.Herlach., Observation of a metastable phase during solidification of undercooled Nd-Fe-B alloy melts by in-situ diffraction experiments using synchrotron radiation, Appl. Phys. Lett., 2004: 2232
    [26] Birringer, R., Gleiter, H., Klein, H.-P. and Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Phys. Lett., 1984,A102:365
    [27] Zhu, X., Birringer, R. and Herr, U. X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Phys. Rev. 1987, B35: 9085
    [28] L.C. Chen and F. Spaepen, Calorimetric evidence for the micro-quasicrystalline structure of amorphous Al-transition metal alloys,Nature.1988.336:366
    [29]D.Shechtman,I.Blech.D.Gratias and J.W.Cahn.,Metallic phase with long-range orienta-tional order and no translational symmetry.Phys.Rev.Lett.,1984.3(20):1951
    [30]A.R Tsai,A.Inoue,T.Masumoto.Preparation of a new Al-Cu-Fe quasicrystal with large grain size by rapid solidification.J.Mater.Sci.Lett.,1987,6(12):1403
    [31]A.P.Tsai,A.Inoue,T.Masumoto.New qusicrystals in Al_(65)Cu_(20)M_(15)(M=Cr,Mn or Fe)systems prepared by rapid solidification.J.Mater.Sci.Lett.,1988,7(4):322
    [32]X.B.Liu,GC.Yang,J.F.Fan,J.C.Wang,G.S.Song.,Decagonal Quasicrystal Formed Directly from the undercooled Al_(72)Ni_(12)Co_(16) alloy melt.,J.Mater.Sci.Lett.,2002,21:367
    [33]徐祖报.相变原理,北京,科学出版社,1988,4.
    [34]S.Mader,A.S.Nowick,J Vac.Set Tech.,2,1965,35
    [35]周尧和,胡壮麟,介万奇.凝固技术,北京,机械工业出版社,1998,45
    [36]P.Duwez,Trans.ASM,60.1967,p.607
    [37]S.D.Dahlgren,J.W.Patten,M.T.Thomas.The Metallurgical Characterization of Coatings.Thin Solid Films,1978,53(1):41
    [38]C.Notthoff,B.Feuerbacher,H.Franz,D.M.Herlach,D.Holl,Moritz.Direct determination of metastable phase diagram by synchrotron radiation experiments on undercooled metallic melts.Phys.Rev.LetL 2001,86:1038
    [39]A.Y.Yermakov,Y.Y.Yurchikov,V.A.Barinov.Magnetic properties of amorphous powders of Y-Co alloys produced by grinding.Phys.Met Metall.1981,52:50
    [40]C.C.Koch,O.B.McKamey,J.O.Scarbourgh.Preparation of amorphous Ni_(60)Nb_(40) by mechanical alloying.Appl.Phys.Lett.1983,43:1017
    [41]R B.Schwarz,R R Petrich,C.K.Saw.The synthesis of amorphous Ni-Ti alloy powders by mechanical alloy.J.Non-cry.Solids.1985,76:281-302
    [42]E.Hellstem,I.Schultz Amorphization of transition metal Zr alloys by mechanical alloying.Appl.Phys.Lett.1986,48:124-126
    [43]A.W.Weeber,Kvander Meer.The Preparation of amprphous Ni-Zr powder by mechanical alloying.J.Phys F:Met Phys.1986,16:1879-1904
    [44]Lu Ke.Nanocrystalline metals crystallized from amorphous solids:nanocry stallization,structure,and properties.Mater.Sci.Eng.R 1996.16:161
    [45]D.J.Thoma,J.H.Perepezko,Microstructural transitions During containerless processing of undercooled Fe-Ni Alloys,Metall.Trans,1992,23A:1585
    [46]D.GMaclsaac,YShiohara.M.GChu,M.C.Flemings,in G I Abbaschian,S.A.David (eds),Proc.Conf.on grain refinement in casting and welds,Metallurgical Society of AIME,Warrendala,PA,1983:87
    [47]MinNun Li,Xin Lin,Guangsheng Song,Gencang Yang,Yaohe Zhou,Microstmcture evolution and metastable phase formation in undercooled Fe-30at.%Co melt Mater.Sci.Eng.,1999,A268:90
    [48]刘永长,快速凝固Ti-Al包晶合金的相选择与控制,西北工业大学博士论文,2000年
    [49]Liu YC,Yang GC,Guo XF,Yang JH,Xu DS,Zhou YH.Microstructure and mechanical properties of the hypercooled Ti_(50))Al_(50) alloy,Mater.Res.Bul,2001,36:963
    [50]Mueller B A,Perepezko J H.The undercooling of aluminum[J].Metall Trans A,1987,18:1143
    [51]Xi Zengzhe,Yang Gencang,Zhou Yaohe.Growth morphology of Ni_3Si in high undercooled Ni--Si eutectic alloy[J].Progress in Natural Science,1997,7(5):624
    [52]李金富,杨根仓,吕衣礼,等.深过冷合金单向凝固组织的力学性能[J].材料研究学报,1997,11(2):137
    [53]周根树,杨根仓,周尧和.液态金属的自分离净化法[J].材料科学进展,1993,7(2):115
    [54]Perepezko J H.Mueller B A.Richmoud J J.Rapidly Quenched metals,ed by S.Steeb and H.Warlimont,Elsevier Sci,Pub,B.V,1985
    [55]Herlach D M,Cochrane R F.Mater Rev,1993,38:327
    [56]许应凡,孙帼显,陈红.无容器过程中Pd-Ni-P系合金的过冷及金属玻璃形成.物理学报,1990,39(5):836
    [57]Cahn R w主编,雷廷权译.金属与合金工艺,vol 15,北京:科学出版社1999
    [58]魏炳波,王彬,Brath M等.液态金属快速结晶的热力学驱动力[J].金属学报, 1994,37(2):113
    [59]惠增哲.大体积Ni基共晶合金的深过冷与凝固规律.西北工业大学博士学位论文.西安:西北工业大学,1998
    [60]Xiao J Z,Yang Hua,Kui H W.Mat Res Soc Symp Proc,Materials Research Society,1998,481:15
    [61]Herlach D M.Non-equilibrium solidification of undercooled melts[J],Mater Sci Eng,1994,R12:177
    [62]曹崇德,鲁晓宇,魏炳波,等,深过冷液态Co_(85)Cul_5亚包晶合金的快速凝固[J].金属学报,1998,34(5):489
    [63]Li Jinfu,Yang Gencang,Zhou Youhe.Mode of dendrite growth in undercooled alloy milts[J].Materials Reareach Bulletin,1998,33(1):141
    [64]朱定一,杨晓华,韩秀君,等.Fe-Sn偏晶的深过冷快速凝固组织[J].中国有色金属学报,2003,13(2):328
    [65]刘宁,杨根仓,陈豫增,周尧和.深过冷Fe-30%Co合金的组织演化.自然科学进展,2006;16:120
    [66]Li Jinfu,La Yili,Yang Gencang,et al.Direction solidification of undercooled melt[J].Progress in Natural Science,1997,7(6):736.
    [67]李金富,杨根仓,吕衣礼等.深过冷Cu_(30)Ni_(70)合金单向凝固组织的力学性能[J].材料研究学报,1997,11(2):137
    [68]周根树,杨根仓,周尧和.净化对非晶合金热稳定性的影响[J].金属学报,1995,31(6):266
    [69]G.P.Ivantsov,Dokl.Akad.Nauk SSSR,1947,58,R567
    [70]G.HorVay,J.W.Cahn,Acta Metall,1961,9,R695
    [71]J.Lipton,M E Glicksman,W Kurz.Dendrite growth into Undercooled Alloy Melts[J].Matert Scieng,1984,65:57-63
    [72]J.Lipton,W Kurz and RTrivedi.Rapid Dendrite Growth in Undercooled Alloys[J].Acta Metall,1987,35:957-964
    [73]Willnecker R,Herlach D M,Mater.Sci.Eng,a,178,1994:159
    [74]W.J.Bottinger,S.R.Coriell,Trivedi R.In rapid solidification processing principles and technologies[J].Claitor's Baton Rough LA,1988:13
    [75]Mullins W W,Sekerka R F,J.Appl.Phys,1964,35:444
    [76]Trivedi R,Kurz W,Acta Metall..1986.34:1663
    [77]J F Li,Y H Zhou.G C Yang.J Cryst Growth,206,1999:141
    [78]胡汉起.金属凝固原理[M].第二版一匕京:北京工业出版社.2001:133
    [79]郭学峰,吕衣礼,杨根仓,过冷Cu-Fe-Ni合金凝固组织的演化,材料研究学报,1998.12:147
    [80]Thoma DJ,Perepezko JH.Metall Trans.1992,A22:1347
    [81]Kattamis TZ,Flemings MC.Trans Metall Soc AIME.1966,236:1523
    [82]Abbaschian GJ,Flemings MC.Metall Trans 1983,A14:1147
    [83]Boettinger W J,Coriell S R,Trivedi R.Rapid solidification processing principles and technologies Ⅳ[M].Baton Rouge,LA:Clatitor's Publishing Division,1983.13
    [84]Aziz M J.Model for solute redistribution during rapid solidification.Appl.Phys.1982,53:1158
    [85]Tricedi M,Lipton J,Kurz W.Rapid dendrite growth in undercooled alloy.Acta Metall,1987,35:957
    [86]Eric A B,Smithells.Metals Reference Book.Robert Hartholl Ltd,1983,1-8[87]
    [87]Kattamis TZ,Flemings MC.Trans Metall Soc AIME.1966,236:1523
    [88]Li J F,Zhou Y H,Yang G C.Effect of solidification time on the structural evolution of undercolled single phase alloy.J Cryst Growth,1999,(206):141
    [89]Volkmann T,Wilde G,Willnecker R,Herlarch D M.Nonequilibrium solidification of hupercooled Co-Pd melts.J Appl.phys,1998,83:3028[89]
    [90]郭学峰,刘永长,杨根仓.深过冷Cu_(50)Ni_(50)二熔体凝固的定向枝晶组织[J].中国有色金属学报,2000,10(5):630-635
    [91]D.Turnbull,J.C.Fisher.Rate of nucleation in condensed systems.J.Chem.Phys.1949,17:71
    [92]Christian J W.The Theory of Transformation in Metals and Alloys.Oxford:Pergamon,1975.418
    [93]Barth M,Eckler K,Herlach D M.Mater Sci Eng,1991,A133:790
    [94]G.Shao,RTsakiropoulos,A.RMiodownik,Role of nucleation in phase competition in binary Ti-Al alloys,Mater.Sci.&Tech,1997,130ct.:797
    [95]Zambon,A,Badan,B.,Eckler,K.,Gartner,F.,Norman,A.F.,Greer,A.L.Herlach,Fe-Ni droplets,Acta Mater.,1998,46:4657
    [96]李金富.过冷大体积Fe-Ni合金凝固组织的形成规律.上海交通大学博士后论文.上海:上海交通大学,1999
    [97]D.M.Herlach,B.Feuuerbacher,E.Schleip,Mater Sci Eng.,1991,A133:795
    [98]LI Mingjun,Yang Gencang,Zhou Yaohe,Mater.Sci.Eng.A.
    [99]Hezer G.Grain structure and magnetism of nanocrystalline ferromagnets[J].Trans Magnz,1989,25:3327-3329
    [100]X.Amils,J.Nogues,etal.Microscopic magnetic study of the disordering balling milled Fe-sisvstem[J].J Magn Magn Mater,1999,203:129
    [101]戴道生,钱昆明,铁磁学(中)[M].北京;科学出版社,1998:89-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700