用户名: 密码: 验证码:
Cu-Ge合金定向凝固包晶反应三相区组织演化及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包晶反应广泛存在于许多结构和功能材料中。不同生长条件下的包晶反应过程将直接影响两相的形态及体积分数,进而影响材料的力学及物理性能。但是人们对包晶反应机制的认识还远远不够,如目前存在的溶质扩散机制和热扩散机制的争议。尽管Hillert预言了包晶三相区的形态,并指出包晶反应过程中伴随着初生相的熔化、再凝固及包晶相的凝固。但是清晰的三相区形态至今没有被报道,初生相的再凝固并未被很好地证实。众所周知,包晶反应在低于热力学平衡温度发生,初生相是亚稳相,因而它的再凝固似乎是难以理解的。因此,有必要对包晶反应三相区的形态及机制进行深入的研究。
     本文以不同成分的Cu-Ge包晶合金为研究对象,通过Bridgman定向凝固技术,系统地研究了Cu-Ge定向凝固过程中包晶反应区的几何形态演化及包晶反应机制。通常三相区小,因而很难观测到清晰的三相区形态。而包晶反应区的几何特征和三相区的运动是揭示包晶反应机制的直接证据。为了完整地揭示三相区的形态特征,在本文中利用一种两相分离结构来放大的三相区。另外,在初生枝上发现了一种新奇的侧向重熔现象,本文讨论了其形成的机制。
     在定向凝固期间,由于溶质Ge原子的密度小于Cu原子的密度,温度梯度和浓度梯度的相互作用将在固液界面附近的熔体中诱导双扩散流的形成(Double diffusive convection)。当侧向限制条件(试样直径与对流临界稳定性波长的比值)小于1的时候且初生相尖端至初生相根部距离小于初生相尖端至包晶界面的距离时,双扩散流将诱导两相宏观分离组织的形成。在这种两相宏观分离结构中获得了一种大的包晶反应三相区,其尺寸是以前报道的反应区尺寸的十几倍甚至几十倍,为我们研究包晶反应区的几何形态和包晶反应机制提供了直接的证据。为了获得近平衡包晶反应区,实验选择较小的抽拉速度。这种两相分离组织可能用于包晶层状复合材料的制备。
     本文通过系统的实验,证明了Hillert关于包晶反应过程中初生相熔化后再凝固的预言。此时初生相为亚稳相,其存在是界面张力下的包晶两相的扩散耦合作用的结果。再凝固的解释如下:在包晶相生长过程中,三相点要保持界面张力平衡因而在三相点附近必须出现初生相的再次凝固,即存在一个初生相熔化与再凝固组成的凹槽。由于这个凹槽的迁移引起凹槽内溶质的减少,即这个凹槽是一个溶质吸收器,而包晶相的生长提供了溶质原子,因而在包晶反应三相区形成了一种低于包晶平衡温度的合作式耦合生长模式(包晶反应需要动力学过冷)。这种模式有别于传统的包晶耦合生长,其认为两相生长界面的温度是高于包晶平衡温度。三相点附近的溶质扩散耦合控制着再凝固的深度,而扩散耦合的强度与抽拉速度,温度梯度及包晶相的厚度有关。由于初生相凹槽的底部既存在熔化又存在凝固,这两者之间的不对称性导致了三相区的局部运动的不稳定性。
     通过实验发现,在低速下,包晶相的厚度与Fredriksson-Nylén模型预测值存在偏差。在低速定向凝固过程中,包晶反应是由包晶相的直接凝固来控制。另外,从几何形态上可以发现,在三相点处的包晶界面过冷度最大,也就是说包晶反应过程中,三相点处的动力学过冷最大。并且初生相熔化区域的温度间隔很大(约为5K),而且熔化温度高于包晶反应的实际温度,这说明了参与包晶反应的初生相的成分是一个范围,而不是经典理论中的固定值,这是温度场与成分场共同作用的结果。
     三相区的成分测定结果支持了包晶反应的溶质扩散模型。定向凝固过程中的熔化机制是由于温度场和浓度场的耦合引起三相区内液相浓度高于初生相的液相平衡浓度导致的(引起初生相的过饱和)。熔化区的大小与温度梯度、速度和包晶相的厚度有关。温度梯度越大,过饱和区就越大,熔化区域就越大。生长速度越小,三相区的扩散越充分,三相区的熔化深度就越深。在大的包晶反应三相区中,较高的速度下,包晶相前沿的成分过冷导致了包晶相界面失稳(呈胞状或者树枝状)。而初生相熔化界面是相对稳定的,同样是因为在固相的熔化前沿存在着成分过冷区而增加了熔化前沿界面的稳定性。
     在低于包晶反应温度,初生枝上出现了侧向重熔现象。这种重熔形成在一个由包晶相围成的液相渠中,随着温度的降低重熔不断的进行。这种重熔导致了初生相形态的改变,甚至局部的枝晶熔碎。当合金成分达到Cu-18.0wt.%Ge且速度达到150μm/s时,初生枝几乎被熔碎为十几部分。通过观察发现,在高速下,包晶相沿着初生相铺展期间,其前沿界面呈现胞状或者非平界面生长,在胞间的液相由于溶质富集而导致未被包裹的初生相熔化。侧向熔化的动力与温度梯度和生长速度有关。
     由温度梯度引起的初生相二次枝晶臂的纵向重熔也被观察到了。它是由于TGZM效应引起的(Temperature Gradient Zone Melting)。初生相二次枝晶臂的纵向重熔与初生相的粗化有关。仅当在包晶应界面附近的二次枝晶臂发达时,这种初生相二次枝晶臂的重熔才很明显。当生长条件即符合在包晶界面获得发达的二次枝晶臂也符合包晶相的失稳条件时,这种侧向重熔和纵向重熔将同时发生在二次枝晶臂上,两者界面交汇处的熔化速率最快,此时的速率是侧向熔化速率与纵向熔化速率的矢量和,其方向偏离试样的抽拉方向。另外,由于此时纵向扩散也能为侧向熔化槽提供溶质,这也提高了初生相的侧向熔化速度。
Peritectic reaction widely exists in many structural and functional materials. Peritectic reaction under different conditions will influence the morphology and volume fraction of peritectic two phases, and thus influences mechanical and physical properties of the materials. However, there is limited understanding of the peritectic reaction process during directional solidification. For example, at present, there is still controversy of solute and thermal diffusion mechanism. Hillert was the first to predict that both dissolution and some resolidification of the primary phase during peritectic reaction are required. But till now, the resolidification phenomenon has not been well substantiated and the clear morphology of triple-phase junction is rarely observed. It is generally known that the peritectic reaction occurs below the equilibrium temperature. As a metastable phase, the resolidification phenomenon of the primary phase is incomprehensible. Therefore, it is necessary to have a deep study on the peritectic reaction mechanism.
     In this study, we selected different composition of Cu-Ge peritectic alloys to investigate the microstructure evolution and morphological characteristics of triple junction region of peritectic reaction by directional solidification technology. Usually, the acquired triple-phase region of the peritectic reaction is too small to clearly present above phenomenon. To reveal the morphological characteristics of the triple-junction region, a macro-separation structure of the two phases is used to magnify the triple-phase region. In addition, a novel lateral remelting phenomenon occurring on the primary dendrite is observed during directionally solidified Cu–Ge alloys. And a model is set up to explain the phenomenon.
     Because the Ge atom is lighter than the Cu atom, the combination of temperature and concentration gradients in front of the primary interface give rise to double-diffusive convection. When the lateral confinement (the ratio of the crucible diameter to the untable wavelength at the threshold for an infinite medium) is smaller than unity and the distance between the tip and the root of the primary cells is bigger than the distance between the α tip and ζ front, double-diffusive convection will induce the formation of the macro-separation structure of the two phases. In the two-phase separated structure, a large trijunction region of peritectic reaction forms around the cylindrical α-Cu phase, which provides a convincing experimental evidence for studying the morphological characteristics of peritectic reaction trijunction region. This two-phase separated growth process creates new opportunities for the fabrication of functionally layered materials.
     In the paper, the re-solidification of the primary phase after melting, which is predicted by Hillert, is confirmed at lager trijunction region of peritectic reaction. As a metastable phase, the resolidification of α is also attributed to the diffusion coupling between the groove of the α phase and the interface of the ζ phase under the constraint of mechanical equilibrium at the triple junction. A mechanism is proposed to explain the phenomenon. A groove structure of the primary phase near the triple-phase junction must be required for the mechanical equilibrium. Then the resolidification and remelting of the primary phase occurs in the groove. And a near couple growth of the resolidified α and the ζ phase forms in the vicinity of the triple junction. The migration of the primary groove will leads to the concentration decrease of the liquid. Namely, the groove of α is an absorber of Ge atoms. The growth of the peritectic phase will provide Ge atoms. Thus, at the temperature below the equilibrium temperature of peritectic reaction (TP), liquid diffusion of Ge atoms towards the groove of the α phase and Cu towards the interface of the ζ phase occurs in the vicinity of the triple junction. The couple growth is different with the classic theory of peritectic couple growth, which needs a negative undercooling (growth temperature above TP). Thus the resolidification depth is controlled by the new diffusion couple, which is closely related to the the pulling velocity, the temperature gradient and the thickness of the peritectic phase. However, at the lowest point (bottom) of the groove, the melting and solidification of the α phase can not occur concurrently at one point because the two process are contradictory and asymmetrical in kinetics. Thus, the local motion of the trijunction region can be unstable.
     It is found that, there is not a one-to-one correspondence between the pulling velocity and the thickness of the peritectic phase, which cannot be explained by the Fredriksson-Nylén model. This means that the peritectic phases grow close to the limit of stability rather than at the maximum velocity. Under lower velocity, the peritectic reaction is controlled by the direct solidification of the peritectic phase. According to the geometrical characteristics of the trijunction region, it is found that the central temperature of the ζ-planar front is higher than that of the triple junction. This means that the peritectic growth undercooling is different along the ζ interface and has a maximum value in the triple junction. And the remelting regions have a big temperature interval, about5K, which suggests that the peritectic reaction during directional solidification occurs in a changeable composition, which is different from the classic reaction model.
     The measurement of the concentration distributions of the trijunction regions support the solute diffusion mechanism. The peritectic reaction mainly is controlled by the supersaturated zone of the primary phase, which depends on the coupling of the solute and temperature fields. The remelting degree of the primary phase is related with the pulling velocity, the temperature gradient and the thickness of the peritectic phase. During the peritectic reaction, as G/V increases, the supersaturated zone ahead of the peritectic interface increases. Thus, the size of the remelting region increases. The thicker peritectic phase can provide more Ge atoms to the remelting region, and thus increase the size of the remelting region. Under higher pulling velocity, the interfacial instability of the peritectic phase forms at the larger triple junction region because the liquid at and ahead of the solidifying interface is constitutionally undercooled with respect to the peritectic phase. It is found that the morphological stability of ζ is irrelevant to initial alloy composition, which is mainly dependent on the growth conditions. Constitutionally undercooling in the solid primary phase increases the interfacial instability of the remelting primary phase. When the remelting phase is thicker and the pulling velocity is higher, the loss of Ge at the trijunction region can be not timely compensated and nonplanar remelting α interface can form in the vicinity of the trijunction.
     During peritectic solidification, besides the re-meting of the primary phase above the kinetic temperature of peritectic reaction (TPK), a lateral re-melting phenomenon of the primary phase below TPK is observed under high velocity in directionally solidified Cu-Ge alloys. The lateral re-melting occurs continuously along a liquid channel as temperature decreases, whose reaction velocity is far greater than that of peritectic transformation. The lateral re-melting leads to the morphological change of the primary dendrites. Even when the composition is up to Cu-18.0wt.%Ge and the pulling velocity is up to150μm/s, the dendrite arms is completely fragmented. During the growth of the ζ phase around the boundary of one α dendrite, the constitutional undercooling at the ζ tip induces that the ζ phase presents cellular morphology. The lateral remelting phenomenon is caused by the solute enrichment between two neighboring ζ cells.
     The longitudinal remelting of the secondary dendrite arm is obervered, which is caused by TGZM effect (Temperature Gradient Zone Melting). The longitudinal remelting of the second dendrite arm is related to the coarsening of the primary phase. When the coarsening of the primary phase is weaker and the secondary dendrite is very developed, the longitudinal remelting of the secondary dendrite arm is very obvious. When the growth conditions meet the instability of the primary and peritectic phase, the lateral and longitudinal remelting of the primary phase occurs concurrently at the the secondary dendrite arm. The intersection interface of the lateral and longitudinal remelting has a maximum remelting velocity. The velocity direction is vector sum between the lateral and longitudinal remelting velocity, which deviated from the pulling direction of the sample. In addition, the longitudinal diffusion of the Ge atoms from the peritectic interface to the groove also raises the lateral remelting velocity.
引文
1傅恒志,郭景杰,刘林,李金山.先进材料定向凝固[M].科学出版社,2008:1~3.
    2A. Kartavykh, V. Ginkin, S. Ganina, S. Rex, U. Hecht, B. Schmitz, D. Voss.Convection-Induced Peritectic Macro-segregation Proceeding at theDirectional Solidification of Ti–46Al–8Nb Intermetallic Alloy [J]. MaterialsChemistry and Physics,2011,126(1–2):200~206.
    3J. Valloton, J. A. Dantzig, M. Plapp, M. Rappaz. Modeling of PeritecticCoupled Growth in Cu–Sn Alloys [J]. Acta Materialia,2013,61:5549~5560.
    4Y. C. Liu, G. C. Yang, Y. H. Zhou. Phase Competition in the UndercooledHypoperitectic Ti47Al53Alloy [J]. Materials Letters,2002,57:315~324.
    5M. Ohno, S. Tsuchiya, K. Matsuura. Formation Conditions of CoarseColumnar Austenite Grain Structure In Peritectic Carbon Steels by theDiscontinuous Grain Growth Mechanism [J]. Acta Materialia,2011,59:5700~5709.
    6X. F. Ding, J. P. Lin, L. Q. Zhang, Y. Q. Su, G. J. Hao, G. L. Chen. A Closely-Complete Peritectic Transformation during Directional Solidification of a Ti-45Al-8.5Nb Alloy [J]. Intermetallics,2011,19(8):1115~1119.
    7J. J. Ruan, C. C. Zhao, Y. Yu, S. Y. Yang, C. P. Wang, X. J. Liu. ExperimentalDetermination of Phase Equilibria in the Co–V–Mo Ternary System [J].Journal of Alloys and Compounds,2013,556:280~286.
    8Y. Y. Chen, C. Y. Tang, T. F. Fang, S. B. Yan, H. Li, X. Yao, J. Xiong, B. W.Tao. β Growth Kinetics from α Peritectic Melting of Oxide Films [J]. Journalof Crystal Growth,2013,369:8~13.
    9S. Pavan Kumar Naik, N. Devendra Kumar, P. Missak Swarup Raju, T.Rajasekharan, V. Seshubai. Effect of Infiltration Temperature on the Propertiesof Infiltration Growth Processed [J]. Physica C,2013,487:72~76.
    10X. Zhuang, H. Xia, H. Hu, J. X. Hu, P. Y. Wang, J. T. Peng, Y. P. Zhang, H. C.Jiang, B. J. Chen. Enhanced Emission of2.7μm from Er3+/Nd3+-codopedLiYF4Single Crystals [J]. Materials Science and Engineering B,2013,178B:326~329.
    11X. H. An, Q. F. Gu, J. Y. Zhang, S. L. Chen, X. B. Yu, Q. Li. ExperimentalInvestigation and Thermodynamic Reassessment of La–Ni and LaNi5–HSystems [J]. CALPHAD: Computer Coupling of Phase Diagrams andThermochemistry,2013,40:48~55.
    12L. Jin, F. Xiao. Phase Diagram of the Ternary System Lauric Acid–CapricAcid–Naphthalene [J]. Thermochimica Acta,2004,424:1~5.
    13L. N. Yu, X. F. Liu, H. M. Ding, X. F. Bian. A New Nucleation Mechanism ofPrimary Si by Peritectic-Like Coupling of AlP and TiB2in near Eutectic Al–SiAlloy [J]. Journal of Alloys and Compounds,2007,432(1–2):156~162.
    14K. Tokieda, H. Yasuda, I. Ohnaka. Formation of Banded Structure in Pb–BiPeritectic Alloys [J]. Materials Science and Engineering A,1999,262A:238~245.
    15S. Dobler, T. S. Lo, M. Plapp, A. Karma, W. Kurz, Peritectic Coupled Growth[J]. Acta Materialia,2004,52:2795~2808.
    16H. W. Kerr, W. Kurz. Solidification of Peritectic Alloys [J]. InternationalMaterials Reviews,1996,41:129~164.
    17H. Fredriksson, T. Nylén. Mechanism of Peritectic Reaction andTransformations [J]. Materials Science and Technology,1982,16:283~294.
    18D. Phelan, M. Reid, R. Dippenaar. Kinetics of the Peritectic Reaction in anFe–C Alloy [J]. Materials Science and Engineering A,2008,477:226~232.
    19D. H. Stjohn. The Peritectic Reaction [J]. Acta Metallurgica et Materialia,1990,38:631~636.
    20M. Hillert. Solidification and Casting of Metals. London: Butterworth,1979:81~87.
    21G. Sha, K. A. Q. O’Reilly, B. Cantor, J. M. Titchmarsh, R. G. Hamerton.Quasi-Peritectic Solidification Reactions in6xxx Series Wrought Al Alloys [J].Acta Materialia,2003,51(7):1883~1897.
    22Y. Arai, T. Emi, H. Fredriksson, H. Shibata. In-Situ Observed Dynamics ofPeritectic Solidification and δ/γ Transformation of Fe-3to5At. Pct Ni Alloys[J]. Metallurgical and Materials Transactions A,2005,36A:3065~3074.
    23N. J. McDonald, S. Sridhar. Peritectic Reaction and Solidification in Iron-Nickel Alloys [J]. Metallurgical and Materials Transactions A,2003,34A:1931~1940.
    24G. Boussinot, E. A. Brener, D. E. Temkin. Kinetics of Isothermal PhaseTransformations above and below the Peritectic Temperature: Phase-FieldSimulations [J] Acta Materialia,2010,58:1750~1760.
    25A. Choudhury, B. Nestler, A. Telang, M. Selzera, F. Wendlera. GrowthMorphologies in Peritectic Solidification of Fe–C: A Phase-Field Study [J].Acta Materialia,2010,58:3815~3823.
    26C. Zener. Kinetics of the Decomposition of Austenite [J] Transactions AIME,1946,167:550~583.
    27M. Hillert. The Role of Interfacial Energy during Solid State PhaseTransformations [J]. Jernkont Ann,1957,141:757~785.
    28R. Trivdi. Growth of Dendritic Needles from a Supercooled Melt [J]. ActaMaterllurgica,1970,18:287~296.
    29W. P. Bosze, R. Trivedi. On the Kinetic Expression for the Growth ofPrecipitate [J]. Metallurgical. Transactions,1974,5:511~512.
    30M. Ohno, K. Matsuura. Diffusion-Controlled Peritectic Reaction Process inCarbon Steel Analyzed by Quantitative Phase-Field Simulation [J]. ActaMaterialia,2010,58(18):6134~6141.
    31D. H. StJohn, L. M. Hogan. A Simple Prediction of the Rate of the PeritecticTransformation [J]. Acta Metallurgica,1987,35(1):171~174.
    32D. H. StJohn, L. M. Hogan. The Peritectic Transformation [J]. ActaMetallurgica,1977,25(1):77~81.
    33H. W. Kerr, J. Cisse, G. F. Bolling. On Equilibrium and Non-equilibriumPeritectic Transformations [J]. Acta Metallurgica,1974,22(6):677~686.
    34H. F. Lopez. Analysis of Solute Segregation Effects on the PeritecticTransformation [J]. Acta Metallurgica et Materialia,1991,39(7):1543~1548.
    35X. W. Hu, S. M. Li, S. F. Gao, L. Liu, H. Z. Fu. Peritectic Transformation andPrimary α-dendrite Dissolution in Directionally Solidified Pb–26%Bi Alloy [J]Journal of Alloys and Compounds,2010,501(1):110~114.
    36H. Zhong, S. M. Li, H. Y. Lü, L. Liu, G. R. Zou, H. Z. Fu. MicrostructureEvolution of Peritectic Nd14Fe79B7Alloy during Directional Solidification [J].Journal of Crystal Growth,2008,310:3366~3371.
    37X. W. Hu, S. M. Li, W. J. Chen, S. F. Gao, L. Liu, H. Z. Fu. Primary DendriteArm Spacing during Unidirectional Solidification of Pb–Bi Peritectic Alloys[J]. Journal of Alloys and Compounds,2009,484(1–2):631~636.
    38L. S. Luo, Y. Q. Su, J. J. Guo, X. Z. Li, S. M. Li, H. Zhong, L. Liu, H. Z. Fu.Peritectic Reaction and its Influences on the Microstructures Evolution duringDirectional Solidification of Fe–Ni Alloys [J]. Journal of Alloys andCompounds,2008,46:121~127.
    39Y. Q. Su, L. S. Luo, X. Z. Li, J. J. Guo, H. M. Yang, H. Z. Fu. Well-aligned inSitu Composites in Directionally Solidified Fe-Ni Peritectic System [J].Applied Physics Letters,2006,89:231918.
    40L. S. Luo, Y. Q. Su, J. J. Guo, X. Z. Li, H. M. Yang, H. Z. Fu. Producing WellAligned in Situ Composites in Peritectic System by Directional Solidification[J]. Applied Physics Letters,2008,92:61903.
    41B. Chalmers. Physical Metallurgy [M]. New York: Wiely,1959:129~359.
    42J. D. Livingston. Growth of Duplex Crystals [J]. Materials Science andEngineering A,1971,7A (2):61~70.
    43M. C. Flemings. Solidification Processing [M]. New York: Wiley,1959:271~273.
    44W. J. Boettinger. The Structure of Directionally Solidified Two-Phase Sn-CdPeritectic Alloys [J]. Metallurgical and Materials Transactions A,1974,5:2023~2031.
    45J. H. Lee, J. D. Verhoeven. Peritectic Formation in the Ni-Al System [J].Journal of Crystal Growth,1994,144(3-4):353~366.
    46T. S. Lo, S. Dobler, M. Plapp, A. Karma, W. Kurz. Two-phase MicrostructureSelection in Peritectic Solidification: from Island Banding to Coupled Growth[J]. Acta Materialia,2003,51(3):599~611.
    47F. Kohler, L. Germond, J. D. Wagnière, M. Rappaz. Peritectic Solidification ofCu–Sn alloys: Microstructural Competition at Low Speed [J]. Acta Materialia,2009,57:56~68.
    48V. J. Laraia, A. H. Heuer. On Metastable Eutectic Reactions in PeritecticSystems: Possible Applications to Ti-Al Alloys [J]. Scripta Metallurgica etMaterialia,1991,25(12):2803~2808.
    49J. Valloton, J. D. Wagnière, M. Rappaz. Competition of the Primary andPeritectic Phases in Hypoperitectic Cu–Sn Alloys Solidified at Low Speed in aDiffusive Regime [J]. Acta Materialia,2012,60:3840~3848.
    50K. A. Jackson, J. D. Hunt. Lamellar and Rod Eutectic Growth [J]. Transactionsof Metallurgical Society of AIME,1966,236:1129~1142.
    51W. J. Boettinger. The Structure of Directionally Solidified Two-Phase Sn-CdPeritectic Alloys [J]. Metallurgical and Materials Transactions A,1974,5:2023~2031.
    52骆良顺,Fe-Ni包晶合金定向过程中组织演化规律[D].哈尔滨:哈尔滨工业大学博士学位论文,2008:120~126.
    53D. Ma, Y. Li, S. C. Ng. Evaluation of Composition Region for PeritecticCoupled Growth [J]. Journal of Crystal Growth,2000,219(3):300~306.
    54Z. R. Feng, J. Shen, Z. X. Min, L. S. Wang, H. Z. Fu. Two Phases SeparateGrowth in Directionally Solidified Fe-4.2Ni Alloy [J], Materials Letters,2010,64(16):1813~1815.
    55Z. R. Feng, J. Shen, Z. X. Min, L. S. Wang, H. Z. Fu. New InitiatingMechanism of Coupled Growth in Directionally Solidified Fe–Ni PeritecticSystem in Diffusive Regime [J]. Materials Letters,2012,67(1):14~16.
    56Y. C. Liu, G. C. Yang, X. F. Guo, J. Huang, Y. H. Zhou. Coupled GrowthBehavior in the Rapidly Solidified Ti–Al Peritectic Alloys [J]. Journal ofCrystal Growth,2001,222(3):645~654.
    57W. Z. Luo, J. Shen, Z. X. Min, H. Z. Fu. A Band Microstructure inDirectionally Solidified Hypo-Peritectic Ti–45Al Alloy [J]. Materials Letters,2009,63(16):1419~1421.
    58R. Trivedi, J. S. Park. Dynamics of Microstructure Formation in the Two-Phase Region of Peritectic Systems [J]. Journal of Crystal Growth,2002,235:572~588.
    59J. S. Park, R. Trivedi. Convection-Induced Novel Oscillating MicrostructureFormation in Peritectic Systems [J]. Journal of Crystal Growth,1998,187:511~515.
    60P. Mazumder, R. Trivedi. Novel Pattern Forming Process Due to the Couplingof Convection and Phase Change [J]. Physical Review Letters,2002,88:235507~235510.
    61T. S. Lo,A. Karma, M. Plapp. Phase-Field Modeling of MicrostructuralPattern Formation during Directional Solidification of Peritectic Alloyswithout Morphological Instability [J]. Physical Review E,2001,6303(3):031504.
    62O. Hunziker, M. Vandyoussefi, W. Kurz. Phase and Microstructure Selectionin Peritectic Alloys Close to the Limit of Constitutional Undercooling [J]. ActaMaterialia,1998,46(18):6325~6336.
    63S. Dobler, W. Kurz. Phase and Microstructure Selection in Peritectic Alloysunder High G-V ratio. Z Metallkd,2004,95(7):592~595.
    64M. Vandyoussefi, H. W. Kerr, W. Kurz. Two-phase Growth in Peritectic Fe-NiAlloys. Acta Materialia,2000,48(9):2297~2306.
    65S. C. Mao, J. F. Luo, Z. Zhang, M. H. Wu, Y. Liu, X. D. Han. EBSD Studies ofthe Stress-Induced B2–B19′Martensitic Transformation in NiTi Tubes underUniaxial Tension and Compression [J]. Acta Materialia,2010,58(9):3357~3366.
    66Z. Keshavarz, M. R. Barnett. EBSD Analysis of Deformation Modes in Mg–3Al–1Zn [J]. Scripta Materialia,2006,55:915~918.
    67M. A. Salgado-Ordorica, J. Valloton, M. Rappaz. Study of Twinned DendriteGrowth Stability [J]. Scripta Materialia,2009,61:367~370.
    68M. A. Salgado-Ordorica, M. Rappaz. Twinned Dendrite Growth in BinaryAluminum Alloys [J]. Acta Materialia,2008,56:5708~5718.
    69M. Rhême, F. Gonzales, M. Rappaz. Growth Directions in DirectionallySolidified Al–Zn and Zn–Al Alloys near Eutectic Composition [J]. ScriptaMaterialia,2008,59:440~443.
    70M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G.Purdy, M. Rappaz, R. Trivedi. Solidification Microstructures and Solid-StateParallels: Recent Developments, Future Directions [J]. Acta Materialia,2009,57(4):941~971.
    71T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz. Orientation Selection inDendritic Evolution. Nature Materials,20065,660~664.
    72M. Li, T. Tamura, N. Omura, K. Miwa. Effects of Magnetic Field and ElectricCurrent on the Solidification of AZ91D Magnesium Alloys using anElectromagnetic Vibration Technique [J]. Journal of Alloys and Compounds,2009,487(1–2):187~193.
    73X. Li, Z. M. Ren, Y. Fautrelle, Y. D. Zhang, C. Esling. MorphologicalInstabilities and Alignment of Lamellar Eutectics during DirectionalSolidification under a Strong Magnetic Field [J]. Acta Materialia,2010,58(4):1403~1417.
    74X. Li, Y. Fautrelle, Z. M. Ren. Morphological Instability of Cell and Dendriteduring Directional Solidification under a High Magnetic Field [J]. ActaMaterialia,2008,56(13):3146~3161.
    75L. Liu, J. F. Li, Y. H. Zhou. Solidification Interface Morphology Pattern in theUndercooled Co–24.0at.%Sn Eutectic Melt [J]. Acta Materialia,2011,59:5558~5567.
    76M. Hillert, L. H glund. Melting of a Peritectic Phase. Scripta Materialia,2004,50(7):1055~1059.
    77M. Rettenmayr. Melting and Remelting Phenomena [J]. International MaterialsReviews,2009,54(1):1~17.
    78M. Hillert, M. Rettenmayr. Deviation from Local Equilibrium at MigratingPhase Interfaces [J]. Acta Materialia,2003,51:2803~2809.
    79M. Buchmann, M. Rettenmayr. Numerical Study of Steady State Melting of aBinary Alloy [J]. Journal of Crystal Growth,2008,310(21):4623~4627.
    80E. Gamsj ger, J. Svoboda, F. D. Fischer, M. Rettenmayrc. Kinetics of SoluteDriven Melting and Solidification [J]. Acta Materialia,2007,55(8):2599~2607.
    81W. G. Pfann. Cumulate Maturation and Melt Migration in a TemperatureGradient [J]. American Journal of Science,1926,211:126~132.
    82W. A. Tiller. Migration of a Liquid Zone through a Solid: Part I [J]. Journal ofApplied Physics,1963,34(9):2757~2762.
    83W. A. Tiller. Migration of a Liquid Zone through a Solid: Part II [J]. Journal ofApplied Physics,1963,34(9):2763~2767.
    84W. G. Pfann. Temperature Gradient Zone Melting [J]. Transactions AIME,1955,203:961~964.
    85D. M. Liu, X. Z. Li, Y. Q. Su, P. Peng, L. S. Luo, J. J. Guo, H. Z. Fu.Secondary Dendrite Arm Migration Caused by Temperature Gradient ZoneMelting during Peritectic Solidification [J]. Acta Materialia,2012,60(6–7):2679~2688.
    86W. Kurz. A Brief History of the Science of Dendritic and Eutectic Growthuntil1980[J]. Materials Science Forum,2006,508(2):313~324.
    87W. W. Mullins, R. F. Sekerka. Morphological Stability of a Partical Growingby Diffusion or Heat Flow [J]. Journal of Applied Physics,1963,34:323~329.
    88胡汉起.金属凝固原理.北京:机械工业出版社.2000:25~59.
    89D. P. Woodruff, A. J. Forty. A Pre-melting Phenomenon in Na-K Alloys [J].Philosophical Magazine,1967,15:985~993.
    90H. S. Chen, K. A. Jackson. Stability of a Melting Interface [J]. Journal ofCrystal Growth,1971,8(2):184~190.
    91M. A. Jabbareh, H. Assadi. Modelling of Microstructure Evolution inTransient Liquid-Phase Diffusion Bonding under Temperature Gradient [J].Scripta Materialia,2009,60(9):780~782.
    92H. E Cline, T. R. Anthony. Interface Stability in Temperature Gradient ZoneMelting [J]. Acta Metallurgica,1973,21(5):547~557.
    93A. A. Shirzadi, E. R. Wallach. Analytical Modelling of Transient Liquid Phase(TLP) Diffusion Bonding when a Temperature Gradient is Imposed [J]. ActaMaterialia,1999,47(13):3551~3560.
    94H. Assadi, A. A. Shirzadi, E. R. Wallach. Transient Liquid Phase DiffusionBonding under a Temperature Gradient: Modelling of the InterfaceMorphology [J]. Acta Materialia,2001,49(1):31~39.
    95D. Benielli, N. Bergeon, H. Jamgotchian, B. Billia, P. Voge. Free Growth andInstability Morphologies in Directional Melting of Alloys [J]. Physical ReviewE,2002,65:051604(1~10).
    96J. D. Verhoeven, E. D. Gibson. Interface Stability of the Melting Solid-LiquidInterface: I. Sn-Sb Alloys [J]. Journal of Crystal Growth,1971,11(1):29~38.
    97J. D. Verhoeven, E. D. Gibson. Interface Stability of the Melting Solid-LiquidInterface: II. Sn-Bi Alloys [J]. Journal of Crystal Growth,1971,11(1):39~49.
    98M. Aboelfotoh, H. Tawancy. Effect of Crystal Structure on the ElectricalResistivity of Copper-Germanium Thin-Film Alloys [J]. Journal of AppliedPhysics,1994,75(5):2441~2446.
    99H. M. Tawancy, M. O. Aboelfotoh. Effect of Phase Transitions in Copper-Germanium Thin Film Alloys on their Electrical Resistivity [J]. Journal ofMaterials Science,1995,30:6053~6064.
    100S. Gruner, M. K hler, W. Hoyer. Surface Tension and Mass Density of LiquidCu–Ge Alloys [J]. Journal of Alloys and Compounds,2009,482:335~338.
    101W. Zhai, D. L. Geng, W. L. Wang, B. Wei. A Calorimetric Study ofThermodynamic Properties for Binary Cu–Ge Alloys [J]. Journal of Alloys andCompounds,2012,535:70~77.
    102H. Bracht. Copper Related Diffusion Phenomena in Germanium and Silicon[J]. Materials Science in Semiconductor Processing,2004,7:113~124.
    103P. Clauws, E. Simoen. Metals in Germanium [J]. Materials Science inSemiconductor Processing,2006,9:546~553.
    104I. Kaban, Th. Halm, W. Hoyer. Structure of Molten Copper-Germanium Alloys[J]. Journal of Non-Crystalline Solids,2001,288:96~102.
    105阮莹,代富平,魏炳波. Cu-Ge包晶合金中ζ相的形成规律研究[J].科学通报,2006,51(22):2607~2611.
    106N. Wang, B. Wei. Rapid Solidification of Undercooled Cu–Ge Peritectic Alloy[J]. Acta Materialia,2000,48(8):1931~1938.
    107R. Trivedi, H. Miyahara, P. Mazumder, E. Simseka, S. N. Tewari. DirectionalSolidification Microstructures in Diffusive and Convective Regimes [J].Journal of Crystal Growth,2001,222:365~379.
    108D. T. J. Hurle, E. Jakeman, A. A. Wheeler. Effect of Solutal Convection on theMorphological Stability of a Binary Alloy [J]. Journal of Crystal Growth,1982,58:163~179.
    109B. Caroli, C. Caroli, C. Misbah, B. Roulet. Solutal Convection andMorphological Instability in Directional Solidification of Binary Alloys.-II.Effect of the Density Difference between the Two Phases [J]. Journal dePhysique,1985,46:1657~1665.
    110S. Liu, R. Trivedi. Effect of Thermosolutal Convection on MicrostructureFormation in the Pb-Bi Peritectic System [J]. Metallurgical and MaterialsTransactions A,2006,37(11):3293~3304.
    111P. Mazumder, R. Trivedi. Novel Pattern forming Process due to the Couplingof Convection and Phase Change [J]. Physical Review Letters,2002,88(23):235507.
    112R. J. Schaefer, S. R. Coriell. Convection-Induced Distortion of a Solid–LiquidInterface [J]. Metallurgical Transactions A,1984,15:2109~2115.
    113J. J. Favier, A. Rouzaud. Morphological Stability of the SolidificationInterface under Convective Conditions [J]. Journal of Crystal Growth,1983,64:367~379.
    114M. Hennenberg, A. Rouzaud, J. J. Favier, D. Camel. Morphological andThermosolutal Instabilities inside a Deformable Solute Boundary Layer duringUnidirectional Solidification [J]. Journal of Crystal Growth,1987,85:49~58.
    115B. Drevet, H. Nguyen Thi, D. Camel, B. Billiab, M. D. Dupouya.Solidification of Aluminium-Lithium Alloys near the Cell/Dendrite Transition-Influence of Solutal Convection [J]. Journal of Crystal Growth,2000,218:419~433.
    116H. Jamgotchian, H. Nguyen Thi, N. Bergeon, B. Billia. Double-DiffusiveConvective Modes and Induced Microstructure Localisation duringSolidification of Binary Alloys [J]. International Journal of Thermal Sciences,2004,43:769~777.
    117M. G. Worster. Instabilities of the Liquid and Mushy Regions duringSolidification of Alloys [J]. Journal of Fluid Mechanics,1992,237:649~669.
    118S. R. Coriell, M. R. Cordes, W. J. Boettinger. Convective and InterfacialInstabilities during Unidirectional Solidification of a Binary Alloy [J]. Journalof Crystal Growth,1980,49:13~28.
    119B. Caroli, C. Caroli, C. Misbah, B. Roulet. Solutal Convection andMorphological Instability in Directional Solidification of Binary Alloys [J].Journal de Physique,1985,46:401~413.
    120H. Nguyen Thi, B. Billia, H. Jamgotchian. Influence of ThermosolutalConvection on the Solidification front during upwards Solidification [J].Journal of Fluid Mechanics,1989,204:581~597.
    121H. Jamgotchian, B. Billia, L. Capella. Morphology of the Solidification frontduring Unidirectional Growth of Pb–Tl Alloys [J]. Journal of Crystal Growth,1983,64:338~344.
    122H. Jamgotchian, N. Bergeon, D. Benielli, P. Voge, B. Billia, R. Guérin.Localized Microstructures Induced by Fluid Flow in Directional Solidification[J]. Physical Review Letters,2001,87:166105(1~4).
    123G. B. McFadden, R. G. Rehm, S. R. Coriell, W. Chuck, K. A. Morrish.Thermosolutal Convection during Directional Solidification [J]. MetallurgicalTransactions A,1984,15:2125~2137.
    124S. Kaddeche, B. H. Hadid, D. Henry, J. P. Garandet, C. Barat. InterfaceCurvature and Convection Related Macrosegregation in the Vertical BridgmanConfiguration [J]. Journal of Crystal Growth,1996,158:144~152.
    125C. Barat, T. Duffar, J. P. Garandet, Estimation of the Curvature of the Solid–Liquid Interface during Bridgman Crystal Growth [J]. Journal of CrystalGrowth,1998,194:149~155.
    126P. Haldenwang, R. Guerin. Transverse Thermal Effects in DirectionalSolidification [J]. Journal of Crystal Growth,2002,244:108~122.
    127R. Trivedi, S. Liu, P. Mazumder, Simsek E. Microstructure Development in theDirectionally Solidified Al-4.0wt%Cu Alloy System [J]. Science andTechnology of Advanced Materials,2001,2:309~320.
    128W. Kurz, D. J. Fisher. Dendrite Growth at the Limit of Stability: Tip Radiusand Spacing [J]. Acta Metallurgica,1981,29(1):11~20.
    129S. H. Han, R. Trivedi. Primary Spacing Selection in Directionally SolidifiedAlloys [J]. Acta Metallurgica et Materialia,1994,42(1):25~41.
    130M. A. Eshelman, V. Seetharaman, R. Trivedi. Cellular Spacings—I. Steady-State Growth [J]. Acta Metallurgica,1988,36(4):1165~1174.
    131R. Trivedi. Interdendritic Spacing: Part II. A Comparison of Theory andExperiment [J]. Metallurgical Transactions A,1984,15(6):977~982.
    132V. Seetharaman, M. A. Eshelman, R. Trivedi. Cellular Spacings—II.Dynamical Studies [J]. Acta Metallurgica,1988,36(4):1175~1185.
    133E. Cadirli, I. Karaca, H. Kaya, N. Marasli. Effect of Growth Rate andComposition on the Primary Spacing, the Dendrite Tip Radius and MushyZone Depth in the Directionally Solidified Succinonitrile–Salol Alloys [J].Journal of Crystal Growth,2003,255:190~203.
    134S. Suresh. Graded Materials for Resistance to Contact Deformation andDamage [J]. Science,2001,292:2447~2451.
    135G. Mayer. Rigid Biological Systems as Models for Synthetic Composites [J]. Science,2005,310:1144~1147.
    136L. Addadi, S. Weiner. A Pavement of Pearl [J]. Nature.1997,389:912~915.
    137M. Estili, K. Takagi, A. Kawasaki. Multiwalled Carbon Nanotubes as a UniqueAgent to Fabricate Nanostructure-Controlled Functionally Graded AluminaCeramics [J]. Scripta Materialia,2008,59(7):703~705.
    138L. M. Levinson. Highly Anisotropic Columnar Structures in Silicon [J].Applied Physics Letters,1972,21:289~291.
    139D. R. Uhlmann, G. A. Chadwick. Unidirectional Solidification of MeltsProducing the Peritectic Reaction [J]. Acta Metallurgica,1961,9(9):835~840.
    140B. Dutta, M. Rettenmayr. An Experimental Investigation on the Kinetics ofSolute Driven Remelting. Metallurgical and Materials Transactions A,2000,31A:2713~2720.
    141T. Z. Kattamis, J. C. Coughlin, M. C. Flemings. Influence of Coarsening onDendrite Arm Spacing of Aluminum-Copper Alloys [J]. Transactions ofMetallurgical Society of AIME,1967,239:1504~1510.
    142D. Kammer, P. W. Voorhees. The Morphological Evolution of DendriticMicrostructures during Coarsening [J]. Acta Materialia,2006,54(6):1549~1558.
    143M. Chen, T. Z. Kattamis. Dendrite Coarsening during DirectionalSolidification of Al–Cu–Mn Alloys [J]. Materials Science and Engineering A,1998,247:239~247.
    144S. Terzi, L. Salvo, M. Suery, A. K. Dahle, E. Boller. Coarsening Mechanismsin a Dendritic Al–10%Cu Alloy [J]. Acta Materialia,2010,58(1):20~30.
    145M. Chen, T. Z. Kattamis. Dendrite Coarsening during DirectionalSolidification of Al–Cu–Mn Alloys [J]. Materials Science and Engineering: A,1998,247(1–2):39~247.
    146N. J. Whisler, T. Z. Kattamis. Dendritic Coarsening during Solidification [J].Journal of Crystal Growth,1972,(1):20~24.
    147D. Ma, W. Xu, S. C. Ng, Y. Li. On Secondary Dendrite Arm Coarsening inPeritectic Solidification [J]. Materials Science and Engineering A,2005,90:52~62.
    148D. J. Allen, J. D. Hunt. Melting during Solidification [J]. Metallurgical andMaterials Transactions A,1976,7A:767~770.
    149R. Trivedi. The Role of Heterogeneous Nucleation on MicrostructureEvolution in Peritectic Systems [J]. Scripta Materialia,2005,53:47~52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700