用户名: 密码: 验证码:
不同烧结助剂对氮化硅常压烧结的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文详细地介绍了氮化硅的结构、性质及应用和常见的几种制备方法,并着重介绍了氮化硅的常压烧结方面的研究进展。
     与其他方法相比较,常压烧结法的实用价值最大,应用范围最广,极具有研究价值。选择既能显著提高制品致密化,又不明显降低其高温强度的烧结助剂是氮化硅常压烧结的关键问题。本论文将烧结助剂的选择和常压烧结作为研究的重点,选用MgO、Y_2O_3、La_2O_3、CeO_2、TiC组成的复合助烧剂作为Si_3N_4的烧结助剂,采用常压烧结工艺,在1720℃制备Si_3N_4陶瓷。通过密度、抗弯强度、维氏硬度和断裂韧性等力学性能测试、X射线物相分析(XRD)、扫描电镜(SEM)及透射电镜(TEM)的观察,对氮化硅的烧结过程、组织结构进行了研究。
     研究结果表明,常压烧结氮化硅陶瓷的致密化主要是通过液相烧结实现的,由烧结助剂和Si_3N_4表面的SiO_2反应形成低熔点的硅酸盐液相,促进烧结致密化,冷却后,在晶界形成玻璃体。由MgO和稀土氧化物组成的复合助烧剂是Si_3N_4有效的烧结助剂,能够显著降低烧结温度,在1720℃烧结可以获得较高致密度和优良力学性能的Si_3N_4制品。所有试样的力学性能都随相对密度的增大而提高,添加少量的TiC能够提高烧结制品的抗弯强度和硬度,当未添加TiC,相对密度为97.8%时,抗弯强度、硬度和断裂韧性分别为903MPa、13.9GPa和7.50MPa.m~(1/2);当添加1%的TiC,相对密度达到97.4%时,抗弯强度、硬度和断裂韧性分别达到923MPa、14.5GPa和7.02MPa.m~(1/2)。
     微观分析结果表明,氮化硅烧结体的显微结构为等轴状的α-Si_3N_4和长柱状的β-Si_3N_4相互交织,与它们之间连续分布的玻璃相,形成了结构致密的材料。对于粗大的杆状β-Si_3N_4的形成主要与起始的物料有关,从α-Si_3N_4粉末制备的材料包含有异常长大的柱状晶粒,这种结构有利于提高烧结体的强度和韧性。在扫描电镜的分析中发现,裂纹的扩展既有沿晶断裂,又有穿晶断裂,说明烧结体既具有较高的晶界强度,在断裂时又表现出较好的韧性。透射电镜的观察发现,在异常长大的α-Si_3N_4晶粒中
    
    存在显微缺陷,周围存在裂纹,甚至有裂纹穿过异常长大的晶粒。结果表
    明,烧结体中存在的较大的孔洞、晶粒的异常长大、裂纹等微观缺陷是
    513从陶瓷发生力学破坏的常见原因,改善微观组织,减小缺陷尺寸,是
    提高a一513从陶瓷性能的有效途径。
The construction, the property, the application and the preparative methods of silicon nitride ceramics were introduced hi this paper, and the pressureless sintering progress of Silicon Nitride ceramics was emphatically introduced.
    The pressureless sintering Si3N4 ceramics exhibits good use value and good performances in comparision with other sintered Si3N4 ceramics. The election of additives to increase density and to keep high-temperature strength is a key process of the pressureless sintering Si3N4 ceramics. The election of additives and pressureless sintering is the primary coverage of the paper. Si3N4 ceramics have been fabricated by pressureless sintering with rare-earth oxide composite additives at 1720 C , and the mechanical properties have been measured. The sintering process , composition of phase in Si3N4 ceramics and the microstructure have been studied by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
    The results show that the densification process was controlled by the mechanism of liquid phase sintering. The additives would reacted with the SiO2 which was on the surface of the Si3N4 particles to from silicate liquid phase at high temperature, and silicate liquid phase would from glassy phase at grain boundary which was harmful to the high temperature properties. The additives with MgO and rare-earth oxide was found to be much effective as a sintering aid for Si3N4 because it can effectively acceleration of sintering and reduce suiter point. The results indicated that the higher the relative density, the higher the mechanical properties, and 1% TiC can increases the bending strength and hardnessl. The pressureless sintered silicon nitride achieved a relative density of 97.8%, a bending strength of 903 MPa, a Vickers diamond
    
    
    
    hardness of 13.9 GPa and a fracture toughness of 7.5MPa.M1/2. Corresponding, the pressureless sintered silicon nitride achieved a relative density of 97.4%, a bending strength of 923 MPa, a Vickers diamond hardness of 15.0 GPa and a fracture toughness of 7.02MPa.M1/2.
    Micro-analysis indicated that the typical microstructure. of sintered SisN4 is made of equiaxed a-Si3N4 crystalline grains and cylindrical B- Si3N4 crystalline grains. The amount and shape of B- Si3N4 crystalline grains is relative of the in raw stuff power. Si3/be made ofa-Si3N4 raw stuff power contains abnormal growth cylindrical - Si3N4 crystalline grains which was helpful to the mechanical properties, intergranular cracks and transgranular cracks was found in sintered Si3N4 ceramics . The blow holes , abnormal grain growth and crack is the chief cause of ceramics damage.
引文
[1] 江东亮.精细陶瓷材料.北京:中国物资出版社,2000:87
    [2] 陈力,冯坚,氮化硅陶瓷材料的研究现状及其应用,硬质合金,2002(4):226-229
    [3] Wang C. M, Pan X. Q, Ruble M, Riley F. L and Mitomo M, Silicon Nitride Crystal Structure and Observation of Lattice Defects, J. Mater. Sci, 1996; 31 : 5281-5298
    [4] Priest H. F, Bums F. C, Priest G. L and Skaar E. C, Oxygen Content of Alpha Silicon Nitride, J. Am. Cream. Soc, 1973; 7: 395-399
    [5] Wang C. M, Fine Structure Featwes in α-Silicon Nitride Powder Particles and Their Implications, J. Am. Ceram. Soc. 1995; 78 : 3393-3396
    [6] 钦征骑.新型陶瓷材料手册.江苏:江苏科学技术出版社,1995:254
    [7] Lai K. R and Tien T. Y, Kinetics of β-Si_3N_4 Grain Growth in Si_3N_4 Ceramic Sintered under High Nitrogen Pressure, J. Am. Ceram. Soc., 1993; 76: 91-96
    [8] Goto Y and Thamas G, Phase Transformation and Micro structural Changes of Si_3N_4 During Sintering, J. Mater. Sci., 1995; 30: 2194
    [9] 徐友仁、黄莉萍、符锡仁、严东生.添加稀土氧化物的热压氮化硅陶瓷,中国科学,1985;4A:384-387
    [10] Yoon S. Y, Alcatsu T and Uasuda E, The Microstructural and Geep Deformation of Hot-Pressed Si_3N_4 With Different Amounts of Sinter Additives, J. Mater. Res., 1996; 11: 120-126
    [11] Mitomo M, Tsutsumi M, Tanaka H, et al. Grain Growth During Gas-Pressure Sintering of β-Silicon Nitride, Journal of The American Ceramic Society. 1990, 73 (8): 2441-2445
    [12] 李文兰,庄汉锐,符锡仁等.以YAG为添加剂的气压烧结氮化硅,无机材
    
    料学报.1996,11(1):175-178
    [13] Burden S. Hong J. et al. Comparison of hot-isostatically pressed and uniaxially hot-pressed Al_2O_3-TiC cutting tools, Am Ceram Soc Bull. 1988, 67(6): 1003
    [14] Tanaka I, Igashira K, Okamoto T and Niihara K, High-Temperature Fracture Mechanism of Low-Ca Doped Silicon Nitride, J. Am. Ceram. Soc., 1995; 78: 752-759]
    [15] Wedel E M K, Falk L K L. et al. Si_3N_4 Ceramics Formed by HIP Using Different Oxide Additions-Relation Between Microstructure and Properties, J. Mater. Sci., 1991; 26:5575-5584
    [16] 张东明、傅正义.放电等离子加压烧结(SPS)技术特点及应用,武汉工业大学学报,1999;21(6);15-17
    [17] SuttonWH.Bull. Am. Cer.Soc., 1989,68(2):376
    [18] 徐耕夫,庄汉锐,李文兰,邬凤英,氮化硅陶瓷的微波烧结,硅酸盐通报 1998年第4期,53-58;
    [19] 钦征骑.新型陶瓷材料手册.江苏:江苏科学技术出版社,1995:257
    [20] M.Mitomo,J.Mater, Sci.,11(1976),1103.
    [21] R.E.Loehman,etal.J.Am.ceram.Soc., 63 (3-4), (1980)144.
    [22] W.a.Sanders, etal. J.Am.ceram.Soc., 68(7), 1985, C-160.
    [23] Daniel Suttor, etal. J.Am.ceram.Soc., 75(5), (1992), 1063.
    [24] Keighi Negita, J. Mater, Sci.,25,(1985),755.
    [25] Drew P ect., The Microstructure of Silicon Nitfide Ceramics during hot-pressed transformation, J Mater Sci,1974.9:211
    [26] G. R. Terwilliger, etal. J.Mater. Sci., 10, (1975)1169.
    
    
    [27] P. Draw.etal. J.Mater.Sci.,9,(1974)261.
    [28] F.F.Lang,etal. J.Mater.Sci., 15, (1980) 601.
    [29] D.R.clarke.etal. J.Am.Mater. Soc.,63, (1980): 586.
    [30] Bao Yiwang. Evaluation on bittleness and impact resistance of structure. J. Nu. Engi. And Desi., 1994,150:323.
    [31] 包亦望.氧化铝、氮化硅和碳化硅的疲劳特性与寿命预测.硅酸盐学报,2001,29(1):21.
    [32] Tanaka I, Pezzottr G and Matsushita K, Impurities Enhanced Cavity Formation in Si_3N_4 at Elevated Temperatures, J. Am. Ceram. Soc., 1991; 74 : 752-759
    [33] Normanl Hecht, etal. A.M. Ceram. Soc. Bull.,71(4),(1992),653.
    [34] Goto Y and G. Thomas, Microstructure of Silicon Nitride Ceramics Sintered With Rare-Earth Oxides, Acta. Metal. Mater., 1995; 43 : 923-930
    [35] 26.苏盛彪,包亦望等,Y_2_O3和GeO_2对氮化硅烧结性能的影响,中国稀土学报,2002:20(1),35-37.
    [36] 27.陈红光,孙维莹.稀土氧化物对β-SiAlON陶瓷的致密化和力学性能的影响.无机材料学报,1998,13(1)33.
    [37] 杨海涛、杨国涛、袁润章.氮化硅陶瓷烧结中玻璃相的自动析晶.中国有色金属学报,1998;8(1):119.
    [38] 董文麟.氮化硅陶瓷.北京:中国建筑工业出版社,1987,56~571
    [39] 严东生,孙维莹.Ln-Si-Al-O-N系统的相关系和材料组分设计.中国科学(B辑),2000:30(3):210-217
    [40] 穆柏春,李明,由向群等.稀土对Si_3N_4力学性能和显微组织的影响.中国稀土学报,2000:18(1):38~40
    
    
    [41] 王零森.特种陶瓷,中南工业大学出版社,1994:181
    [42] 陈建平,席俊,关振.陶瓷材料小裂纹阻力曲线拟合参数的研究,硅酸盐学报.1997,25(2):35—41
    [43] 陶瓷材料的显微结构.
    [44] 王零森.特种陶瓷,中南工业大学出版社,1994:171
    [45] Haitao Yang, Steve Roberts. Presureless Sintering of Silicon Nitride with Magnisin and Yttria. Materials Chemistry and Physics (to be published).
    [46] 杨海涛.陶瓷材料的研究,[博士学位论文].长沙,中南工业大学,1993
    [47] 杨海涛,徐润泽等,碳化钨对常压烧结氮化硅陶瓷致密化的影响,硬质合金,1997,14(1):28-32
    [48] 清华大学新型陶瓷与精细工艺国家重点实验室译,[英]理查德,J.布鲁克主编,陶瓷工艺(第Ⅱ部分),科学出版社,1999:90.
    [49] 郑关明,黄良创著,玻璃形成学,兵器工业出版社,1987.
    [50] 徐鑫,黄莉萍,刘学建等.起始粉末相组成对氮化硅材料显微结构和力学性能的影响,硅酸盐学报,2000,28(1):54-56
    [51] Mitomo M, Yang N, Kishi Y, etal. Influence of powder characteristics on gas pressure sintering of Si_3N_4 [J]. J Mater Sci, 1988,23(9):3413—3419.
    [52] Hirosaki N, kimune Y. ffect of grain growth of β-silicon nitride on strength, Weibull modulus and fracture toughness [J].J Am Ceram Soc, 1993,76(7): 1892—1894.
    [53] Emoto H, Mitomo M. Control and characterization of abnormally grown grains in silicon nitride ceramics [J].J Eur Ceram Soc, 1997,17(6):797—804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700