用户名: 密码: 验证码:
废弃钻井液制备陶瓷滤料及其吸附染料污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在钻井过程及完工后排放的废弃钻井液,主要成分为膨润土、钻井岩屑、水以及多种化学添加剂。在油田钻井过程中,钻井液起着润滑、冷却、护壁、传输钻井岩屑、平衡地层压力作用的工作液。但是,废弃钻井液中含有重金属、碱、盐、油、有机物等多种有毒有害污染物,由于处理难度较大,它与含油污水、污油共称为油田三大公害。目前,处理的方法多为固-液分离技术,分离后固相掩埋,液相处理达标后外排,也有采用直接填埋、土地耕作、注入地层、固化、焚烧等方法。因此,加强对废弃钻井液进行无害化处理,减少或避免环境污染以及维护耕地质量十分必要。
     本文将废弃钻井液的安全处置与资源化、水中难降解染料等污染物的处理结合起来,实现以废治废的目的。本论文以天津某钻井废液为研究对象,首先对钻井废弃液进行絮凝浓缩、脱水等前期预处理;然后,按照Ca-Mg-Al-Si系统要求设计环保陶瓷滤球的配方,研究以废弃钻井液为主要原料制备多孔陶瓷滤料(滤球)。通过对多孔陶瓷滤料的体积密度、气孔率及气孔率与滤料压碎强度平衡的调控研究,结合TG-DSC、SEM、XRD、XRF等测试手段对其相关性能进行表征,获得了利用废弃钻井液制备多孔陶瓷虑球的最佳工艺和配方;最后,研究了所制备的多孔陶瓷滤料吸附水中亚甲基蓝染料和罗丹明染料的性能,并对影响处理效果的因素、污染物去除机理展开了一系列研究。主要的研究成果如下:
     (1)以天津某废弃钻井液为原料,对其进行简易的预处理。即将废弃钻井液进行絮凝浓缩,同时加入粉煤灰,用压缩机进行压滤,最终滤饼烘干,获得粉料备用。根据获得原料的组成,配以适当的助烧剂,如资源丰富、价格低廉的滑石、页岩、硅灰石等,通过配料、混料、过筛、焙粉、成球、干燥及烧成等工艺制备出多孔陶瓷滤球。钻井废弃泥多孔陶瓷滤料气孔率,吸水率,抗压碎强度,稳定性等是表征其物化性能的最主要指标。通过G系列陶瓷滤料的一系列性能指标研究,综合评价各个配方滤料的物化性能,获得了佳配方组成为G-9(钻井液60%、页岩20%、滑石8%、钠长石12%),经1060℃烧成的G-9样品气孔率高达36.65%,吸水率为20.62%,抗压碎强度达到12.67MPa,耐酸性为81.28%,耐碱性为97.31%。G-9样品不仅具有较高的气孔率,同时还具有很高的抗压碎强度,符合多孔陶瓷滤料的高气孔率,高强度的要求。另外,SEM分析表明,G系列的多数样品存在大量气孔,形貌一致,分布均匀,颗粒被玻璃相包裹,大小比较均匀。该系列陶瓷滤料其组成范围广,可消化使用大量废弃钻井液,其钻井废弃液用量从40%到100%:其烧成范围也比较宽,一般配方在900℃~1100℃烧成都可以保持优良形状。另外,本文最佳配方得到的滤料还具有稳定性好,容易分离等特点。
     (2)为了实现陶瓷滤料性能指标,如气孔率、吸水率及体积密度等的调控,并在以上多孔陶瓷滤料原料组成基础上,通过改变配料组成及烧成温度,进行了F系列陶瓷滤料的研究。结果表明,其气孔率可在8~40%的范围内调节,吸水率可在3-23%之间进行调节,其它相应的指标也可以进行调节。F1配方(天津钻井液:页岩:钾长石:高岭土=40:30:20:10)在1090℃烧成的样品的气孔率为19.95%,吸水率达到10.89%,体积密度为2.09g/cm3。测试结果表明,焙烧过程中形成结构化学成分比较稳定的莫来石,使陶瓷滤料保持了比较好的体积密度。F8配方(天津钻井液:页岩:滑石:钠长石:高岭土=60:20:8:12)在1090℃烧成的样品气孔率为30.03%,吸水率达到17.76%,体积密度为1.93g/cm3。由于配方中高岭土缺乏,A1203含量急剧下降,导致了莫来石的减少,很难阻碍虑球焙烧过程中CaCO3分解CO2气体的速度,气孔率显然提高。同时,随着烧成温度的降低,气孔率和吸水率均会升高。多孔陶瓷材料的气孔率越高,其吸附性能越好。
     (3)研究了所制备滤料吸附去除水中亚甲基蓝染料和罗丹明染料的效果,以及多种实验因素对吸附效果的影响。多孔陶瓷滤料(G9样品)吸附亚甲基蓝的吸附分为3个阶段:快速阶段、中速阶段和慢速过程。在240min后基本达到吸附平衡时,多孔陶瓷滤料对亚甲基蓝和罗丹明的去除率分别达到80%和77%。另外,随着pH的增加,亚甲基蓝染料和罗丹明染料去除率均增大,低pH值不利于吸附。
     (4)研究了所制备的陶瓷滤料吸附去除亚甲基蓝染料和罗丹明染料的吸附等温模型和热力学常数。结果表明,多孔陶瓷滤料对亚甲基蓝和罗丹明染料的吸附较好的符合Langmuir等温吸附模型和Freuulich等温吸附模型。初始浓度增加,多孔陶瓷滤料周围有更多的染料离子存在,即染料溶液与多孔陶瓷滤表面存在着较大的浓度梯度差异,有利于多孔陶瓷滤对染料的吸附。热力学参数研究表明钻井废弃泥滤料吸附去除亚甲基蓝染料和罗丹明染料都是吸热反应,升高温度有利于亚甲基蓝染料和罗丹明染料的去除。钻井废弃泥滤料吸附去除亚甲基蓝染料和罗丹明染料的活化能分别为69.92kJ/mol和77.23kJ/mol,说明所制备滤料吸附去除水中亚甲基蓝染料和罗丹明染料以化学吸附为主。
     (5)考察了废弃钻井液滤料吸附去除亚甲基蓝染料和罗丹明染料的动力学模型。吸附动力学研究表明可分别用准一级动力方程和准二级动力方程来描述所制备的多孔陶瓷滤料吸附去除亚甲基蓝和罗丹明染料的吸附过程;在吸附过程的三个连续的阶段中,颗粒内扩散是限制吸附速率的主要原因。
     (6)采用简单、易行的方法制备出的弃钻井液滤料,是一种绿色环保吸附材料。而传统上制备多孔滤料所用的骨料主要为Al2O3, SiO2且这些原料价格相对较高,制备工艺复杂,限制了其大规模应用。而用弃钻井液代替传统多孔陶瓷生产的主要原料,既减少了弃钻井液带来的环境污染,又降低了成本。弃钻井液制备的吸附滤料吸附能力强,对水中亚甲基蓝和罗丹明B染料有很好的吸附作用,为扩大弃钻井液的资源利用探索了一种新途径和新技术,为含染料的废水工业废水以及其它废水处理工程设计提供了理论指导,及为开发廉价、高效、因地制宜的吸附材料提供理论基础。本研究使弃钻井液从低附加值向高附加值转变,符合我国清洁生产、循环经济的产业政策,促进了经济的可持续发展。
Waste drilling mud is discharged from drilling operations, which consists of bentonite, cuttings, water and some chemical additives. Drilling mud plays an important role in drilling operation, such as lubricate and cool drill pipe, maintain the stability of wellbore, suspend and transfer cuttings, balance formation pressure. But waste drilling mud contains heavy metal, alkali, salt, oil and organics which are all toxic pollutants. For it is difficult to dispose, waste drilling mud, oily water and polluted oil are called three public hazards. Nowadays, solid-liquid separation technology is widely used to handle the waste drilling mud. After separation, solid is buried while liquid is discharged after treatment. But there are still other ways like bury without treatment, land farming, formation injection, solidification, cement transformation and burn. Thus it is necessary to reinforce the innocuous treatment of waste drilling mud, reduce or avoid environmental pollution and maintain plough quantity.
     In order to control waste, the paper discusses the combination of safe treatment and resource recovery of waste drilling mud and handling azo dyes in water. Tianjin waste drilling mud is the research object in the paper. We firstly treated the waste drilling mud by flocculating, condensing and dehydrating and then designed the environmentally friendly ceramic filter ball on the basis of Ca-Mg-Al-Si system. At the same time, the volume density of porous ceramic filter material, porosity and the balance between porosity and crush strength is carried based on the characterization of the TG-DSC、SEM、XRD、XRF measurements. Finally, we get the optimal technology and formula of preparing the porous ceramic filter spheres. Based on the above results, we study the performances of the porous ceramic filter spheres by adsorbing the methylene blue dye and rhodamine dye in water. In addition, the factors and mechanism of adsorption are also discussed. The main findings are as follows:
     (1) The waste drilling mud of Tianjin as the raw material in this paper and a simple pretreatment is carried out. Fluid was concentrated with coal ash put into at the same time, then material was compressed, and finally the cake was dried and reserved. According to the composition of raw material, we acquire the porous ceramic filter ball with the favor of proper sintering aids like talc, shale and wollastonite which are cheap and abundant, through the processes of distributing, mixing, screening, roasting, beading, drying, and calcining. Through the preparation and study of ceramic filter of G series, we obtained the most optimized recipe is G9(60%mud,20%shale,8%talc,12%albite). G9sample prepared by calcining at1060℃has the properties of are36.65%porosity,20.62%water absorption,12.67Mpa crush strength,81.28%acid resistance and97.31%alkali resistance. SEM results show that a large number of distributed porosities exsit in most samples of G series and the shape of the porosities is similar. Besides, the particles are wrapped by glass phase, the size is even also similar. The content of the waste drilling mud in these ceramic filters is ranging from40%to100%, which could make up use of lots of waste drilling mud. The shape of the ceramic filters can be kept when the calcination temperature is900~1100℃. Moreover, the prepared ceramic filters also have excellent stability and could be separated easily.
     (2) In order to regulate and control the property index, such as porosity, water absorption rate, bulk density, the research of the composition of raw materials of porous ceramic filter and sinter temperature about the F series ceramic filter is carried out. The result indicated that the porosity can be adjusted to range from8%to40%, water absorption can be adjusted from3%to23%, and other index can be adjusted too. F1sample (Tianjin drilling mud:Shale:K-feldspar:kaolinite40:30:20:10). It was calcined at1090℃, and its porosity, water absorption, volume density are19.95%,10.89%,2.09g/cm3, respectively. The characterization results indicated that the stable mullite was formed in the calcine process, which is helpful for keeping a relatively proper volume density. F8sample (Tianjin drilling mud: Shale:talc:albite:kaolin=60:20:8:12) is calcined at1090℃, and its porosity, water absorption and volume density are30.03%,17.76%,1.93g/cm3, repectively. Due to the lack of the kaolin, less Al2O3content results in the decrease of the amounts of mullite. So the decomposition rate of CaCO3was little influnced by the mullite, and the porosity increased tremendously. The porosity and water absorption is increased when the calcine temperature is reduced. Besides, the adsorption capability of the porous ceramic filter is improved with the increase of the high porosity.
     (3) RhB and MB dye in water is removed by using waste drilling mud filter and impact factors and adsorption mechanism are discussed in the paper. The adsorption process of the dyes by using the porous ceramic filter material of G9included is rapid stage, medium-speed stage, and slow stage. After the adsorption equation was achieved at240min, the removal rate of methylene blue and rhodamine is80%and77%, repectively. The experiment results indicated that removal rate of methylene blue and rhodamine is increased with the increase of the pH of the solution, and the low pH of solution restricted adsorption performance.
     (4) The paper discussed the isothermal adsorption model and thermodynamic constant using the filter to remove RhB and MB. The result shows that the adsorption of RhB and MB matches the Langmuir isothermal adsorption model and the Freuulich isothermal adsorption model. The dye ions around the ceramic filter material increases with the increase of initial concentration, which improves the adsorption of dye. Thermodynamic constant study shows the adsorption process of RhB and MB using waste drilling mud filte is spontaneous endothermic, and the increase of the temperature improves the removal of dye. The activation energy of the adsorption of the RhB and MB is69.92kJ/mol and77.23kJ/mol, respectively, indicating the adsorption process is a chemical adsorption.
     (5) The paper discussed the adsorption kinetics by using waste drilling fluid filter material to remove RhB and MB. The adsorption kinetics shows quasi-dynamic equations and quasi-two dynamic equations can be used to describe the adsorption process; in the three consecutive stages of adsorption process, and the main reason that limits the rate of adsorption is the diffusion in particle.
     (6) Waste drilling fluid filter material, which prepared by a simple and feasible method, is a adsorption material of green and environmental protection. However, the Al2O3, SiO2which used as aggregate for the preparation of porous filter materials in tradition is expensive relatively and the complex preparation process has limited its application on a large scale. So using abandon drilling fluid instead of the main raw material of traditional porous ceramics production can reduce the environmental pollution and the cost. The adsorption filter material prepared by abandoned drilling fluid has high adsorption capability and excellent adsorption for RhB and MB dye wastewater. It explores a new approach and technology for expanding resource utilization of the abandoned drilling fluid, and providing theoretical direction for the engineering design of the industrial waste water containing dye wastewater and other wastewater treatment. In addition, it provides the theoretical basis for the development of adsorption materials which are cheap, efficient and have good adaptability. This research changes the abandon drilling fluid from low added value to high added value change, conforms to the industry policy of cleaner production and circulation economy in our country, and can promote the sustainable development of the economy.
引文
[1]陈士冰,王世峰,辛旭亮等.多孔陶瓷过滤材料的研究进展[J].山东轻工业学院学报,2009,23(2):17-20.
    [2]Brunori C., Cremisini C., Massanisso P., et al. Reuse of a treated red mud bauxite waste:Studies on environmental compatibility [J]. Journal of Hazardous Materials,2005,117(1):55-63.
    [3]王勇.用水力旋流器净化油田采出水[J].油气田环境保护,1991,4(1):25-29
    [4]赵东风.采油废水用于低渗透油田注水处理工艺研究[J].石油大学学报(自然科学版),1999,23(2):109-110.
    [5]Rubach S., Saur. I. F. Onshore testing of produced water by electroflocculation [J]. Filtration and Separation,1997,34 (8):877-882.
    [6]张登庆,任连锁,裴峻峰等.电气浮技术在油田采出水处理中的应用研究[J].石油矿场机械,2002,31(2):11-14.
    [7]Gulde C. M., Heatley J. E., Karanfil T., et al. Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water [J]. Water Research,2003,37 (3):705-713.
    [8]戴树桂主编.环境化学[M].北京:高等教育出版社,1997:3-20.
    [9]Chen L. C., Huang C. M., Tsai F. R. Characterization and photocatalytic activity of K+-doped TiO2 photocatalysts [J]. Journal of Molecular Catalysis A:Chemical, 2007,265(1-2):133-140.
    [10]夏富军,张宝良.聚合物驱采出水处理工艺研究[J].油气田环境保护,2001,11(3):34-36.
    [11]籍国东,孙铁晰,常士俊,等.自由表面流人工湿地处理超稠油废水[J].环境科学,2001,22(4):95-99.
    [12]Chigusa K., Hasegawa T., Yamamoto N., et al. Treatment of wastewater from oil manufacturing plan by yeasts [J]. Water Science and Technology,1996,34 (11): 51-58.
    [13]高斌,王晓蓉,章敏,等.改性土壤对模拟含油废水中油的吸附[J].环境科学,2000,20(3):89-92.
    [14]Alrarez J., Ordonez S., Rosal R., et al. A new method for enhancing the performance of red mud as a hydrogenation catalyst [J]. Applied Catalysis A: General,1999,180 (1-2):399-409.
    [15]李哲,刘振华,张俊贞.SBR法处理油田采出水[J].城市环境与城市生态,2000,13(1):41-42.
    [16]刘春英,袁存光,张超.载铜活性炭催化氧化深度降解石油污水中的 COD[J].环境污染与防治,2002,24(2):90-93.
    [17]杜卫东,陆晓华,张仕权,等.采油废水CODc,处理设计和实验研究[J].油气田环境保护,2000,10(1):17-19.
    [18]Deschamps G., Caruel H., Marie, et al. Oil removal from water by sorption on hydrophobic cotton fibers.2. study of sorption properties in dynamic mode [J]. Environment Science Technology,2003,37 (21):5034-5039.
    [19]Li J. Q., Gu Y. A. Coalescence of oil-in-water emulsion in fibrous and granular beds [J]. Separation and purification Technology,2005,42 (1):1-13.
    [20]Mohammadi T., Park A., Karbassian M., et al. Effect of operating conditions on micro filtration of an oil-water emulsion by a kaolin membrane [J]. Desalination, 2004,168 (15):201-205.
    [21]Lin S. H., Lan W. J. Waste oil/water emulsion treatment by membrane process [J]. Journal of Hazardous Materials,1998,59 (2-3):189-199.
    [22]Multon L. M., Viraraghavan T. Removal of oil from produced water by coalescence/filtration in a granular bed [J]. Environmental Technology,2006, 27 (5):529-544.
    [23]Zhang Y. S., Qu Y. X., Wu S. R. Engineering geological properties and comprehensive utilization of the solid waste (red mud) in aluminum industry [J]. Environmental Geology,2001,41 (3-4):249-256.
    [24]赵朝成,赵东凤.超临界水氧化技术处理含油污水研究[J].干旱环境监测,2001,15(1):25-28.
    [25]王艺,陈雷.聚结除油反应机理及其动力学分析[J].环境污染治理技术与设备,2006,7(1):59-63.
    [26]籍国东,孙铁晰,郭书海,等.稠油采出水的人工湿地塘床处理系统设计[J],中国给水排水,2002,18(5):62-64.
    [27]Petropulu M. O., Lyberopulu T., Ochsenkuhn K. M., et al. Recovery of lanthanides and yttrium from red mud by selective leaching [J]. Analytica Chimica Acta,1996,319 (1):249-254.
    [28]Tsakiridis P. E., Leonardou S. Oustadakis A., P.. Red mud addition in the raw meal for the production of Portland cement clinker [J]. Journal of Hazardous Materials,2004,116(1-2):103-110.
    [29]籍国东,孙铁晰,常士俊,等.人工潜流湿地处理稠油采出水的实验研究[J].环境科学学报,2001,21(5):619-621.
    [30]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理,2002,22(2):14-16.
    [31]Mostefa N. M., Tir M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment, Optimization of the operating conditions [J]. Desalination,2004,161 (2):115-121.
    [32]Bessa E., Sant Anna G. L., Dezotti M. Photocatalytic/H2O2 treatment of oil field produced waters [J]. Applied Catalysis B:Environmental,2001,29 (2):125-134
    [33]Mathavan G. N., Viraraghavan T. Coalescence/filtration of an oil-in-water emulsion in a peat bed [J]. Water Research,1992,26 (1):91-98.
    [34]李方文.赤泥质多孔陶瓷滤料表面改性及其在水处理中的应用研究[D].武汉:武汉理工大学,2008.
    [35]高乃云,徐迪民,范瑾初,等.氧化铁涂层砂改性滤料除氟性能研究[J].中国给水排水,2000,16(1):1-4.
    [36]王平升.山东铝厂赤泥制备水处理用多孔陶粒滤料[J].有色金属,2005,57(2):142-145.
    [37]陈士兵.多空氧化锆陶瓷的制备及其性能的研究[D].济南:山东轻工业学院,2010.
    [38]武洪标,武七德,陈文等.无机非金属材料实验[M].武汉:武汉工业大学出版社,1994:20-60.
    [39]高乃云,徐迪民,范瑾初,等.氧化铝涂层改性石英砂过滤性能研究[J].中国给水排水,1999,15(3):8-10.
    [40]蔡作乾,王琏,杨根.陶瓷材料词典[M].北京:化学工业出版社,2002:100-130.
    [41]薛友祥,王耀明.多孔陶瓷材料引领国内过滤技术发展[J].新材料产业,2007(2),28-32.
    [42]中华人民共和国国家标准(GB1966-1996-T),多孔陶瓷显气孔率、容重试验方法.
    [43]孙钱平,苏贤礼,徐晓虹,等.利用钢渣研制多孔陶瓷滤球[J].佛山陶瓷,2005(9):1-3.
    [44]S. L Lo, H. T Jeng. C. H Lai. Characteristics and adsorption properties of iron-coated sand [J]. Water Science and Technology,1997,35 (7):63-70.
    [45]夏光华,廖润华.高孔隙率多孔陶瓷滤料的制备[J].陶瓷学报,2004,25(1):24-27.
    [46]徐晓虹.利用工业废渣研制环保陶瓷滤球.武汉理工大学学报[J].2004,26(5):12-15.
    [47]Zhong H. W., Yong S. H. Preparation of porous ceramics with controllable poresizes in an easy and low-cost way [J]. Materials Characterization,2008,59 (9),1335-1339.
    [48]邓慧萍,易小萍,徐迪民,等.涂铁砂过滤去除有机物的研究[J].中国给水排水,2000,16(7):1-4.
    [49]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1999:201-240.
    [50]陶凯.膨润土提纯方法研究[J].煤炭技术,2008,27(4),125-126.
    [51]邹卫华,刘晨湘,江利,等.二氧化锰对铜、铅离子的吸附研究[J].郑州大学学报(工学版),2005,26(3):15-19.
    [52]盛力,马军.滤料表面电位对滤床过滤效果的影响[J].工业水处理,2002,22(12):34-36.
    [53]王连星,党桂彬.系列孔径多孔陶瓷的研制[J].功能材料,1997(28):186-191.
    [54]吴建锋,杨学华徐晓虹,等.体积密度可控的多孔陶瓷滤料的研制[J].佛山陶瓷,2006,20(3):10-12.
    [55]Lai C. H., Lo S. L., Chiang H. L. Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses [J]. Chemosphere,2000,41 (8),1249-1255.
    [56]Lee J. S., Park J. K. Preparation of Porous Ceramic Pellet by Pseudo-double-emulion method from 4-phase foamed slurry [J]. Journal of Materials Science Letters,2001,20 (3):205-207.
    [57]Akyol A., Bayramoglu M. Photocatalytic degradation of Remazol Red FSB using ZnO catalyst [J]. Journal of Hazardous Materials,2005,124 (1-3):241-246.
    [58]Aguedach A., Brosillon S., Morvan J.. et al. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide [J]. Applied Catalysis B:Environmental,2005,57 (1):55-62.
    [59]何永祥.天然沸石对水体中甲基橙和亚甲基蓝的吸附研究[D].郑州:郑州大学,2007.
    [60]Rajkumar D., Kim J. G. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment [J]. Journal of Hazardous Materials,2006,136 (2):203-212.
    [61]Alinsafi A., Evenou F., Abdulkarim E. M., et al. Treatment of textile industry wastewater by supported photocatalysis [J]. Dyes and Pigments,2007,74 (2): 439-445
    [62]张希衡主编.水污染控制工程[M].北京:冶金工业出版社,1993:35-60.
    [63]Bizani E., Fytianos K., Poulios I., et al. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide [J]. Journal of Hazardous Materials,2006,136 (1):85-94.
    [64]罗洁,陈建山,周钢,等.Ti02光催化降解印染废水的工艺条件优化[J].化学与生物工程,2005,22(6):46-49.
    [65]Pekakis P. A., Xekoukoulotakis N. P., Mantzavinos D.. Treatment of textile dye-house wastewater by TiO2 photocatalysis [J]. Water Research,2006.40 (6): 1276-1286.
    [66]涂代惠,史长林,杨云龙.Ti02膜光催化氧化法深度处理印染废水[J].中国给水排水,2005,19(2):53-56.
    [67]易小萍,邓慧萍,徐迪民,等.改性滤料在水处理中的应用及机理探讨[J].净水技术,2000,18(1):25-27.
    [68]张鹏.吸附法和MBR法对印染废水深度处理的研究[D].广州:华南理工大学硕士学位论文,2009.
    [69]Ramakrishna R., Konduru R., Viraraghavan T. Dye Removal Using Low Cost Adsorbents [J]. Water Science and Technology,1997,36 (2-3):189-196.
    [70]余跃.印染废水综合处理研究[D].南京:南京工业大学,2004.
    [71]Sewailem M. S., Khaled E. M., Mashhady A. S. Retention of copper by desert sands coated with ferric hydroxides [J]. Geoderma,1999,89 (3):249-258.
    [72]Truesdail S. E., Lukasik J., Farrah S. R., et al. Analysis of bacterial deposition on metal (Hydr) oxide-coated sand filter media [J]. Journal of Colloid and Interface Science,1998.203 (2):369-378.
    [73]Zheng X., Liu J. X. Dyeing and printing wastewater treatment using a membrane bioreactor with agravity drain [J]. Desalination,2006,190 (1-3):277-286.
    [74]Benjamin M. M., Sletten R. S., Bailey R. P., et al. Sorption and filtration of metals using inor-oxide-coated sand [J]. Water Research,1996,30(11): 2609-2620.
    [75]夏金虹.二氧化钛粉体光催化降解印染废水的研究[J].应用化工,2005,34(8):497-500.
    [76]Golob V., Vinder A., Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents [J]. Dyes and Pigments,2005,67 (2):93-97.
    [77]Chen G. H., Lei L. C., Hu X. J., et al. Kinetic study into the wet air oxidation of printing and dyeing wastewater [J]. Separation and Purification Technology, 2003,31 (1):71-76.
    [78]Ciardelli A., Gianluca B., Ranieri C., et al.. The treatment and Reuse of Wastewater in the Textile Industry by Means of Ozonation and Electroflocculation [J]. Water Research,2001,35(2):567-572.
    [79]Dunlop P. S. M., Byrne J. A., Manga N., et al. The photocatalytic removal of bacterial pollutants from drinking water [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148 (1-3):355-363.
    [80]蔡冬鸣,任南琪.不同晶型锰氧化物去除水中亚甲基蓝染料的研究[J].环境科学学报,2006,26(12):1971-1976.
    [81]Mo J., Hwang J. E., Jegal J., et al. Pretreatment of a dyeing wastewater using chemical coagulants [J]. Dyes and Pigments,2007,72 (2):240-245.
    [82]Wu H. F., Wang S. H., Kong H. L., et al. Performance of combined process of anoxic baffed reactor-biological contact oxidation treating printing and dyeing wastewater [J]. Bioresource Technology,2007,98 (7):1501-1504.
    [83]Alaton I., Arslan B., Akmehmet I., et al. Advanced oxidation of a reactive dye bath effluent:comparison of O3, H2O2/UV-C and TiO2/UV-A processes [J]. Water Research,2002,36 (5):1143-1154.
    [84]Chen J. Truesdail N., S., Lu F. H., et al. Long-term evaluation of aluminum hydroxide-coated sand for removal of bacteria from wasterwater [J]. Water Research,1998,32 (7):22171-22179.
    [85]陈芳艳,唐玉斌,佟惠娟,等Fenton试剂氧化处理印染废水[J].抚顺石油学院学报,2002,22(3):30-34.
    [86]Liu J. C., Huang J. G. Using iron-coated spent catalyst as an alternative adsorbent to remove Cr(VI) from water [J]. Water Research,1998,38 (4): 155-162.
    [87]Krishna G. B., Susmita S. G Influence of acid activation on adsorption of Ni(Ⅱ) and Cu(Ⅱ) on kaolinite and montmorillonite:kinetic and thermodynamic study [J]. Chemical Engineering Journal,2008,136 (1):1-13.
    [88]段林海.沸石分子筛的吸附扩散剂应用[D].兰州市:兰州大学,2006.
    [89]Ip A. W. M., Barford J. P., McKay G. A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char [J]. Chemical Engineering Journal,2010,157 (2-3): 434-442.
    [90]Kacha S, Derriche Z, Elmaleh S. Equilibrium and kinetics of color removal from dye solutions with bentonite and polyaluminum hydroxide, Water Environment Research,2003,75:15-20.
    [91]Wang C. C., Juang L. C., Hsu T. C., et al. Adsorption of basic dyes onto montmorillonite [J]. Journal of Colloid and Interface Science,2004,273 (1): 80-86.
    [92]徐媛媛.凹凸棒粘土对水溶性染料的脱色作用研究[D].无锡市:江南大学,2007.
    [93]王敏欣,何绪文,谷庆宝.无机改性粉煤灰对模拟染料废水吸附脱色的作用[J].黑龙江矿业学院学报,2000,10(3):13-16.
    [94]Matheswaran M., Karunanithi T. Adsorption of Chrysoidine R by using fly ash in batch process [J]. Journal of Hazardous Materials,2007,145 (1-2):154-161.
    [95]王雯,谢丽,王帅,等.钢渣对阴离子染料刚果红的吸附特性和机理[J].同济大学学报,2010,38(8):1182-1187.
    [96]李方文,吴建峰,徐晓红等.应用多孔陶瓷滤料治理环境污染[J].中国安全科学学报,2006,16(7):113-118.
    [97]BatZiuas F. A., Sidiras D. K. Simulation of methyleneblue adsorption by salts treated beeeh saw dustinbate handfixed bedsystems [J]. Journal of Hazardous Materials,2007,149(1):8-17.
    [98]Ho Y. S., Huang C. T., Huang H. W. Equilibrium sorption isotherm forme talions on treefern [J]. Proeess Bioehemistry,2002,37 (12):1421-1430.
    [99]Freundlieh H. M. F. A uber die adsorption in losungen (adsotioninso ution) [J]. Zeitsehriftfur Physikalisehe Chemie (LeiPzig),1906,57A:384-470.
    [100]Han R. P., Mang Y. F., Yu W. H., et al. Removal of methyleneblue from aqueous solution by chaff in batch mode [J]. Journal of Hazardous Materials,2006,137 (1):550-555.
    [101]Lagergren S. About the theory of so-called adsorption of soluble substanees [J]. Kungliga SvenskaVetenskapsakademiens Handlingar,1898,24 (4):1-9.
    [102]Ho Y. S. Adsorption of heavy metals from wastestreams by peat [M]. Ph.D. thesis, Universityof Birmingham, Birmingham, UK,1995.
    [103]Ho Y. S., McKay G. Comparative sorption kinetie studies of dye andaromatic compounds onto fly ash [J]. Journal of Environment Science and Health,1999, A34(5):1179-1204.
    [104]Ho Y. S. Comment on "adsorption of naphthalene on zeolite from aqueous solution" by C. F. Chang, C. Y. Chang, K. H. Chen, W. T. Tsai, J. L. Shie, Y. H. Chen [J]. Journal of Colloid and Interface 2005,283 (1):274-277.
    [105]Weber W. J., Morris J. C. Kinetics of adsorption on carbon from solution [J]. Journal of the Sanitary Engineering Division,1963,89 (2):31-60.
    [106]AI-Ghouti M., Khraisheh M. A. M., Allnlad M. N. M. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite:A kinetic study [J]. Journal of Colloid and Interface Science,2005,287 (1):6-13.
    [107]Gasser M. S., Morad G H. A.; Morad G. H. A., Aly H. F. Batch kinetics and thermodynamies of chromium ions:removal from waste solutions using synthetic adsorbents [J]. Journal of Hazards Materials,2007,142 (1-2): 118-129.
    [108]Thomas W. J. Crittenden B. Adsorption technology and design [M]. Reed Education and Professional Publishing, Oxford,1998.
    [109]Daifulah A. M., Yakout S. M, Elreefy. S. A. Adsorption of fluoride in aqueous solutions using KMnO4modified activated carbon derived from steam pyroysis of rice straw [J]. Journal of Hazards Materials,2007,147 (1-2):633-643.
    [110]Maiti A., DasGuPat S., Basu J. K., et al. Adsorption of arsenite using natural laterite as adsorbent [J]. Separation and Purification Technology,2007,55 (3): 350-359.
    [111]El-Shahawi M. S., Nassif H. A. Retention and thermodynamic characteristics of mercury(Ⅱ) complexes onto polyurethane foams [J]. Analytica Chimica Acta, 2003,481 (1):29-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700