用户名: 密码: 验证码:
非离子助留助滤体的凝胶絮凝机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在大量实验事实的基础上提出了凝胶助留助滤机理,建立了机理模型。用聚氧化乙烯(PEO)-酚醛树脂助留助滤体系验证凝胶助留助滤机理,沿着凝胶助留助滤机理这一思路成功开发了PEO-硅溶胶新型双元助留助滤体系。最后对凝胶助留助滤机理进行了总结和推广,使其具有更广泛的应用范围,并为未来的研究提供了参考方向:
     1.实验证明能够形成凝胶的物质在相应条件下都对浆料有一定的絮聚作用。只是由于受到各种因素的影响絮聚效果各有不同,如PEO-酚醛树脂凝胶体系、PEO-硅溶胶凝胶体系、PEO-膨润土凝胶体系具有良好的絮聚效果,能够或已经开发成为有效的助留助滤体系;聚丙烯酸钠(PAAS)-PEO体系和甲基纤维素(MC)尽管对浆料也有明显的絮聚效果,但由于PAAS对金属离子敏感、MC在其凝胶温度(63℃左右)以上才产生絮聚效果,因此这两种体系实际应用时可能存在较大困难;而PAAS-聚乙二醇(PEG)凝胶体系的絮聚效果则较差。
     2.PEO-酚醛树脂体系的助留助滤效果与PEO-酚醛树脂凝胶的自身性质存在千丝万缕的联系:当PEO用量一定时,酚醛树脂用量在约为该量的5倍时获得做大的凝胶量,而当酚醛树脂用量为PEO用量的5倍时,浆料可获得最大的细小组分留着率;在酸性条件下,PEO-酚醛树脂凝胶的强度较差,而此时PEO-酚醛树脂助留助滤体系的抗剪切性能也比中碱性条件下差。
     3.根据凝胶助留助滤机理这一思路发现PEO-硅溶胶体系对浆料具有明显的絮聚效果,进一步的研究表明该体系在较低的用量下具有良好的助留助滤效果,能够成为一种新型双元助留助滤体系。当PEO用量为0.01%、硅溶胶用量为0.1%时,浆料打浆度可由54°SR下降至31°SR左右,细小组分留着率和填料可达到90%左右。除此之外,该助留助滤体系对纸张匀度、强度和白度影响较小,可用于文化用纸的抄造。
     4.已知外部环境变化是引起凝胶收缩脱水的根本原因,也是凝胶助留助滤机理的根本原因。但研究发现在外部环境既定的情况下凝胶助留助滤机理则与助留助滤体系产生的凝胶量(凝胶量与凝胶各组分浓度、配比及分子量等有关)、凝胶的收缩脱水时间、凝胶的强度和弹性等因素有直接关系。从这一角度考虑造纸湿部较适用于温度和pH敏感型凝胶,即会响应温度或pH值变化而收缩脱水的凝胶体系,如羟丙基纤维素(HPC)的凝胶温度为40~45℃,可能产生与甲基纤维素相似的絮聚效果;聚乙烯基吡咯烷酮(PVP)在中性或酸性条件下可与多种物质作用形成络合物。这些凝胶体系构成了凝胶助留助滤机理新的研究方向。
     5.凝胶助留助滤机理认为阳离子助留助滤剂及微粒助留助滤体系是通过静电耦合作用或螯合作用与纤维和填料共同形成了一种特殊的三维网状结构而实现助留助滤目的的,拓宽了凝胶助留助滤机理的应用范围。
In this thesis, gel retention and drainage mechanism was put forward on the basis of many experiments, and a mechanism model was established too. Polyethylene oxide(PEO)-phenolic resin(PR) retention system was used to inspect and verify gel retention and drainage mechanism. A new dual PEO-silica sol two-component retention and drainage aids system was successfully developed along the idea of gel retention mechanism. In the end of the thesis, gel retention and drainage mechanism was summarized and popularized, it will gain a broader range of applications and provide a reference direction for future researches.
     1. Experiments showed that the materials which could gelate all had a flocculation effect on pulp under the same conditions. But their flocculation effects were different due to various influence factors. For example PEO-PR gel system, PEO-silica gel system and PEO-bentonite gel system had good flocculation effect. And they can/have become effective retention systems. Polyacrylate sodium(PAAS)-PEO system and methylcellulose(MC) both had perfect flocculation effect on pulp too, but PAAS was very sensitive to metallic ion and MC didn't gain a good flocculation before the pulp temperature reached the gelatum temperature of MC(which is about 63℃) or above, so PAAS-PEO system and MC used for retention system was more difficult than PEO-PR system. And flocculation effect of PAAS-PEG gel system was poor.
     2. Retention and drainage effect of PEO-PR resin system was related to the nature of PEO-phenolic resin gel itself: if the consistency of PEO was assured most gel amount was gained when the dosage of PR was about 5 times as much as the amount of PEO; and the biggest fines retention was obtained as phenolic resin was just 5 times the dosage of PEO. In acidic condition, strength of PEO-PR gel was poor, while in neutral and alkaline conditions the shear resistance of PEO-PR retention system was preferred to in acidic condition.
     3. According to gel retention and drainage mechanism, PEO-silica system was found obvious flocculation effects on pulp; further research showed that this system had good retention and drainage effects at low dosage. When the dosage of PEO was 0.01% and silica was 0.1%, the beating degree reduced from 54°SR to 31°SR; fines retention and filler retention reached 90%. In addition, this retention system affected little on the paper evenness, strength and whiteness.
     4. It is known that changes in the external environment are the root cause of dehydration and shrinkage of gel and the gel retention mechanism. However, under the given external environment, gel retention mechanism is directly related to gel amount the systems produce (amount of gel is related to concentration, molecular weight and mixture ratio of gel components and so on), the gel contraction and dehydration time, gel strength and elasticity and other factors. From this point of view, humid part of paper is suitable for thermo-responsive hydro gel and pH sensitive gel which respond to changes of temperature or pH and then dehydrate and shrink, such as Hydroxypropylcellulose(HPC) which gelatum temperature is 40-45℃is likely to produce a flocculation effect as MC, and polyvinyl pyrrolidone (PVP) forms complex compound with many chemical compound in neutral or acidic condition. These gels are the new research directions of retention and drainage mechanism.
     5. During the gel retention and drainage retention mechanism, cationic retention systems and particulate retention systems work with fiber and filler to form a special three-dimensional network structure via electrostatic coupling or chelating, which achieve the filtering purposes and broaden application ranges of gel retention and drainage mechanism.
引文
[1]Bobacka V, Eklund D, The influence of charge density of cationic starch on dissolved and colloidal material from peroxide bleached thermo mechanical pulp [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999(152):285-291
    [2]陈根荣.湿部化学品在提高纸机车速中的作用[J].造纸化学品,2000(3):12.
    [3]Martin. Wet end chemistry and paper machine stability [J]. Paper Technology,1998,39(4): 33-38.
    [4]Vanja M. King, Gerald M. Dykstra, Daniel Glover. Chemistry holds key to maintaining speed in today's paper machines [J]. Tappi Journal,1998,81(7):58-61.
    [5]生产中采用化学品以改进脱水过程[J].国际造纸,1997(4):37.
    [6]Leslie Webb. Chemicals provide a neat solution at the wet end[J]. PPI,1998,40(7): 48-51.
    [7]卢谦和.造纸原理与工程[M].中国轻工业出版社,2004:117-118.
    [8]宋海农,杨崎峰,黄显南等.多元微粒子助留助滤技术[J].西南造纸,2001,(3):8-9,11.
    [9]沈一丁.造纸化学品的制备和作用机理[M].北京,中国轻工业出版社,1999.
    [10]徐永英.造纸配料组份的湿部化学[J].造纸化学品,2000,(1):17-20.
    [11]张红杰,胡惠仁.微粒子助留助滤技术[J].天津造纸,2002,(2):8-12.
    [12]Lindstrom, T. Flocculation of Kraft Lignin Sols with Polyethylene Oxide [J]. Separation Sci. Technol.14(7):601-610.
    [13]Lindstrom T., Glad-Nordmark. G. Network Flocculation and Fractionation of Latex Particles by Means of a Poly(ethylene oxide)-Phenol formaldehyde Resin Complex[J]. Colloid interface Sci.,97(1): 62-67.
    [14]Stack. Study of the interaction between poly(ethylene oxide) and phenol-formal dehyde resin[J]. Colloids and Surfaces.1991,61(12):205-208.
    [15]Lindstrom T. Flocculation of Kraft Lignin Sols with Polyethylene Oxide[J]. Separation Sci. Technol.14(7):601-610.
    [16]Pelton, R. H., L. H. Allen and H. M. Nugent. A Survey of Potential Retention Aids for Newsprint Manufacture [J]. Pulp Paper Can.,81:54-62.
    [17]Pelton, R. H., L. H.Allen and H. M. Nugent. Factors Affecting the Effectiveness of Some Retention Aids in Newsprint Pulp[J]. Svensk Paperstidn,83:251-258.
    [18]Pelton, R. H., L. H. Allen and H. M. Nugent. Novel Dual-Polymer Retention Aids for Newsprint and Ground wood Specialties[J]. Tappi J.64(11):89-92.
    [19]Xiao, H., R. H. Pelton and A. Hamielec. Novel Retention Aids for Mechanical Pulp[J]. Tappi 79:129-135.
    [20]Xiao, H., R. H. Pelton and A. Hamielec. Retention Mecdhanism for Two-Component System Based on Phenolic Resins and PEO or New PEO-Copolymer Retention Aids[J]. Pulp paper Sci.22:475-485.
    [21]Van de Van and B. Alince. Association-induced Polymer Bridging:New Insights into the Retention of Filler with PEO[J]. Pulp Paper Sci.22:257-263.
    [22]Kratochvil D., B. Alince and T. G. M. van de Ven. Flocculation of Clay Particles with Poorly and Well-Dissolved Polyethylene Oxide [J]. Pulp Paper Sci.,1999,25(9):331-335.
    [23]Van de Ven, T. G. M. Mechanisms of Fines and filler Retention with PEO-Cofactor Dual Retention Aid System. in "Proc.1996 International Paper and Coating Chemistry Symposium" Ottawa, ON, June 11-13, pp,13-18.
    [24]杨增吉.PEO/CF絮凝体系的缔合聚合物架桥机理[J].国际造纸,2006,25(3):27-31,34.
    [25]Alince B, Van de Ven, T. G. M. Effect of Polyethylene Oxide and Kraft Lignin on the Stability of Clay and its Deposition on Fibers [J]. TAPPI,1997,80, (8):181.
    [26]王祥民,何北海,钱丽颖.PEO-Cofacter助留助滤体系的絮凝特性及机理[J].中国造纸学报,2003,18(2):129-132.
    [27]傅献彩,沈文霞,姚天扬.物理化学[M].高等教育出版社,北京,1995:1073.
    [28]顾雪蓉,朱育平.凝胶化学[M].化学工业出版社,北京,2005:2-5,28,36.
    [29]潘祖仁,于在璋.自由基聚合[M].化学工业出版社,北京,1983.
    [30]金关泰.高分子化学的理论和应用进展[M].中国石化出版社,北京,1995:102,166,228,302,429.
    [31]顾雪蓉,陆云.高分子科学基础[M].化学工业出版社,北京,2003:144,218,20.
    [32]吴承佩,周彩华,栗天星.高分子化学实验[M].安徽科学技术出版社,合肥,1988:223.
    [33]畏田羲仁.ブラジマ重合[M].化学同人,日本东京,1986:213.
    [34]古川淳二.高分子合成[M].化学同人,日本东京,1986:147.
    [35]Kishi R, Shishido M, Tazuke S. Macromolecules,1990,23:3779.
    [36]Tsunoda T, Yamaoka T. J. Appl. Polym. Sci.1964,8:1379.
    [37]Mimsk L M, Smith J G, Van Deusen W P, Wricht J F. J. Appl. Polym. Sci.1959:241.
    [38]Watase M, Nishinari K, Nambu M. Polymer Commun,1983,24:52.
    [39]南部昌生.高分子加工,1983,32:523.
    [40]日本高分子学会高分子实验学编委会编.功能高分子[M].李福绵译.科学出版社,北京,1982:516.
    [41]Matsuda A, Sato J, Yasunaga H, Osada Y. Macromolecules,1994,27:7695.
    [42]Osada Y, Matsuda A. Nature,1995,376:219.
    [43]Katono H, et al. Polym J,1991,23:1179.
    [44]山内爱造,广川能嗣.机能性ダル[M].共立出版,日本,1990:24.
    [45]李建武.生物化学[M].北京大学出版社,北京,1990:64.
    [46]渡濑峰男.日食工志.1970,17:148,252.
    [47]内田和朗.日食工志.1988,31:34.
    [48]Sau A. C. ASC Polym. Mater,1987,57:497.
    [49]Tananka L. J. Phys. Rev. Lett,1978,40:820
    [50]Rossi D De, Kajiwara K, Osada Y, Yamauchi A. Polymer Gels, Plenum,1991.
    [51]Gennes P G. Scaling Concepts in Polymer Physics[M]. Cornell University Press. New York, 1979.
    [52]马德柱,何平笙,徐重德等.聚合物结构与性能[M].科学出版社,北京,1990:507.
    [53]Flory.P J. Principles of Polymer Chemistry[M]. Cornell University Press, New York,195: 495,576.
    [54]Hirotsu S, Hirokawa Y, Tanaka T. [J]Chem. Phys.,1987,87:1392.
    [55]Tanaka T, et al. Phys. Rev. Lett.1980,45:1636.
    [56]Hirotsu S. [J]Phys. Soc. Jpn.,1987,56:233.
    [57]Peter Pang. Optimization of the Use of Polyethylene Oxide and Calcium Carbonate in Papermaking[D].2001.
    [58]严瑞瑄.水溶性高分子[M].化学工业出版社,北京,2001:495,21。
    [59]Li Y, Tanaka T. [J]Chem. Phy.,1990,92:1365.
    [60]Tanaka T, Fillmore D J. [J]Chem. Phys.,1979,70:1214.
    [61]Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans[J] Phys. Rew Lett.1985,55:2455.
    [62]Tomari T, Doi M. [J]Phys. Soc. Jpn.,1994,63:2093.
    [63]Okana T, et al. Nature,1995,374:240.
    [64]Okana T, et al. Macromolecules,1995,28:7717.
    [65]Bee Y H, et al. Makromol Chem Rapid Commun,1987,8:481.
    [66]彭锐.PEO-合成硅酸镁铝凝胶的应用及机理研究[D].2005.
    [67]侯秀武.新的非离子型微粒助留助滤体系及其机理的研究[D].2004.
    [68]石恒真.层状硅酸盐和高分子纳米级复合材料.周口师专学报,1996,13(3):6-10.
    [69]Juraj Bujdak, Emily Hackett, Emmanuel P. Giannelis. Effect of Layer Charge on the Intercalation of Poly(ethylene oxide) in Layered Silicates:Implications on Nanocomposite Polyer Electrolytes[J]. Chem. Mate.,12:2168-2174(2000).
    [70]J. Swenson, M. V. Smally, and H. L. M. Hatharasinghe. Mechanism and Strength of Polymer Bridging Flocculation. Phsical Review Letters,81(26):5840-5843.
    [71]杜广才.医用化学[M].人民卫生出版社,北京,1994,第3版:46.
    [72]严瑞瑄.水溶性高分子[M].北京,化学工业出版社,1998:186-187,272,264.
    [73]E. Heyman, Trans. Faraday Sci.,1935,31:846.
    [74]吴静波,周小凡,皮成忠等.聚氧化乙烯/酚醛树脂双元助留体系对废纸浆助留作用的研究[J].中华纸业,2003,24(2):36-38.
    [75]柯扬船,何平笙.高分子物理教程[J].化学工业出版社,北京,2006:38-41.
    [76]Lindstrom T, Glads-Nordmark G. Flocculation of Latex and Cellulose Dispersions by Means of Transient Polymer Network[J]. Colloids Surf,1984,8:337.
    [77]孙立妹,李明远,彭勃.水溶性酚醛树脂稀溶液的稳定性[J].中国石油大学学报(自然科学版),2008,32(3):147-151.
    [78]TAPPI Test Method, T261-90.
    [79]Wilhelm. The physical chemistry of the silicate[M]. Chicago:the University of Chicago Publishing House.1954:426.
    [80]董耀雄.离子交换法制备酸性硅溶胶的研究[J].化工进展,1989,(3):45-49.
    [81]王绍明,赵华.高淳硅溶胶成分标准物质稳定性研究[J].化学分析计量,2007,16(2):4-7.
    [82]周祖康.胶体化学基础[M].北大出版社,北京,1978:239.
    [83]尚仰震.物理化学与胶体化学[M].四川科学技术出版社,四川,1986:262.
    [84]刘温霞,邱化玉;造纸湿部化学[M].化学工业出版社,北京,2006:134.
    [85]严瑞瑄.水溶性高分子[M].北京,化学工业出版社,1998: 272,194,203-206,607.
    [86]Robert L. D. Water-Soluble Resins[M]. Reinhold Publishing Corp., New York,1962,58.
    [87]徐青林,胡惠仁,些来苏.一种适于机械浆的新型有效助留剂[J].纸和造纸,2001,(2):38.
    [88]周小凡,吴静波.新型改性聚丙烯酰胺助留剂的合成及应用[J].中华纸业,2002,23(11):27.
    [89]盐城工学院材料工程学院http://jpkc.ycit.cn/clwl/jxwz_1.2.asp
    [90]Van de Ven TGM, alince B. Association-induced polymer bridging:new insights into the retention of fillers with PEO[J]. Pulp Paper Sci,1996,22(7):257.
    [91]A. Gibbs and R. Pelton. Effect of PEO Molecular Weight on the Flocculation and Resultant Flocculation Properties of Polymer-induced PCC Flocs[J]. Pulp Paper Sci,1999, 25(7).
    [92]N. Sarkar. [J]Appl. Polym. Sci.1979,24:1073-87.
    [93]H. M. Spurlin. [J]Polym. Sci.,1948,3:714.
    [94]Robert L. D. Water-Soluble Resins[M]. Reinhold Publishing Corp., New York,1962,58.
    [95]Ingvar, [J], Ind. Eng, Chem.,1957,49:364.
    [96]杨之礼.纤维素醚基础与应用[M].华南理工大学出版社,广州,1990.
    [97]潘则林,王才.水溶性高分子产品应用技术[M].化学工业出版社,北京,2005:21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700