用户名: 密码: 验证码:
准噶尔盆地基底特征与砂岩型铀矿成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准噶尔大型叠合盆地面积约13×104km2,为我国新疆第二大沉积盆地,其所处大地构造位置、盆地类型、主要盖层沉积相及区域铀矿化等条件与伊犁典型产铀盆地相似,总体上具备了砂岩型铀矿成矿的一些基本条件。但是,至今仍未取得找矿突破,为此,铀矿地质勘查决策部门和生产单位均急需了解或回答:“该盆地砂岩型铀矿成矿前景到底如何?”、“有无形成大型、特大型砂岩型铀矿的潜力?”、“有,则到何处去找”以及“如何实现快速突破”等问题。
     本文在前人研究工作的基础上,选取准噶尔盆地基底为研究对象,针对基底结构属性、构造属性、含铀性及其岩浆演化地壳成熟度和构造成矿有利度等4方面问题进行研究。在板块构造理论和砂岩型铀矿区域成矿理论的指导下,通过与伊犁产铀盆地基底特征的对比研究,探讨盆地基底特征与砂岩型铀矿成矿作用,分析准噶尔盆地砂岩型铀矿成矿潜力并进行成矿预测。
     论文通过野外地质调查,结合室内岩石化学分析、活性铀浸出实验以及锆石LA-ICPMS分析测试,对上述研究内容开展了研究工作,取得了如下几点认识:
     (1)准噶尔盆地基底为陆壳性质,具有由前寒武纪结晶基底与海西期褶皱基底组成的“双层”基底结构。证据如下:盆地范围内布格重力异常值均为负值(平均为-65×10-5m/s2),反映其地壳厚度至少在35km以上;平均莫霍面埋深在39km以上,与世界稳定地台的平均莫霍面埋深持平(39.614km);航空磁力异常在盆地内识别出了3个大的、与前寒武纪结晶基底相对应的正磁性块体;大地电磁测深、人工地震也均获得了盆地盖层下存在前寒武纪结晶基底与褶皱基底的信息。同时,同位素地质测年取得了从晚奥陶世至早前寒武纪的地质年代信息,为上述推断提供了有利证据。这种由前寒武纪结晶基底与海西期褶皱基底组成的“双层”基底结构,与伊犁、吐哈、鄂尔多斯等典型产铀盆地的基底相似,具备了砂岩型铀矿成矿的基底条件。
     (2)同位素地质年代学数据分析表明,准噶尔盆地周缘从晚泥盆世开始出现构造岩浆活动后,在晚石炭世进入岩浆活动高峰期,二叠纪在北缘阿勒泰和西准达拉布特又有构造岩浆活动出现,形成了盆地周缘广泛分布的火成岩带,构成了盆地周缘褶皱基底剥蚀区的主体。
     多期的构造岩浆作用形成了盆地周缘广泛发育的基底富铀建造和/或富铀地球化学块体。航空放射性测量在盆地周缘识别出了12片铀含量高值和偏高值(区)带,地面伽玛能谱测量也落实了东准克拉美丽地区、北准阿勒泰地区以及西南喀拉达板地区部分铀含量高、偏高的中酸性侵入岩与火山岩以及部分地层;进一步的全岩铀含量和活性铀浸出实验分析表明:盆缘中酸性侵入岩和火山岩具有接近或稍高于地壳平均花岗岩铀含量的特征,但相比于伊犁产铀盆地蚀源区的铀含量则有所不及;存在铀的迁出现象,但没有吐哈盆地的铀迁出活跃。总体而言,准噶尔盆地具有提供砂岩型铀矿成矿物质的能力,但略逊于伊犁盆地南缘与吐哈盆地南缘褶皱基底。
     (3)东准克拉美丽、西准达拉布特和北准阿勒泰-富蕴-布尔根等地区典型花岗岩体的岩石地球化学分析表明,岩石具有富硅、富碱、高钾(K2O/Na2O>1)和高FeO/MgO(>1)值的特征,属于高钾钙碱性系列,岩体形成时的古地壳厚度大多在35km以上;富集大离子亲石元素(K、Rb、Th、U)和高场强元素(Hf、Y、Nb、Ta)。这意味着准噶尔盆地周缘岩浆演化已达到了成熟的阶段,铀在这个过程中不断在地壳中聚集,形成了具有成熟陆壳性质的富铀花岗岩体,为砂岩型铀矿成矿提供了物质基础。多数岩石主微量元素特征与A2型碱性花岗岩一致,属于后碰撞或板内花岗岩类,说明岩浆活动结束后盆地整体进入了后碰撞的弱伸展构造环境,总体上具备了有利于砂岩型铀矿成矿的稳定构造背景。
     Sr、Nd、Pb及O同位素研究成果表明:褶皱基底花岗岩的成岩物质有多种来源,既有地幔物质的加入,又有年轻地壳部分熔融产物和地壳物质的混入;其中,地幔物质占65%以上,一定程度上说明,相比于成岩物质来源于成熟古陆壳的花岗岩类,上述演化成熟的岩体内却不能富集如陆壳改造型花岗岩内那么多的铀。相应岩石中锆石的铀含量绝大多数低于1000×10-6,表明岩石形成时古铀背景值较低,与成岩物质中铀含量“先天不足”相一致,这说明在准噶尔盆地找到超大型砂岩型铀矿床困难较大。
     (4)准噶盆地总体上经历了隆升剥蚀(P-T2)→下降沉积(T3-J21)→隆升剥蚀(J22-J3)→下降沉积(K)→隆升剥蚀(E-Q)等5个过程。其中,从晚三叠世开始至西山窑组沉积结束(约60Ma)的地质时期内,在相对稳定的构造背景下,形成了原生还原沉积建造、含矿建造并形成了多种类型的砂岩型铀矿化;中侏罗世-晚侏罗世至白垩纪,在由挤压转化为伸展的构造环境中活化改造再次成矿;新近纪以来北天山强烈隆升,破坏了盆地(尤其是南缘)原有的成矿条件,甚至可能“铲掉了”本已形成的铀矿化,这可能是盆地至今未取得砂岩型铀矿找矿突破的重要原因之一。
     (5)综合上述研究成果认为:准噶尔盆地具备了砂岩型铀矿成矿的基底条件、构造条件,演化成熟的富铀的海西期火成岩为铀成矿提供了一定的物质来源,在北三台凸起和陆梁凸起不同方向的斜坡带上具备了形成层间氧化砂岩型铀矿的条件,是有望取得一定找矿突破的远景区。但是,盆缘褶皱基底铀含量有限、铀的迁移能力不强,再加上成矿物质来源不足以及新生代构造运动的负面影响,使盆地的成矿规模受到了一定的限制。然而,通过全方位细致的科研和勘查工作,在盆地内找到中-大型砂岩铀矿床还是有可能的。
Junggar large superimposition basin is the second major sedimentary basin in Xinjiang Autonomous Region with the area of about13xl04km2. Its tectonic location, basin types, main sedimentary facies of covering strata and regional uranium mineralization conditions are similar to those of Yili typical uranium-producing basin. In terms of this reason, the basin generally possesses a number of basic favorite conditions for the occurrence of sandstone type uranium mineralization. However, successful breakthrough in U exploration has not been achieved up-to-date. Therefore, there are some crucial problems that the uranium exploration decision-making departments and production units are facing to and urgent to understand or answer:a) how is the sandstone type uranium mineralization prospect? b) is it potential to form large or superlarge sandstone type uranium deposit? c) if it has, where should we go to explore? and d) how to achieve a fast breakthrough?
     Based on the previous research work, the basement of the Junggar basin has been selected as one of the research objectives. In this paper,4aspects will be studied including the basement structure properties, tectonic properties, folded-basement uranium aboundance and its crustal maturity and tectonic metallogenic favourability degree. Under the guide of the plate tectonics and regional sandstone type uranium mineralization theory, the relationship between the basement characteristics and sandstone-type uranium mineralization in Junggar basin are to be discussed compared to those of Yili uranium-producing basin, and the sandstone type uranium metallogenic potential is to be analysed. What's more, the work of metallogenic prediction will also be carried out.
     The field geological survey work was carried out combined with indoor chemical analysis and test, moblile uranium leaching experiment and zircon LA-ICP MS analysis and test. The results are shown as follows:
     (1) The basement of Junggar basin is of continental crust property composed of Precambrian crystalline basement and the Hercynian fold basement. The evidences are as follows:a) Bouguer gravity anomaly shows negative value (average value=65x10-5m/s2) in basin range reflecting the crustal thickness of35km at least. The average Moho depth of the basin is more than39km which is close to or more than that of the world stable platform (39.614km); b)3large anomalies were indentified during airborne magnetic survey in the basin corresponding to the Precambrian crystalline basement. Moreover, the source information indicating the presence of Precambrian crystal basement and fold basement under the covering strata was obtained by the method of magnetotelluric sounding and artificial earthquake, c) At the same time, isotopic geochronology gave the ages from Late Ordovician to Early Precambrian providing evidence for the above inference. Such "double" layer basement structure is comparable to that in Yili, Turpan-Hami and Erdos typical uranium-producing basin, and indicates that the Junggar basin posseses basic conditions for the metallogenesis of sandstone type uranium deposits to some extent.
     (2) Isotopic chronological data analysis show that tectonic magmatic activities around the Junggar basin margin began in Late Devonian, and peaked Late Carboniferous. Also, the activities occurred in Permian at the northern margin of Altai and Dalabute belt in western Junggar, which led to wide development of igneous rock belts around the basin margin forming the main body of the folded-basement.
     At periphery of the basin, the U-rich formations and/or geochemical blocks enriched in uranium are developed widely because of multistage tectonic-magmatic activities.12zones (ares) with high or moderately elevated uranium content have been identified by Airborne Radioactive Survey in the basin. Those are intermediate-acidic intrusions, volcanics and strata enriched in uranium have also been discovered by the ground gamma spectrometric survey in Kelameili area, eastern Junggar, Aletai area in the northern part of the basin and south-western Caladaban region. The further analytic results of geochemical samples and mobile uranium leaching experiments show that, the uranium abundance of those intrusive and volcanics at the periphyry of the basin margin is close to or slightly higher than the average content of granite of crust but a little bit less than those in Yili uranium-producing basin. The remove of uranium did happen in above rocks or strata, but it does not reach the level as much as in Turpan-Hami basin. In general, the folded-basement of Junggar basin could provide some components for sandstone type uranium ore-formation, but its uranium metallogenic potential might be a little worse as compared to that for the southern margin of Yili and Turpan-Hami basin.
     (3). Geochemistry analysis results of typical granite in Kelameili area, Eastern Junggar, Dalabute belts, Western Junggar and Aletai-Fuyun-Buergen region, Northern Junggar show that rocks studied are generally rich in silicon, alkali, large-ion lithophile elements (LIL) and high field strength elements (HFS) with high ratio value of K20/Na20(>1) and high FeO/MgO ratio (>1). They belong to high K calc alkaline series with the ancient crust thickness mostly being more than35km, when rocks are formed. That is to say, the magma evolution at the periphery of the basin reached a matured stage and the uranium is continuously accumulated in crust during the evolution process and finally U-rich granites originate from matured crust appeared thus providing material base for the sandstone type uranium mineralization.
     The characteristics of major and trace elements in most granitic rocks are in accordance with those in A2type alkaline granite, and they belong to the post collisional granitoids or with in plate ones which indicate that the basin at that time entered into the post collision tectonic environment at the end of magmatic activity. In other words, a stable weakly extensional tectonic setting being favorable for the formation of sandstone type uranium deposits.
     Sr, Nd, Pb and O isotopic studies indicate that the material source of studied granite rocks are originated from varies including mantle materials, young crust partial melting products as well as crustal materials. Then, the materials from mantle are accounted for more than65%. That is to say, in a certain extent, as compared with the continental crust-originated (especially matured ancient continental crust) transformed-type granite, the matured crust stated above will not enrich much abundant uranium for "rock material being congenitally deficient". Zircon from studied rocks contains mostly uranium less than1000x10"6which indicates the paleo uranium background value is low. This fact is in accordance with low U-content in granites. This might be the reason why the exploration for superlarge sandstone type uranium deposit in Junggar basin still is quite difficult.
     (4). During the basin evolution process, Junggar basin generally experienced5stages, it was uplifted and eroded from Permian to Middle Triassic, subsides and received deposition during the period from Late Triassic to early stage of Middle Jurassic, then again uplifted and eroded from late stage of Middle Jurassic to Late Jurassic and subsided and received deposition again in Cretaceous and finally uplifted and eroded in Cenozoic era. During the geological period from Late Triassic to the end of Xishanyao period, the primary reduction sedimentary formations, ore-hosting formations and mult-types of uranium mineralization were developed; The tectonic environment was changed from compressional to extensional during the period from Middle Jurassic to Cretaceous which led to the uranium ore formation again. The strong uplifting of Northern Tianshan from Neogene period destructed basin preexisting metallogenic conditions (especially the southern margin of the basin) even "shoveled" inherent uranium mineralization, which might be one of the important reasons for unsuccessful prospectings for large-sized sandstone type uranium deposit in Junggar basin.
     (5). Based on the above research results, the suggestions can be obtained as the following. Junggar basin has possessed certain metallogenic conditions for sandstone type uranium mineralization, such as:"double-layerd" structure of the basement, relatively stable tectonic environment from Late Devonian to Eogene, and matured Hercynian igneous rocks which can provide certain source material for uranium mineralization. In different direction slopes of Beisantai covex and Luliang convex, there are four slope zones where the formation of interlayer oxidation sandstone type uranium deposit could be developed. These are perspective areas for uranium exploration. However, the uranium abundance in folded basement is limited, the uranium migration ability is weak, in addition the deficiency of ore mineral sources and negative effect of Cenozoic tectonic movement, the metallogenic scale of sandstone uranium deposit is limited in Juggar basin as compared with U-highbearing Yili and Tuke basins. Nevertheless, on the basis of systematic detailed research and exploration work, it mighted be possible to find median-large scaled sandstone-hosted U-deposits.
引文
[1]张金带,李子颖,蔡煜琦,等.全国铀矿资源潜力评价成果报告,2013.
    [2]张杰林.准噶尔盆地铀成矿条件高分辨率遥感识别技术.核能开发科研项目年度成果报告,2013.
    [3]翟光明,王慎言,史训知,等.中国石油地质志(电子版).北京:石油工业出版社,2002,卷15.
    [4]陈祖伊,陈戴生,古抗衡.中国铀矿床研究评价(上册).北京:中国核工业地质局,核工业北京地质研究院,内部资料,2010.
    [5]Shawe D.R. Significance of roll-ore bodies in genesis of U-Ⅴ deposits. Econ, Geol.,1959,54:395-415.
    [6]Granger H.C., Warren C.G.. Unstable S-compounds and the origion of roll-type U-deposits. Econ, Geol,1964,64-160.
    [8]李子颖,秦明宽.铀矿地质科技进展与展望.见:李子颖主编《核地质科技论文集》.北京:地质出版社,2009.
    [9]秦明宽,李子颖,田华等.我国地浸砂岩型铀矿研究现状及发展方向.见:李子颖主编《核地质科技论文集》.北京:地质出版社,2009.
    [10]郭庆银,李子颖,于金水,等.鄂尔多斯盆地西缘中新生代构造演化与铀成矿作用.铀矿地质,2010,26(3):137-144.
    [11]刘德长,叶发旺,杨旭,等.我国砂岩型铀矿“断隆成矿观点”的提出与应用分析.地球信息科学学报,2010,12(4):451-457.
    [12]秦明宽,赵瑞全.对塔里木盆地巴什布拉克铀矿床成因的新认识.铀矿地质,2000,16(1):26-30.
    [13]李胜祥,蔡煜琦,陈肇博,等.松辽盆地地质演化与砂岩型铀矿找矿方向研究.核工业北京地质研究院科研成果报告,2002.
    [14]QinMingkuan, DongWengming,Ouguangxi. Reduction of fluids in the Bashbulak Sandstone Type Uranium Deposit in the Tarim Basin, China. In:Mineral Deposit Research:Meeting the Global Challenge. Springer,2005,311-314.
    [15]张金带,徐高中,陈安平等.我国可地浸砂岩型铀矿成矿模式初步探讨.铀矿地质,2005,21(3):139-145.
    [16]罗毅,马汉峰,夏毓亮,等.松辽盆地钱家店铀矿床成矿作用特征及成矿模式.铀矿地质,2007,23(4):193-200.
    [17]刘正义,秦明宽.地沥青及油浸砂岩对U、Mo、Se、V、Re等的还原沉淀能力实验研究.铀矿地质,2007,23(2):84-90.
    [18]刘正义,秦明宽.油气对砂岩型铀矿中铀等伴生元素富集成矿的模拟实验.世界核地质科学,2008,25(1):13-18.
    [19]李月湘,秦明宽,何中波.内蒙古二连盆地铀与油、煤的时空分布及铀的成矿作用.世界核地质科学,2009,26(1):25-31.
    [20]贾立城,刘武生.鄂尔多斯盆地东南部直罗组油气流体活动与铀成矿作用初探.世界核地质科学,2012,29(2):78-84.
    [21]吴亚平,秦明宽,刘章月,等.准噶尔盆地南缘阿德岗矿点油气还原与铀成矿的关系初探.全国铀矿大基地建设学术研讨会论文集,2012.
    [22]秦明宽,王正邦,赵瑞全.论伊犁盆地层间氧化带型砂岩铀矿床的有机成矿作用.地球学报,1999,20(增刊):637-643.
    [23]闵茂中,王汝成,边立曾,等.层间氧化带砂岩型铀矿中的生物成矿作用.自然科学进展,2003,13(2):164-168.
    [24]尹金双,向伟东,欧光习,等.微生物、有机质、油气及砂岩型铀矿.铀矿地质,2005,21(5):287-295.
    [25]杨殿忠,陈祖伊.吐哈盆地黄腐酸与铀成矿关系研究.地质找矿论丛,2002,17(3):82-91.
    [26]张玉燕,邱峻挺,修晓茜等.伊犁盆地乌库尔奇地区腐殖酸与铀成矿关系模拟实验研究.矿物岩石地球化学通报,2013,32(3):349-353.
    [27]杨甫.准噶尔盆地北部基底属性及其演化的锆石原位U-Pb年龄和微量元素分析.西安:西北大学,2012.
    [28]任舜纪,姜春发,张正坤,等.中国大地构造及其演化.北京:科学出版社,1980.
    [29]吴庆福.论准噶尔中间地块的存在及其在哈萨克斯坦板块构造演化中的位置.中国北方板块构造论文集(2).北京:地质出版社,1987.
    [30]李锦轶,肖序常,汤耀庆,等.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征.地质论评,1990,36(4):305-316.
    [31]张恺.论中国大陆板块的裂解、漂移、碰撞和聚敛活动与中国含油气盆地的演化.新疆石油地质,1991,12(2):91-106.
    [32]袁学诚.论中国大陆基底构造.地球物理学报,1995,38(04):448-459.
    [33]张前锋,胡霭琴,张国新,等.新疆东准噶尔小石头泉前寒武纪变质岩的Sm~Nd等时线年龄证据.科学通报,1996,41(16):1498-1500.
    [34]李锦轶,肖序常,陈文.准噶尔盆地东部的前晚奥陶世陆壳基底~来自盆地东北缘老君庙变质岩的证据.中国区域地质,2000,19(03):297-302.
    [35]王方正,杨梅珍,郑建平.2002.准噶尔盆地岛弧火山岩地体拼合基底的地球化学证据.岩石矿物学杂志,2002,(2):1-10.
    [36]张季生,洪大卫,王涛.由航磁异常判断准噶尔盆地基底性质.地球学报,2004, 25(4):473-478.
    [37]彭希龄.准噶尔盆地早古生代陆壳存在的证据.新疆石油地质,1994,15(4):289-297.
    [38]何国琦,李茂松.中国新疆北部奥陶-志留系岩石组合的古构造、古地理意义.北京大学学报(自然科学版),2001,37(01):99-110.
    [39]江远达.关于准噶尔地区基底问题的初步探讨.新疆地质,1984,02(01):11-16.
    [40]Carrolar, Liang Y, Graham S.A., et al. Junggar basin, northwest China:trapped Late Paleozoic ocean. Tectonophysics,1990,186:1-14.
    [41]肖序常,汤耀庆,冯益民.新疆北部及邻区大地构造.北京:地质出版社,1992.
    [42]杨克明.西北地区主要盆地的形成与演化.西北地质,1992,13(1):1-6.
    [43]郑建平,王方正,成中梅,等.拼合的准噶尔盆地基底:基底火山岩Sr-Nd同位素证据.地球科学~中国地质大学学报,2000,25(02):179-185.
    [44]曾广策,王方正,郑建平,等.准噶尔盆地基底火山岩中的辉石及其对盆地基底性质的示踪.地球科学,2002,7(1):13-18.
    [45]陈俊湘,陈景亮.准噶尔盆地基底及其地震速度特征.新疆石油地质,2002,23(06):474-477.
    [46]胡霭琴,韦刚健.关于准噶尔盆地基底时代问题的讨论-据同位素年代学研究结果.新疆地质,2003,21(04):398-406.
    [47]Chen B., Jahn B.M. Genesis of post-collisional granitoids and basement nature of the Juggar terran, NW China:Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences,2004,23(5):691-703.
    [48]Chen B., Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Paleozoic continental growth. Geochim Cosmo Chim Acta,2005,69:1307-1320.
    [49]赵俊猛,黄英,马宗晋,等.准噶尔盆地北部基底结构与属性问题探讨.地球物理学报,2008,51(6):1767-1775.
    [50]Coleman, R.G. Continental growt of northwest China. Tectonics,8(3):621-635.
    [51]尹继元,袁超,王毓婧,等.新疆西准噶尔晚古生代大地构造演化的岩浆活动记录.大地构造与成矿学,2011,35(2):278-291.
    [52]伍建机,陈斌.西准噶尔庙尔沟后碰撞花岗岩微量元素和Nd-Sr同位素特征及成因.新疆地质,2(1):29-36.
    [53]Geng H.Y., Sun M, Yuan C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang:Implications for ridge subduction. Chemical Geology,2009,266(3-4):364-389.
    [54]龙晓平,孙敏,袁超,等.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约.岩石学报,2006,22:31-40.
    [55]袁超,肖文交,陈汉林,等.新疆东准噶尔扎河坝钾质玄武岩的地球化学特征及其构造意 义.地质学报,2006,80:254-26.
    [56]Zheng J.P., Sun M., Zhao G.C., et al. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China:Implications for the formation and evolution of the basin basement. Journal of Asian Earth Sciences,2007,29(5-6):778-794.
    [57]杨梅珍,王方正,郑建平.准噶尔盆地西北部克-夏基性火山岩地球化学特征及其构造环境.岩石矿物学杂志,2006,25(03):165-174.
    [58]苏玉平,郑建平,Griffin W.L.,等.东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究.科学通报,2010,55(30):2931-2943.
    [59]王隆平.中亚地球物理与构造格架.长沙:中南大学,2001.
    [60]王有学,韩果花,姜枚,等.阿尔泰-阿尔金地学断面地壳结构.地球物理学报,2004,47(02):240-249.
    [61]曲国胜,马宗晋,邵学钟,等.准噶尔盆地基底构造与地壳分层结构.新疆石油地质,2008,29(6):669-674.
    [62]邵学钟,张家茹,范会吉,等.准噶尔盆地基底结构的地震转换波探测.新疆石油地质,2008,29(4):439-406.
    [63]赵东林,杨家喜,胡能高,等.新疆东准噶尔老鸦泉含锡花岗岩体同位素年代学特征.西安工程学院学报,2000,22(02):15-17.
    [64]李亚萍,李锦轶,孙桂华,等.准噶尔盆地基底的探讨:来自原泥盆纪卡拉变里组砂岩碎屑锆石的证据.岩石学报,2007,23(7):1577-1590.
    [65]朱永峰,徐新,魏少妮,等.西准噶尔克拉玛依OIB型枕状玄武岩地球化学及其地质意义研究.岩石学报,2007,23(7):1739-1748.
    [66]王一剑,刘洪军,周娟萍,等.东准噶尔卡姆斯特北海相火山—沉积岩碎屑锆石LA-ICP-MSU-Pb年龄及地质意义.现代地质,2011,25(06):1047-1058.
    [67]吕书君,杨富全,柴凤梅,等.东准噶尔北缘老山口铁铜金矿区侵入岩LA-ICP-MS锆石U-Pb定年及地质意义.地质论评,2012,58(01):149-164.
    [68]陈祖伊,郭华,刘红旭,等.中央亚洲活动带(中国境内段)多岛海地质演化与砂岩型铀矿时空定位模式及评价预测判据.核工业地质局基础地质项目内部成果报告,2007.
    [69]何国琦,韩宝福,岳勇君,等.中国阿尔泰造山带的构造分区和地壳演化.北新疆地质科学,1990,(2):9-20.
    [71]Bowie S.H.U. The Mode of Occurrence and Distribution of Uranium Deposits. Theoretical and Practical Aspects of Uranium Geology,1979.
    [73]Ferguson J. The uranium cycle in proceedings of a Technical Committee Meeting 《Recognition of Uranium Provinces》. London:1985.
    [74]新疆维吾尔自治区地质矿产局,新疆维吾尔自治区区域地质志.地质出版社,1993.
    [75]Jahn B.M., Capdevilaa R., Liub D., et al. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia:geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Asian Earth Sci,2004,23:629-653.
    [76]李述靖等.蒙古弧地质构造特征及形成演化概论.北京:地质出版社,1998.
    [77]Sengor AMC, Natal'in BA, Burtman VS. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature,1993,364:299-307.
    [78]Chen B, Jahn B.M. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications.GeolMag,2002,139(1):1-13.
    [79]肖序常,姜枚等.中国西部岩石圈三维结构及演化.北京:地质出版社,2008.
    [80]何登发,周路,吴晓智.准噶尔盆地古隆起形成演化与油气聚集.北京:石油工业出版社,2012.
    [81]吴庆福.准噶构造演化与找铀领域.新疆地质,1986,4(3):1-9.
    [82]尤绮妹.准噶盆地各构造阶段的大地构造单元划分及含油气特征.见:王郁明主编.准噶尔盆地油气地质综合研究.兰州:甘肃科技出版社,1992.
    [83]赵白.准噶尔盆地的构造特征与构造划分.新疆石油地质,1993,14(3):209-215.
    [84]杨文孝,吴晓智,向书政.克拉玛依大油田地质规律与勘探经验.新疆第三届天山地质矿产学术讨论会论文集.乌鲁木齐:新疆人民出版社,1995.
    [85]陈发景,汪新文.中国中-新生代含油气盆地成因类型、构造体系及地球化学动力学.现代地质,1997,11(04):410-424.
    [86]孙肇才.中国中西部中—新生代前陆盆地及其含油气性——兼论准噶尔盆地内部结构构造单元划分.海相油气地质,1998,4(3):16-30.
    [87]张朝军,何登发,吴晓智,等.准噶尔多旋回叠合盆地的形成与演化.石油地质,2006,(1):47-59.
    [88]李丕龙,冯建辉,陆永潮,等.准噶尔盆地构造沉积与成藏.北京:地质出版社,2010.
    [89]新疆石油地质志.1996.
    [90]杨海波,陈磊,孔玉华.准噶尔盆地构造单元划分新方案.2004,25(6):686-688.
    [91]张金带,李子颖,李友良,等.准噶尔盆地砂岩型铀矿资源潜力评价.核工业北京地质研究院科研报告.2010.
    [92]中国科学院,地球科学大词典.北京:地质出版社,2006.
    [93]肖序常,何国琦,徐新,等.中国新疆地壳结构域地质演化.北京:地质出版社,2010.
    [94]陈新,卢华复,舒良树,等.准噶尔盆地构造演化分析新进展.高校地质学报,2002,8(03): 257-258.
    [95]全国地层委员会.中国区域年代地层(地质年代)表说明书.北京:地质出版社,2002.
    [96]郭丽爽,刘玉琳,王政华,等.西准噶尔包古图地区地层火山岩锆石LA-ICP-MS U-Pb年代学研究.岩石学报,2010,026(02):471-477.
    [97]佟丽莉,李永军,张兵,等.新疆西准噶尔达尔布特断裂带南包古图组安山岩LA-ICP MS锆石U-Pb测年及地质时代.新疆地质,2009,7(3):226-230.
    [98]王鸿祯,莫宣学.中国地质构造述要.中国地质,1996,(08):4-9.
    [99]Gabelman J.W.《Migration of Uranium and Thorium-Exploration significance》.1977
    [101]宋继叶,蔡煜琦,姚春玲,等.古陆块及其边缘与铀成矿的关系.铀矿地质,2011,27(1):8-12.
    [102]万天峰.中国大地构造学.北京:地质出版社,2011.
    [103]腾吉文.塔里木地球物理场与油气.北京:科学出版社,1991.
    [104]张义杰,王惠民,何正怀,等.准噶尔盆地基底结构及形成演化分析.新疆石油地质,1999,20(增刊):568-571.
    [105]况军.体拼贴与准噶尔盆地的形成演化.新疆石油地质,1993,(2):126-132.
    [106]张功成,陈发新,刘楼军,等.准噶尔盆地结构构造与油气田分布.石油学报,1999,20(1):8-12.
    [107]王元龙,成守德.新疆地壳演化与成矿.地质科学,2001,36(2):129-143.
    [108]何登发,张义杰,况军.准噶尔盆地构造特征与油气田分布规律//李德生,等.中国含油气盆地构造学.北京:石油工业出版社,2002.
    [109]何登发,翟光明,况军.准噶尔盆地古隆起动力学演化特征.地质科学,2005,40(2):248-261.
    [110]李锦轶,肖序常.对新疆地壳结构域构造演化几个问题的简要评述.地质科学,1999,34(4):405-419.
    [111]陈书平,张一伟,汤良杰,等.准噶尔石炭世-二叠纪前陆盆地的演化.石油大学学报(自然学版),2001,25(5):17-25.
    [112]张朝军,石昕,吴晓智,等.准噶尔盆地石炭系油气富集条件及有利勘探领域预测.中国石油勘探,2005,10(1):11-15.
    [113]方国庆,李育慈,刘德良.准噶尔盆地东北缘中-下侏罗统层序地层与油气.地质科学,2000,35(4):414-420.
    [114]何登发,李德生,童晓光,等.多期叠加盆地古隆起控油规律.石油学报,2008,29(4):475-498.
    [115]陈中红,查明,吴孔友,等.陆梁隆起白垩系底部不整合面特征与油气运聚.新疆石油 地质,2002,23(04):283-285.
    [116]Hendrix M.S., Dumitru T.A., Graham S.A. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan:An early effect of the India-Asia collision. Geology,1994,22:487-490.
    [117]张越迁,张年富,姚新玉.准噶尔盆地腹部油气勘探回顾与展望.新疆石油地质,2000,2(12):43-46.
    [118]李溪滨,姜建衡.准噶尔盆地东部石油地质概况及油气分布的控制因素.石油与天然气地质,1987,8(1):99-107.
    [119]伍致中.准噶尔盆地东部地区油气聚集特征及勘探建议.新疆石油地质,1889,10(4):15-20
    [120]彭希龄.论准噶尔盆地东部地区油气分布的基本规律.新疆石油地质,1989,10(4):1-13.
    [121]韩晓黎,阿依古丽,伍菁华,等.准噶尔盆地东部边缘区构造格架及构造样式.新疆石油地质,2001,22(3):202-205.
    [122]李溪滨.准东油区勘探历程与回顾.勘探家,1998,3(3)64-69.
    [123]董文明,王果,刘红旭等.新疆中新生代盆地砂岩型铀矿成矿条件和成矿模式研究.铀矿地质科研成果报告(内部资料),2008.
    [124]王中刚,朱笑青,毕华,等.中国新疆花岗岩.北京:地质出版社,2006.
    [125]代雅建.阿尔泰布尔根碱性花岗岩的年代学及其地质意义研究.北京:中国地质大学硕士学位论文,2006.
    [126]刘家远,袁奎荣,吴郭泉,等.新疆东准噶尔富碱花岗岩类及其成矿作用.长沙:中南工业大学出版社,1996.
    [127]杨高学,李永军,司国辉,等.新疆贝勒库都克铝质A型花岗岩LA-ICP MS锆石U-Pb年龄、地球化学及其成因.地质学报,2010,84(12):1759-1769.
    [128]安芳,朱永峰.新疆西准噶尔哈图金矿蚀变岩型矿体地质和地球化学研究.矿床地质,2007,26(6):621-633.
    [129]汪远志,山亚,冯春圆,等.准噶尔盆地成矿区航放成果解释报告.全国铀矿资源潜力评价项目成果报告(内部资料),2010.
    [130]苏玉平,唐红峰,丛峰.新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因.矿物学报,2008,28(2):117-126.
    [131]唐红峰,屈文俊,苏玉平,等.新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约.岩石学报,2007,23(8):1989-1997.
    [132]韩宇捷,唐红峰,甘林.新疆东准噶尔老鸦泉岩体的锆石U-Pb年龄和地球化学组成.矿物学报,2012,32(2):193-199.
    [133]赵东林,胡能高.新疆东准噶尔含锡花岗岩体地球化学特征及其构造环境.西安地质学院院报,1997,19(4):7-17.
    [134]李月臣,杨富泉,赵财胜,等.新疆贝勒库都克岩体的锆石SHRIMP U-Pb年龄及其地质 意义.岩石学报,2007,23(10):2483-2492.
    [135]甘林,唐红峰,韩宇捷.新疆东准噶野马泉岩体的年龄和地球化学特征.岩石学报,2010,26(8):2374-2388.
    [136]童英.阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义.北京:中国地质科学院博士学位论文,2006.
    [137]赵振华,白正华,熊小林,等.中国新疆北部富碱火成岩及其成矿作用.北京:地质出版社,2006.
    [138]高山林,何治亮,周祖翼.西准噶尔克拉玛依花岗岩体地球化学特征及其意义.新疆地质,2006,24(2):125-130.
    [139]苏玉平,唐红峰,侯广顺,等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究.地球化学,2006,35(1):55-67.
    [140]崔振生.地面伽玛能谱资料研究中若干问题的探讨.铀矿地质,1989,5(3):171-176.
    [141]孙念义.航空γ能谱识别参数和评价含铀区的方法.放射性地质,1983,(3):50-57.
    [142]核工业203研究所.龙首山地面伽玛能谱测量研究.1984.
    [143]张云宜.应用特征参数GU、FU、B处理区域伽玛能谱资料效果初探.铀矿地质,1986,2(4):242-247.
    [144]孙念义.区域航空能谱场地球化学解释及预测方法的探讨.铀矿地质,1987,3(5):292-301.
    [145]章邦桐,张祖还.华南东部陆壳演化与铀成矿作用.北京:原子能出版社,1993.
    [146]郭福生,辜俊如.能谱特征参数Th/U与Th/U(平均值)之差比较及古铀量计算公式修正.铀矿地质,1997,13(6):356-358.
    [147]李继安,贺建国.伽玛能谱测量的应用及资料处理的讨论.铀矿地质,2008,24(6):363-368.
    [148]戴杰敏.关于伽玛能谱特征参数的讨论.铀矿地质,2002,18(1):52-55.
    [149]张甲升,张玉龙.应用伽玛能谱特征参数研究地质体的含铀性.甘肃科技.2009,25(1):39-40.
    [150]Rush S M怀俄明铀矿省的研究—一种圈定铀矿省的综合方法.见:译文载:国外铀矿区域评价方法专辑.核工业北京地质研究院(原北京铀矿地质研究所),1983.
    [151]李耀菘,朱杰辰,夏毓亮.锆石特征及铀含量在铀成矿远景评价中的意义.中国核科技报告,1995.
    [152]黄净白,黄世杰.中国铀资源区域成矿特征.铀矿地质,2005,21(3):129-138.
    [153]邓晋福,罗照桑,苏尚国,等.岩石成因、构造环境与成矿作用.北京:地质出版社,2004.
    [154]Condie K.C. Archean Greenstone Belt.1979.
    [155]吴郭泉,刘家远,袁奎荣.新疆卡拉麦里富碱花岗岩带组成.桂林工学院学报,1997, 17(1):19-25.
    [156]杨高学.新疆东准噶卡拉麦里地区花岗岩类研究.西安,长安大学硕士学位论文,2008.
    [157]Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. Saunders A.D, Norry M J. Magmatism in the Ocean Basins. Geol Soc Spec Publ,1989,42:313-345.
    [158]Eby G.N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos,1990,26:115-134.
    [159]Pearce J.A., Harris B.W., Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Petrology,1984,25:956-983.
    [160]Pearce J.A. Sources and settings of granitic rocks. Episodes,1996,19(4):120-125.
    [161]忻建刚,袁奎荣,刘家远.新疆东准噶尔北部碱性花岗岩的特征、成因及构造意义.大地构造与成矿学,1995,19(3):214-226.
    [162]李锦轶,肖序常,汤耀庆,等.新疆东准噶尔卡拉麦里地区古板块构造研究的新进展.科学通报,1988,10(12):762-764.
    [163]汪邦耀,姜常义,李永军,等.新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义.矿物岩石,2009,29(3):74-82.
    [164]刘家远,袁奎荣,吴郭泉,等.新疆准噶尔富碱花岗岩类及其成矿作用.中南工业出版社,1995.
    [165]王登红,陈毓川,徐志刚等.阿尔泰成矿省的成矿系列及成矿规律.北京:原子能出版社,2002.
    [166]王中刚,赵振华,邹天人,等.阿尔泰花岗岩类地球化学.北京:科学出版社,1998.
    [167]Wang T., Hong D.W., Jahn B.M.,et al. Zircon U-Pb geochronology and geochemistry of Paleozoic syn-orogenic intrusions from the Chinese Altai:Implications for subduction-accretion processes. The Journal of Geology,2006,735-751.
    [168]韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(I)—后碰撞深成岩浆活动的时限.岩石学报,2006,22(5):1077-1086.
    [169]金成伟,张秀棋.新疆西准噶尔花岗岩类的时代及其成因.地质科学,1993,28(1):28-36.
    [170]王晓伟,杨春霞,刘景显,等.西准噶尔A型花岗岩地球化学特征及构造意义.甘肃地质,2011,20(2):11-19.
    [171]庞振甲.新疆西准噶尔阿克巴斯套花岗岩研究.西安:长安大学博士学位论文,2008.
    [172]杨富贵,王中刚,侯鸿泉,等.达拉布特型碱性花岗岩源岩特征初步探讨—来自稳定同位素和微量元素.地质地球化学,1998,(1):41-46.
    [173]秦明宽.新疆伊犁盆地南缘可地浸层间氧化带型砂岩铀矿床成因及定位模式.北京:核工业北京地质研究院博士学位论文,1997.
    [174]胡绍康.华北地台铀成矿条件及成矿远景分析.铀矿地质,1988,4(3):129-133.
    [175]蔡根庆.蚀源区地质体铀浸出率与砂岩型铀矿成矿关系.矿床地质,2006,25(增刊):237-240.
    [176]郭召杰,陈正乐,舒良树,等.中国西部中亚型造山带中新生代陆内造山过程与砂岩型铀矿成矿作用.北京:地质出版社,2006.
    [177]Kwon S.T., Tilton G.R., Coleman R.G., et al. Isotopic studies bearing on the tectonics of the West Junggar region, Xingjiang, China. Tectonics,1989,8(4):719-727.
    [178]齐进英,郭丽爽,宋会侠,等.新疆包谷图金矿床特征及其成因.矿床地质,1992,11(2):154-164.
    [179]李华芹,谢才富,常海亮.新疆北部有色贵金属矿床成矿作用年代学.北京:地质出版社,1998.
    [180]李华芹,陈富文,蔡红.新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究.地质学报,2000,74(2):181-192.
    [181]李辛子,韩宝福,季建清,等.新疆克拉玛依中基性岩墙群的地质地球化学和K-Ar年代学.地球化学,2004,33(6):574-584.
    [182]张立飞,冼伟胜,孙敏.西准噶尔紫苏花岗岩成因岩石学研究.新疆地质,2004,22(1):36-42.
    [183]宋会侠,刘玉琳,屈文俊,等.新建包谷图斑岩铜矿矿床地质特征.岩石学报,2007,23(8):1981-1988.
    [184]徐芹芹,季建清,韩宝福,等.新疆北部晚古生代以来中基性岩脉的年代学、岩石学、地球化学研究.岩石学报,2008,24(5):977-996.
    [185]周晶,季建清,韩宝福,等.新疆北部基性岩脉Ar-Ar年代学研究.岩石学报,2008,24(5):997-1010.
    [186]刘玉琳,郭丽爽,宋会侠,等.新疆西准噶尔包谷图斑岩铜矿年代学研究.中国科学(D辑),39(10):1466-1472.
    [187]唐功建,王强,赵振华,等.西准噶尔包谷图成矿斑岩年代学与地球化学:岩石成因与构造、铜金成矿意义.地球科学-中国地质大学学报,2009,34(1):56-74.
    [188]尹继元,袁超,孙敏,等.新疆西准噶尔地区赞岐岩(sanukite)的地球化学特征、成因机制及其与铜金矿化的关系.地球化学,2009,38(5):123-132.
    [189]尹继元,袁超,王毓婧,等.新疆西准噶尔晚古生代大地构造演化的岩浆活动记录.大地构造域成矿学,2011,35(2):278-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700