用户名: 密码: 验证码:
转基因内皮细胞修饰血管内支架的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠状动脉内植入支架已成为治疗冠心病的重要手段。然而,支架植入不能抑制新生内膜增生,支架内再狭窄(In-stent restenosis, ISR)的发生率仍有(13-20)%。目前,防治支架内再狭窄的研究热点在于药物洗脱性支架,而该支架植入后出现的一些问题已引起广泛关注:如晚期支架血栓形成,支架涂层材料的不良病理作用,内皮化延迟、动脉瘤、支架贴壁不全等。促进损伤血管愈合、加速支架完全再内皮化过程是解决问题的一条有效途径。
     因此,内皮细胞(Endothelial Cell, EC)在再狭窄形成过程中的作用越来越受到重视。内皮细胞移植能替代、修复受损内皮的功能并抑制内膜过度增生。体外培养的内皮细胞由于生长环境的改变,导致生长缓慢和其他生物特性的丢失,结合基因治疗,有望通过对体外培养的内皮细胞稳定转染生长因子,提升细胞的增殖能力;结合动态培养,有望促进内皮细胞在血管内支架表面的粘附和生长;结合模拟体内循环系统实验,有望控制细胞支架在输送过程中的损耗,保障动物实验结果的真实可靠性。本研究就是基于上述思路开展的应用基础研究,即转基因内皮细胞支架的初期研究。
     在本课题研究研究中,采用阳离子脂质体DOTAP对传代培养的人脐静脉内皮细胞稳定转染血管内皮生长因子VEGF121;并以此转基因内皮细胞为研究对象,设计并制作了用于血管内支架表面种植细胞的旋转培养装置,通过对旋转速度、旋转时间、细胞种植密度和重复旋转的次数这些影响因素的分析,寻找出了粘附效果最好的条件组合;用超声雾化喷涂法方法制备用于细胞粘附的蛋白涂层,并用扫描电镜和能谱测试仪检测制备好的蛋白涂层;根据得到的最佳旋转培养条件制备转基因内皮细胞包被支架,通过扫描电镜检测,旋转培养后血管内支架表面粘附的细胞数量和铺展情况,免疫荧光检测支架表面粘附的细胞表达VEGF蛋白的情况;体外流动腔实验检测经过传输的损耗和流动剪切力的作用后,转基因内皮细胞在血管内支架表面的粘附和生长情况;最后通过兔腹主动脉支架植入术的动物模型检测转基因内皮细胞包被支架的在体抗再狭窄和抗血栓的效果。
     研究结果如下:1)通过RT-PCR和免疫细胞化学鉴定,成功建立转VEGF基因人脐静脉内皮细胞系;2)通过对旋转速度、旋转时间、细胞种植密度和重复旋转的次数这些影响因素的分析,寻找出了粘附效果最好的条件组合,当细胞种植密度为1×105cells/ml,旋转时间为6h,旋转速度为0.4rpm时,旋转培养粘附的细胞数量最多;3)制备明胶浓度为2-6mg/ml,多聚赖氨酸为10μg/ml的混合溶液,用超声雾化喷涂法方法得到的蛋白涂层经检测在支架表面涂覆紧密、均匀;4)通过优化的旋转培养条件制备出转基因内皮细胞覆盖的血管内支架,在光学显微镜和扫描电镜下观察,细胞在支架表面粘附生长,荧光显微镜检测细胞高表达VEGF蛋白;5)体外流动腔实验检测发现,转基因内皮细胞在模拟体内传输过程中,将有部分细胞损失,但是在不同的切应力作用下,转基因内皮细胞又很快的恢复生长;6)动物实验结果发现与两个对照组相比,细胞包被支架均极显著的抑制了内膜增生和降低了支架内再狭窄。
     综上所述,本研究初步解决了血管内支架的细胞种植方法,提出一种组织工程血管内支架的实验室制备方法和检测方法,得到的相关实验结果为细胞种植防治血管内支架再狭窄的临床应用提供实验依据。内皮细胞种植支架预防再狭窄的研究已显示出诱人的前景,随着进一步的深入研究,相信将会开辟出一片新的领域。
Vascular stent implant in coronary artery is critical treatment to the coronary heart disease. However, neointima hyperplasia still couldn’t be inhibited through stent embedding. The incidence rate of In-stent restenosis (ISR) is still to remain 13-20%. Most studies lay particular emphasis on drug-eluting stent (EDS), although the uncovered struts may be prone to late thrombosis after the discontinuation of antiplatelet therapy, and also the other potential complications such as delayed endothelialization, aneurysm because of the coating materials. So it may be an effective process to work out a solution by promoting re-endothelialization and injure healing of endothelial layer.
     Therefore, the integrity and functional activity of the endothelial monolayer play a crucial role in the prevention of thrombosis and in-stent restenosis. More and more researches illustrated that the coating endothelial cells (ECs) of stents would repair the endothelial layer of the injured arterial wall and suppress intima hyperplasy. ECs cultured in vitro may lost some biological characteristics and lead to slow growth due to the changes of environment. Combination of gene therapy is expected to enhance cell proliferation by stable transfection with vascular endothelial growth factor.
     Combination of dynamic culture is expected to promote the adherence and growth of endothelial cells on the vascular stent surface. Combination of the simulation experiments of circulatory system is expected to control the cells’loss in the process of stent implantation and improve the reliability of animal experiments results. This study is based on the above ideas in the application of basic research, the initial study of genetically modified endothelial cells coating stent.
     In this research, liposome DOTAP was used in the stable transfection experiment for vascular endothelial growth factor VEGF121 gene transfer to human umbilical vein endothelial cells (HUVECs) according to standard methods. Then the tansgenc ECs were used in the following experiments. A rotational culture device was designed for the cells seeding onto metallic stents surface through the analysis of these factors such as the rotation speed of rotation, planting density and repetition of the number of rotating, finding the best conditions for adhesion. Ultrasonic atomization spraying method was selected to prepare the protein coating, and scanning electron microscopy and energy spectrum were used for detection of protein coating. Transgenic endothelial cells was seeded onto the stents surface through the the best adhesion conditions we got. The morphology and growth of cells on the surface were observed respectively by SEM and the expression of VEGF was detected by fluorescence microscope. An extracorporeal circulation system was used to simulate the transfer process and check the cells adhesion and growth on the modified surface after stenting in vitro. Bare metal stent (BMS), protein coated stent and transgenic endothelial cells coated stent (ECS) were deployed in the infra-renal abdominal aorta to detect the efficiency on promoting re-endothelization and inhibiting in-stent restenosis in vivo.
     HUVECs line monoclonal cells with the stable expression of VEGF121 gene was establish through the detection of human VEGF121 protein expression by immunohistochemistry, and human VEGF121 RNA by RT-PCR. Cells grew on the surface of stents indeed through rotational culture, results showed that dynamic seeding was adequate when the rotational speed was 0.4 rpm, rotational time was 6h, cell density was 1×105 cells/ml. Hybrid solution was prepared with gelatin concentration of 2-6 mg/ml and poly-L-lysine concentration of 10 ng/ml. The protein coating was close and uniform through ultrasonic atomization spraying detected by SEM. Stent seeded with transgenic ECs were observed by SEM and fluorescence microscope. In vitro studies revealed that cells adhered on the surface of stents confertimly. And the covered rate of the surface achieved more than 90 percentages after 24 h. Immunofluorescence of VEGF121 also showed the high rate of coverage. Cells would lose a few after stent implantation in the flow system. Howere, cells kept increasing after 12 h. Transgenic ECs-coated stent was associated with a significant reduction in neointimal area and percentage stenosis, a significant promotion in re-endothelization on the surface of stent compared with bare metal stents and protein coated stent.
     To sum up, this study were initially solved the methods of cell seeding onto vascular stent surface, introduced a laboratory preparation and detection techniques for a vascular stent in tissue engineering. The results of experiments were provided evidences in the prevention and treatment of ISR in clinical application. Prevention of restenosis through endothelial cells planting has shown attractive prospects, with further in-depth study that will be opened up to a new area.
引文
[1] A.R. Gruntzig, A. Senning, W.E. Siegenthaler. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty[J]. N. Engl. J. Med, 1979, 301:61-68.
    [2] D.R. Holmes Jr., R.E. Vlietstra, H.C. Smith, G.W. Vetrovec, K.M. Kent, M.J. Cowley, et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute[J]. Am. J. Cardiol, 1984, 53:77C-81C.
    [3] J.A. Bittl, D.P. Chew, E.J. Topol, D.F. Kong, R.M. Califf. Meta-analysis of randomized trials of percutaneous transluminal coronary angioplasty versus atherectomy, cutting balloon atherotomy, or laser angioplasty[J]. J. Am. Coll. Cardiol, 2004, 43:936-942.
    [4] P.W. Serruys, P. de Jaegere, F. Kiemeneij, C. Macaya, W. Rutsch, G. Heyndrickx, et al. A comparison of balloon-expandablestent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group[J]. N. Engl. J. Med, 1994, 331:489-495.
    [5] D.L. Fischman, M.B. Leon, D.S. Baim, R.A. Schatz, M.P. Savage, I. Penn, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators[J]. N. Engl. J. Med, 1994, 331:496-501.
    [6] P. Hall, S. Nakamura, L. Maiello, A. Itoh, S. Blengino, G. Martini, et al. A randomized comparison of combined ticlopidine and aspirin therapy versus aspirin therapy alone after successful intravascular ultrasound- guided stent implantation[J]. Circulation, 1996, 93:215-222.
    [7] M.B. Leon, D.S. Baim, J.J. Popma, P.C. Gordon, D.E. Cutlip, K.K. Ho, et al. A clinical trial comparing three antithrombotic-drug regimens after coronary- artery stenting[J]. Stent Anticoagulation Restenosis Study Investigators, N. Engl. J. Med, 1998, 339:1665-1671.
    [8] M.A. Costa,D.P. Foley,P.W. Serruys. Restenosis: the problem and how to deal with it[J]. Practical Interventional Cardiology, 2002:279-294.
    [9] S. Nikol, T.Y. Huehns, B. Hofling. Molecular biology and post-angioplasty restenosis[J]. Atherosclerosis, 1996, 123:17-31.
    [10] M. Shuchman. Debating the risk of drug-eluting stents[J]. N ENGL J MED, 2007, 356:325-328.
    [11] G.D. Curfman, S. Morrissey, J.A. Jarcho, J.M. Drazen. Drug-eluting coronary stents—promiseand uncertainty[J]. N ENGL J MED, 2007, 356:1059-1060.
    [12] M. Shuchman. Trading restenosis for thrombosis? New question about drug-eluting stents[J]. N Engl J Med, 2006, 355:1949-1952.
    [13] R.G. Hauser, B.J. Maron. Lessons from the failure and recall of an implantable cardioverter-defibrillator[J]. Circulation, 2005,112:2040-2042.
    [14] C.L. Grines, R.O. Bonow, D.E. Casey, T.J. Gardner, P.B. Lockhart, D.J. Moliterno. et al. Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents - A science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians[J]. Circulation, 2007, 115:813-818.
    [15] C. di Mario, F. Marsico, M. Adamian, E. Karvouni, R. Albiero, A. Colombo. New recipes for in-stent restenosis: cut, grate, roast, or sandwich the neointima? [J] Heart, 2000, 84:471-475.
    [16] A.T. Ong, J. Aoki, E.P. McFadden, P.W. Serruys. Classification and current treatment options of in-stent restenosis. Present status and future perspectives, Herz, 2004, 29:187-194.
    [17] H.C. Lowe, S.N. Oesterle, L.M. Khachigian, Coronary instent restenosis: current status and future strategies[J]. J. Am. Coll. Cardiol, 2002, 39:183-193.
    [18] P.W. Radke, A. Kaiser, C. Frost, U. Sigwart. Outcome after treatment of coronary in-stent restenosis; results from a systematic review using meta-analysis techniques[J]. Eur. Heart J, 2003, 24:266-273.
    [19] H. Gulbins, A.Pritisanac, A. Uhlig, A.Goldemund, B.M. Meiser, B. Reichart, et al. Seeding of Human Endothelial Cells on Valve Containing Aortic Mini-Roots: Development of a Seeding Device and Procedure[J]. Ann Thorac Surg, 2005(79):2119-2126.
    [20] M.A. Brown, C.S. Wallace, C.C. Anamelechi, E. Clermont, W.M. Reichert, G.A. Truskey. The use of mild trypsinization conditions in the detachment of endothelial cells to promote subsequent endothelialization on synthetic surfaces[J]. Biomaterials, 2007, 28:3928-3935.
    [21] H. Inoguchia, T. Tanaka, Y. Maehara, T. Matsuda. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft[J]. Biomaterials, 2007, 28:486–495.
    [22] U. Rosenschein, E.J. Topol. Uncoupling clinical outcomes and coronary angiography: a review and perspective of recent trials in coronary artery disease[J]. Am. Heart J, 1996, 132:910-920.
    [23] R. Komatsu, M. Ueda, T. Naruko, A. Kojima, A.E. Becker. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemicalanalyses[J]. Circulation, 1998, 98:224-233.
    [24] A. Farb, G. Sangiorgi, A.J. Carter, V.M. Walley, W.D. Edwards, R.S. Schwartz, et al. Pathology of acute and chronic coronary stenting in humans[J]. Circulation, 1999, 99:44-52.
    [25] A. Farb, D.K. Weber, F.D. Kolodgie, A.P. Burke, R. Virmani. Morphological predictors of restenosis after coronary stenting[J]. Circulation, 2002, 105(25): 2974-2980.
    [26] H.M. van Beusekom, W.J. van der Giessen, R. van Suylen, E. Bos, F.T. Bosman, P.W. Serruys. Histology after stenting of human saphenous vein bypass grafts: observations from surgically excised grafts 3 to 320 days after stent implantation[J]. J. Am. Coll. Cardiol, 1993, 21:45-54.
    [27] P. Martin. Wound healing—aiming for perfect skin regeneration[J]. Science, 1997, 276:75-81.
    [28] A. Farb, F.D. Kolodgie, J.Y. Hwang, A.P. Burke, K. Tefera, D.K. Weber, et al. Extracellular matrix changes in stented human coronary arteries[J]. Circulation, 2004, 110:940–947.
    [29] I.M. Chung, H.K. Gold, S.M. Schwartz, Y. Ikari, M.A. Reidy, T.N. Wight. Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment[J]. J. Am. Coll. Cardiol, 2002, 40:2072-2081.
    [30] R. Kornowski, M.K. Hong, F.O. Tio , O. Bramwell, H. Wu, M.B. Leon. In-stent restenosis: contributions of inflammatory response and arterial injury to neointimal hyperplasia[J]. J Am Coll Cardiol, 1998, 31 (1):224-230.
    [31] N.A. Scott, G.D. Cipolla, C.E. Ross, B. Dunn, F.H. Martin, L. Simonet, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries[J]. Circulation, 1996, 93:2178-2187.
    [32] M.J. Post, C. Borst, R.E. Kuntz. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig[J]. Circulation, 1994, 89:2816-2821.
    [33] M. Nakatani, Y. Takeyama, M. Shibata, M. Yorozuya, H. Suzuki, S. Koba, et al. Mechanisms of restenosis after coronary intervention: difference between plain old balloon angioplasty and stenting[J]. Cardiovasc. Pathol, 2003, 12:40-48.
    [34] G.S. Mintz, J.J. Popma, A.D. Pichard, K.M. Kent, L.F. Satler, C. Wong, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study[J]. Circulation, 1996, 94:35- 43.
    [35] P.H. Grewe, T. Deneke, A. Machraoui. J. Barmeyer, K.M. Muller. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen[J]. J Am Coll Cardiol, 2000, 35 (2):157-163.
    [36] G.P. Zhao , X.D. Wo, X.D. Hong. Effect s of curcumin purification to blood vascular smoot h cell proliferation[J]. Journal of Zhejiang College of TCM (Chinese), 1999, 23(3):21.
    [37] R. Hoffmann, G.S. Mintz, G.R. Dussaillant, J.J. Popma, A.D. Pichard, L.F. Satler, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study[J]. Circulation, 1996, 94:1247-1254.
    [38] R. Hoffmann, G.S. Mintz, J.J. Popma, L.F. Satler, A.D. Pichard, K.M. Kent, et al. Chronic arterial responses to stent implantation: a serial intravascular ultrasound analysis of Palmaz-Schatz stents in native coronary arteries[J]. J. Am. Coll. Cardiol, 1996, 28:1134-1139.
    [39] M. Nakamura, P.G. Yock, H.N. Bonneau, K. Kitamura, T. Aizawa, H. Tamai, et al. Impact of peri-stent remodeling on restenosis: a volumetric intravascular ultrasound study[J]. Circulation, 2001, 103:2130-2132.
    [40] A. Farb, G. Sangiorgi, A.J. Carter, V.M. Walley, W.D. Edwards, R.S. Schwartz. Pathology of acute and chronic coronary stenting in humans[J]. Circulation, 1999, 99 (1):44-52.
    [41] R. Komat su, M. Ueda, T. Naruko, A. Kojima, A.E. Becker. Neointimal tissue response at sites of coronary stenting in humans: macroscopic , histological , and immunohistochemical analyses[J]. Circulation, 1998, 98 (3) :224-233.
    [42] F.G.Welt, C. Rogers. Inflammation and restenosis in the stent era[J]. Arterioscler. Thromb. Vasc. Biol, 2002, 22:1769-1776.
    [43] A. Colombo, G. Sangiorgi. The monocyte: the key in the lock to reduce stent hyperplasia? [J] J. Am. Coll. Cardiol, 2004, 43:24-26.
    [44] F.G. Welt, E.R. Edelman, D.I. Simon, C. Rogers. Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries[J]. Arterioscler. Thromb. Vasc. Biol, 2000, 20: 2553-2558.
    [45] C. Rogers, F.G. Welt, M.J. Karnovsky, E.R. Edelman. Monocyte recruitment and neointimal hyperplasia in rabbits[J]. Coupled inhibitory effects of heparin, Arterioscler. Thromb. Vasc. Biol, 1996, 16:1312-1318.
    [46] C. Rogers, E.R. Edelman, D.I. Simon. A mAb to the beta2-leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits[J]. Proc. Natl. Acad. Sci. U. S. A, 1998, 95:10134-10139.
    [47] E. Mori, K. Komori, T. Yamaoka, M. Tanii, C. Kataoka, A. Takeshita, et al. Essential role of monocyte chemoattractant protein-1 in development of restenotic changes (neointimal hyperplasia and constrictive remodeling) after balloon angioplasty in hypercholesterol-emic rabbits[J]. Circulation, 2002, 105:2905-2910.
    [48] D. Fukuda, K. Shimada, A. Tanaka, T. Kawarabayashi, M. Yoshiyama, J. Yoshikawa, Circulating monocytes and in-stent neointima after coronary stent implantation[J]. J. Am. Coll. Cardiol, 2004,43:18-23.
    [49] F.J. Neumann, I. Ott, M. Gawaz, G. Puchner, A. Schomig. Neutrophil and platelet activation at balloon-injured coronary artery plaque in patients undergoing angioplasty[J]. J. Am. Coll. Cardiol, 1996, 27:819-824.
    [50] J.K. Mickelson, N.M. Lakkis, G. Villarreal-Levy, B.J. Hughes, C.W. Smith. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? [J] J. Am. Coll. Cardiol, 1996, 28:345-353.
    [51] T. Inoue, Y. Sakai, S. Morooka, T. Hayashi, K. Takayanagi, Y. Takabatake. Expression of polymorphonuclear leukocyte adhesion molecules and its clinical significance in patients treated with percutaneous transluminal coronary angioplasty[J]. J. Am. Coll. Cardiol, 1996, 28:1127-1133.
    [52] T. Inoue, R. Sohma, T. Miyazaki, Y. Iwasaki, I. Yaguchi, S. Morooka. Comparison of activation process of platelets and neutrophils after coronary stent implantation versus balloon angioplasty for stable angina pectoris[J]. Am. J. Cardiol, 2000, 86:1057-1062.
    [53] T. Inoue, T. Uchida, I. Yaguchi, Y. Sakai, K. Takayanagi, S. Morooka. Stent-induced expression and activation of the leukocyte integrin Mac-1 is associated with neointimal thickening and restenosis[J]. Circulation, 2003, 107:1757-1763.
    [54] F. Cipollone, M. Marini, M. Fazia, B. Pini, A. Iezzi, M. Reale, et al. Elevated circulating levels of monocyte chemoattractant protein-1 in patients with restenosis after coronary angioplasty[J]. Arterioscler. Thromb. Vasc. Biol, 2001, 21:327-334.
    [55] J.F. Tanguay, T. Hammoud, P. Geoffroy, Y. Merhi. Chronic platelet and neutrophil adhesion: a causal role for neointimal hyperplasia in in-stent restenosis[J]. J. Endovasc. Ther, 2003, 10:968-977.
    [56] F.G. Welt, C. Tso, E.R. Edelman, M.A. Kjelsberg, J.F. Paolini, P. Seifert, et al. Leukocyte recruitment and expression of chemokines following different forms of vascular injury[J]. Vasc. Med, 2003, 8:1-7.
    [57] K. Ohtani, M. Usui, K. Nakano, Y. Kohjimoto, S. Kitajima, Y. Hirouchi, et al. Antimonocyte chemoattractant protein-1 gene therapy reduces experimental in-stent restenosis in hypercholesterolemic rabbits and monkeys[J]. Gene Ther, 2004, 111:273-1282.
    [58] R. Kawamoto, K. Hatakeyama, T. Imamura, T. Ishikawa, H. Date, Y. Shibata, et al. Relation of C-reactive protein to restenosis after coronary stent implantation and to restenosis after coronary atherectomy[J]. Am. J. Cardiol, 2004, 94:104-107.
    [59] F. Versaci, A. Gaspardone, F. Tomai, F. Ribichini, P. Russo, I. Proietti, et al. Immunosuppressive therapy for the prevention of restenosis after coronary artery stent implantation (IMPRESS Study) [J]. J. Am. Coll. Cardiol, 2002, 40:1935-1942.
    [60] D.H. Walter, S. Fichtlscherer, M. Sellwig, W. Auch-Schwelk, V. Schachinger, A.M. Zeiher, Preprocedural C-reactive protein levels and cardiovascular events after coronary stent implantation[J]. J. Am. Coll. Cardiol, 2001, 37:839-846.
    [61] S. Glagov, E. Weisenberg, C.K. Zarins, R. Stankunavicius, G.J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries[J]. N. Engl. J. Med, 1987, 316:1371-1375.
    [62] N. Resnick, M.A. Gimbrone Jr.. Hemodynamic forces are complex regulators of endothelial gene expression[J]. Faseb J, 1995, 9:874-882.
    [63] P.F. Davies. Flow-mediated endothelial mechanotransduction[J]. Physiol. Rev, 1995, 75:519-560.
    [64] M.A. Gimbrone Jr., N. Resnick, T. Nagel, L.M. Khachigian, T. Collins, J.N. Topper. Hemodynamics, endothelial gene expression, and atherogenesis[J]. Ann. N.Y. Acad. Sci, 1997, 811:1 -10.
    [65] G. Garcia-Cardena, J. Comander, K.R. Anderson, B.R. Blackman, M.A. Gimbrone Jr.. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype[J]. Proc. Natl. Acad. Sci. U. S. A, 2001, 98:4478-4485.
    [66] K. Lin, P.P. Hsu, B.P. Chen, S. Yuan, S. Usami, J.Y. Shyy, et al. Molecular mechanism of endothelial growth arrest by laminar shear stress[J]. Proc. Natl. Acad. Sci. U. S. A, 2000, 97:9385-9389.
    [67] M.J. Levesque, R.M. Nerem, E.A. Sprague. Vascular endothelial cell proliferation in culture and the influence of flow[J]. Biomaterials, 1990, 11:702-707.
    [68] J.N. Oshinski, D.N. Ku, S. Mukundan Jr., F. Loth, R.I. Pettigrew. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping[J]. J. Magn. Reson. Imaging, 1995, 5:640-647.
    [69] K.S. Cunningham, A.I. Gotlieb, The role of shear stress in the pathogenesis of atherosclerosis[J]. Lab. Invest, 2004, 85:9-23.
    [70] C. Cheng, R. de Crom, R. van Haperen, F. Helderman, B.M. Gourabi, L.C. van Damme, et al. The role of shear stress in atherosclerosis: action through gene expression and inflammation? [J] Cell Biochem. Biophys, 2004, 41:279-294.
    [71] A.M. Malek, S.L. Alper, S. Izumo. Hemodynamic shear stress and its role in atherosclerosis[J]. JAMA, 1999, 282:2035-2042.
    [72] N. Benard, D. Coisne, E. Donal, R. Perrault. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress[J]. J. Biomech, 2003, 36:991-998.
    [73] J.F. LaDisa Jr., I. Guler, L.E. Olson, D.A. Hettrick, J.R. Kersten, D.C. Warltier, et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation[J]. Ann. Biomed. Eng, 2003, 31:972-980.
    [74] S.G. Carlier, L.C. van Damme, C.P. Blommerde, J.J. Wentzel, G. van Langehove, S. Verheye, et al. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: inhibition through reduction of inflammation? [J] Circulation, 2003, 107:2741-2746.
    [75] J.J. Wentzel, R. Krams, J.C. Schuurbiers, J.A. Oomen, J. Kloet, W.J. Der Giessen, et al. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries[J]. Circulation, 2001, 103:1740-1745.
    [76] E. Van Belle, F.O. Tio, T. Couffinhal, L. Maillard, J. Passeri, J.M. Isner. Stent endothelialization. Time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition[J]. Circulation, 1997, 95:438-448.
    [77] P.H. Grewe, T. Deneke, S.K. Holt, A. Machraoui, J. Barmeyer, K.M. Muller. Scanning electron microscopic analysis of vessel wall reactions after coronary stenting[J]. Z. Kardiol, 2000, 89:21-27.
    [78] R.S. Schwartz, K.C. Huber, J.G. Murphy, W.D. Edwards, A.R. Camrud, R.E. Vlietstra, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model[J]. J. Am. Coll. Cardiol, 1992, 19:267-274.
    [79] S.P. Karas, M.B. Gravanis, E.C. Santoian, K.A. Robinson, K.A. Anderberg, S.B. King III. Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis[J]. J. Am. Coll. Cardiol, 1992, 20:467-474.
    [80] C. Rogers, E.R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis[J]. Circulation, 1995, 91:2995-3001.
    [81] G.A. Dunn, A.F. Brown. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation[J]. Journal of Cell Science, 1991, 164:11-26.
    [82] J. Meyle, K. Gultig, W. Nisch. Variation in contact guidance by human cells on a microstructured surface[J]. Journal of Biomedical Materials Research, 1995, 29:81-88.
    [83] J.C. Palmaz, A. Benson, E.A. Sprague. Influence of surface topography on endothelialization of intravascular metallic material[J]. J Vasc Interv Radiol, 1999, 10(4):439-444.
    [84] J. Lu, M.P. Rao, N.C. MacDonald, D. Khang, T.J. Webster. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features[J]. Acta Biomaterialia, 2008, (4):192-201.
    [85] C. Oneill, P. Jordan, G. Ireland. Evidence for two distinct mechanisms of anchoragestimulation in freshly explanted and 3T3 swiss mouse fibroblasts[J]. Cell, 1986, 44:489-496.
    [86] C. Simon, J.C. Palmaz, E.A. Sprague. Influence of topography on endothelialization of stents: clues for new design[J]. J Long Term Eff Med Implants, 2000, 10(1-2):143-151.
    [87] M. Hamuro, J.C. Palmaz, E.A. Sprague, C. Fuss, J. Luo. Influence of stent edge angle on endothelialization in an in vitro model[J]. J Vase Interv Radiol, 2001, 12 (5):607-611.
    [88] E.A. Jaffee, D.F. Mosher. Synthesis of fibronectin by cultured human endothelial cells[J]. J Exp Med, 1978, 147:1779.
    [89] J.S. Budd, K.E. Allen, P.R. Bell, R.F. James. The effect of varying fibronectin concentration on the attachment of endothelial-cells to polytetrafluoroethylene vascular grafts[J]. JOURNAL OF VASCULAR SURGERY, 1990, 12:126-130.
    [90] J.M. Foidart, E.W. Bere, M. Yaar, S.I. Rennard, M. Gullino, G.R. Martin, et al. Distribution and immunoelectron miscroscopic location of laminin, a noncollagenous basement membrane glycoprotein[J]. Lab Invest, 1980, 42:331.
    [91] H.K. Kleinman, R.J. Klebe. Role of collagenous matrices in the adhesion and growth of cells[J]. J Cell Biol, 1981, 88:473.
    [92] A. Bayer, S. Peters, F. Settepani, M. Pagliaro, G. Galletti. Fibrin sealant coated stents compared with non-coated stnets in a porcine carotid artery model. Preliminary study report[J]. J Cardiovasc Surg (Torino), 2001, 42(4):543-549.
    [93] E. Atalar, I. Haznedaroglu, K. Aytemir, S. Aksoyek, K. Ovunc, A. Oto, et al. Effects of stent coating on platlets and endothelial cells after intracoronary stent implantation[J]. Clin Cardiol, 2001, 24(2):159-164.
    [94] R. Virmani, F.D. Kolodgie, Md. Dake, J.H. Silver, R.M. Jones, M. Jenkins, et al. Histopathologic evaluation of an expanded polytetrafluoroethylene-nitinol stent endoprosthesis in caine iliofemoral arteries[J]. J Vasc Interv Radiol, 1999, 10(4):445-456.
    [95] Mp. Ombrellaro, S.L. Stevens, J. Sciarrotta, D. Schaeffer, M.B. Freeman. Goldman MH. Effect of intra-arterial environment on endothelialization and basement membrane organization in polytetrafluoroethylene grafts[J]. Am J Surg, 1997, 174(1):29-32.
    [96] T. Shirota, H. Yasui, H. Shimokawa, T. Matsuda. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue[J]. Biomaterials 2003, (24):2295–2302.
    [97] E. Van Belle, F.O. Tio, D. Chen, L. Maillard, D. Chen, M. Kearney. Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibit thrombus formation and intimal thickening[J]. J Am Coll Cardiol, 1997, 29(6):1371-1379.
    [98]张鸿坤,张楠,汪忠镐,李鸣,金炜,封华. CD34+干细胞的分化及其在人工血管内皮化中的应用[J].浙江大学学报(医学版). 2004,第33卷,第2期:147-150.
    [99] T. Asahara, C. Bauters , C. Pastore, M. Kearney, S. Rossow, S. Bunting, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery[J]. Circulation, 1995, 91:2793.
    [100] C. Bauters, T. Asahara, L.P. Zhang, S. Takeshita, S. Bunting, N. Ferrara, et al. Recovery of disturbed endothelium dependent flow in the collateral-perfused rabbit ischemia hindlimb after administration of vascular endothelial growth factor[J]. Circulation, 1995, 91:2793.
    [101] J.M. Isner, K. Walsh, J. Symes, A. Pieczek, S. Takeshita, J. Lowry, et al. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease[J]. Circulation, 1995, 91:2687
    [102]周茹,郑婕,徐清斌,戴贵东.大鼠主动脉内皮细胞的贴壁法培养[J].宁夏医学院学报, 2007, 29(1):99-101.
    [103]牛青霞,何韶衡,陈卓毅,陈韩秋.人脐静脉内皮细胞体外培养与鉴定新方法探索[J].汕头大学医学院学报, 2005, 118(11):5-8.
    [104]许勤,陈书艳,金誉,荣烨之.人外周血内皮祖细胞培养及特性[J].中华实验外科杂志, 2004, 21(5):602-604.
    [105] D. Tobias, G.E. Reinhold, I. Fumiaki, B. Boris, B. Rainer, J.C. Andrew, et al. Reichenspurner, Claudia Bergow, Marc P. Pelletier,Robert C. Robbins, Sonja Schrepfer. Introducing the first polymer-free leflunomide eluting stent[J]. Atherosclerosis, 2008, in press.
    [106] T.K. Yeo, D.R. Senger, H.F. Dvorak, L. Freter, K.T. Yeo. Glycosylation is essential for efficient secretion but not for permeability - enhancing activity of vascular permeability fafactor (vascular endothelial growth factor) [J]. Biochem Biophys Res Commun, 1991, 179 (3):1568-1575.
    [107] T. Mustonen, K. Alitalo. Endothelia receptor tyrosine kinase involved in angiogenesis[J]. J Cell Biol, 1995, 129 (4) : 895-898.
    [108]陈光辉,胡厚祥.心血管疾病基因治疗技术及展望.心血管病学进展, 1998, 19(3):172-175
    [109] T. Asahara, D. Chen, Y. Tsurumi, M. Kearney, S. Rossow, J. Passeri, et al. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer[J]. Circulation, 1996, 94:3291-3302.
    [110] Y. Numaguchi, K. Okumura, M. Harada, K. Naruse, M. Yamada, H. Osanai, et al. Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries[J]. Cardiovascular research, 2004, 61(1):177-185.
    [111] L.J. Feldman, O. Tahlil, G. Steg. Perspectives of arterial gene therapy for the prevention ofrestenosis[J]. Cardiovasc Res, 1996, 32(2):194-207.
    [112] M. Laitinen, T. Pakkanen, E. Donetti, R. Baetta, J. Luoma and P. Lehtolainen et al., Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid–liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses[J]. Hum. Gene Ther, 1997, 8:1645-1650.
    [113] D.H. Walter, M. Cejna, L. Diaz-Sandoval, S. Willis, L. Kirkwood, P.W. Stratford, et al., Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis[J]. Circulation, 2004, 110:36-45.
    [114] A.K. Hanna, J.C. Fox, D.G. Neschis, S.D. Safford, J.L. Swain, M.A. Golden. Antisense basic fibroblast growth factor gene transfer reduces neointimal thickening after arterial injury[J]. J. Vasc. Surg, 1997, 25:320-325.
    [115] J. Deguchi, T. Namba, H. Hamada, T. Nakaoka, J. Abe, O. Sato et al., Targeting endogenous platelet-derived growth factor B-chain by adenovirus-mediated gene transfer potently inhibits in vivo smooth muscle proliferation after arterial injury[J]. Gene Ther, 1999, 6:956-965.
    [116] F. Sharif, S. Hynes, J. Mcmahon, K. Daly, J. Crowley, T. O'brien. Accelerated re-endothelialization in an eNOS transduced iliac artery following gene delivery from an adenoviral eluting stent[J]. European heart journal, 2006, 27: 124-125.
    [117] D.J. Dzau , M. Mann, R. Morishita, Y. Kaneda. Fusigenic viral liposome for gene therapy in cardiovascular diseases[J]. Proc Natl Acad Sci , USA, 1996, 93:11421-11425.
    [118] K. Raj, W.L. Douglas. Gene therapy for restenosis: Biological solution to a biological problem[J]. Journal of Molecular and Cellular Cardiology, 2007, 42(3):461-468.
    [119] N.Swanson, K. Hogrefe, Q. Javed , N. Malik, A.H. Gershlick. Vascular endothelial growth factor (VEGF )-eluting stents: in vivo effects on thrombosis, endothelialization and intimal hyperplasia[J]. J Invasive Cardio l, 2003, 15 (12):688.
    [120] Y. Numaguchi, K. Okumura, M. Harada, K. Naruse, M. Yamada, H. Osanai, et al. Catheter-based prostacyclin synthase gene transfer prevents instent restenosis in rabbit atheromatous arteries[J]. Cardiovasc Res, 2004, 61(1):177.
    [121] S. Moncada, E.A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology[J]. Pharmacol Rev, 1991, 43(2):109-142.
    [122] T. Kondo, K. Kobayashi, T. Murohara. Nitric oxide signaling during myocardial angiogenesis[J]. Mol Cell Biochem, 2004, 264(1-2):25-34.
    [123] K. Ansclme. Osteoblast adhesion on biomaterials[J]. Biomaterials, 2000, 21 (7):667.
    [124] D.E. Ingber, I.Tensegrity. Cell structure and hierarchical systems biology[J]. Journal of cell science, 2003, 116(7):1157-1173.
    [125] D.E. Ingber. Tensegrity II. How structural networks influence cellular information processing networks[J]. Journal of cell science, 2003, 116(8): 1397-1408.
    [126] K.W. Lau, A. Johan, U. Sigwart, J.S. Hung. A stent is not just a stent: Stent construction and design do matter in its clinical performance[J]. Singapore Med J, 2004, 45 (7):305.
    [127]何川,邓廉夫,朱雅萍.旋转系统下三维培养成纤维细胞-PGA复合物的实验研究.中华外科杂志[J]. 2003, 41(3):214-217.
    [128] G.L. Sanford, S. Harris-Hooker, D. Ellerson, A.E. Sroufe, F. Bosah, M.D. Hunter. Altered growth and gene expresion by endothelial cells cultured in a microgravity-based rotating bioreactor[J].Faseb journal, 2002, 16(4):437.
    [129] G.L. Sanford, D. Ellerson, C. Melhado-Gardner, A.E. Sroufe, S. Harris-Hooker. Three-dimensional growth of endothelial cells in the microgravity based rotating wall vessel bioreactor[J]. In vitro cellular & developmental biology-animal, 2002, 38(9):493-504.
    [130] S. Harris-Hooker, N. Davies, D. Ellerson, G.L. Sanford. Upregulation of nitric oxide by simulated microgravity or extended bed rest-Potential cause of orthostatic intolerance[J]. Ethnicity & disease, 2006, 16(3):55
    [131] K. Dutt, G. Sanford, S. Harris-Hooker, L. Brako, R. Kumar, A. Sroufe, et al. Three-dimensional model of angiogenesis: Coculture of human retinal cells with bovine aortic endothelial cells in the NASA bioreactor[J]. Tissue engineering, 2003, 9(5):893-908.
    [132] M. McIntyre, C. Desdouets, C. Senamaud-Beaufort, C. Laurent-Winter, E. Lamas, C. Brechot. Differential expression of the cyclin-dependent kinase inhibitor P27 in primary hepatocyte in early-mid G1 and G1/S transitions[J]. Oncogene, 1999, 18: 4577-4585.
    [133] A. Philips, X. Huet, A. Plet, J. Rech, A. Vie, J.M. Blanchard. Anchorage-dependent expression of cyclin A in primary cell requires a negative DNA regulatory element and a functional Rb[J]. Oncogene, 1999, 18:1819-1825.
    [134] K. Roovers, G. Davey, X. Zhu, M.E. Bottazzi, R.K. Assoian. Alpha 5 beta l integrin controls cyclin D1, expression by sustaining mitogen-activated kinase activity in growth factor treated cells[J]. Mol Biol Cell, 1999, 10:3197-3204.
    [135] X. Zhu, M. Ohtsubo, R.M. Bohmer, J.M. Roberts, R.K. Assoian. Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-CDK4, and phosphorylation of the retinoblastoma protein[J]. J Cell Biol, 1996, 133:391-403.
    [136]黄治林,姜广建,孟令军,谢艾玲,张义东,郑桓.明胶/壳聚糖创伤敷料的生物安全性评价[J].第四军医大学学报, Journal of The Fourth Military Medical University, 2005, 26 (16):1506-1509.
    [137]刘曦明,罗飞,曾玲,谢肇,陈庄洪,许建中等.骨组织工程经多聚赖氨酸修饰的脱钙骨基质富集材料的细胞毒性研究[J].中国中医骨伤科杂志, 2008, 16(3):31-34.
    [138]张虹,刘晓波,余学清,周树录,董秀清.抗体靶向寡核苷酸复合物及SPA2PLL交联物对培养细胞的毒性作用[J].广东药学院学报, 2006, 22(6):651-653.
    [139] S. Muller-Hulsbeck, K.P. Walluscheck, M. Priebe, J. Grimm, J. Cremer, M. Heller. Experience on endothelial cell adhesion on vascular stents and stent-grafts: first in vitro results[J]. Invest Radio l, 2002, 37 (6):314-316.
    [140] D.M. Scott, J.C. Murray,; M.J. Barnes. Investigation of the attachment of bovine corneal endothelial-cells to collegens and other components of the subendothelium-role of fibronectin[J]. Experimental cell research, 1983, 144(2):472-478.
    [141]李国英,张忠楷,雷苏,石碧.胶原、明胶和水解胶原蛋白的性能差异[J].四川大学学报(工程科学版), 2005, (37): 54-58.
    [142]尚鸣异,王建华,李茂全,鹿彤,周康荣,胡美玉.体外培养内皮细胞植入蛋白涂层金属支架的初步实验研究[J].实用放射杂志, 2003, 19 (1):9-12.
    [143]刘录山,杨永宗,危当恒.人脐静脉内皮细胞在支架上粘附的影响因素研究[J].现代临床医学生物工程学杂志, 2000, 6 (2):1-3.
    [144] T.C. Wu, Y.H. Chen, H.B. Leu, Y.L. Chen, F.Y. Lin, S.J. Lin, et al. A pharmacological antioxidant, inhibits neointimal matrix metalloproteinase-2 and -9 in experimental atherosclerosis[J]. Free Radic Biol Med, 2007, 43(11):1508-1522.
    [145] Y. Han, M. Liang, J. Kang, Y. Qi, J. Deng, K. Xu, et al. Estrogen-eluting stent implantation inhibits neointimal formation and extracellular signal-regulated kinase activation[J]. Catheter Cardiovasc Interv, 2007, 70(5):647-653.
    [146] S.O. Marx, T. Jayaraman, L.O. Go, A.R. Marks. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells[J]. Circ Res, 1995, 76:412-417.
    [147] M. Poon, S.O. Marx, R. Gallo, J.J. Badimon, M.B. Taubman, A.R. Marks. Rapamycin inhibits vascular smooth muscle cell migration[J]. J Clin Invest, 1996, 98:2277-2283.
    [148] J. Steffel, T.F. Luscher, F.C. Tanner. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications[J]. Circulation, 2006, 113:722-731.
    [149] J. Steffel, R.A. Latini, A. Akhmedov, D. Zimmermann, P. Zimmerling, T.F. Luscher. Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design[J]. Circulation, 2005, 112:2002-2011.
    [150] M. Guha, N. Mackman. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells[J]. J Biol Chem, 2002, 277:32124-32132.
    [151] I.E. Obata, Y. Kitta, H. Takano, Y. Kodama, T. Nakamura, A. Mende, et al. Sirolimus-Eluting Stent implantation aggravates endothelial vasomotor dysfunction in the infarct-related coronary artery in patients with acute myocardial infarction[J]. Journal of the American college of cardiology, 2007, 50: 1305-1309.
    [152] S. Tsimikas. Drug-eluting stents and late adverse clinical outcomes[J]. J Am Coll Cardiol 2006, 47:2112-2115.
    [153] A. Colombo, J. Drzewiecki, A. Banning, E. Grube, K. Hauptmann, S. Silber, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stent for coronary artery lesions[J]. Circulation 2003, 108:788-794.
    [154] G. Kedia, M.S. Lee. Stent thrombosis with drug-eluting stents: a re-examination of the evidence[J]. Catheter Cardiovasc Interv, 2007, 69:782-789.
    [155] R. Kawaguchi, D.J. Angiolillo, H. Futamatsu, N. Suzuki, T.A. Bass, M.A. Costa. Stent thrombosis in the era of drug eluting stents[J]. Minerva Cardioangiol, 2007, 55(2):199-211
    [156] M. Butzal, S. Loges, M. Schweizer, U. Fischer, U.M. Gehling, D.K. Hossfeld, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro[J]. Exp Cell Res, 2004, 300:65-71.
    [157] T.G. Chen, J.Z. Chen, X.X. Wang. Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood[J]. Cell Proliferat, 2006, 39:117-125.
    [158] D. Fukuda, M. Sata, K. Tanaka, R. Nagai. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells[J]. Circulation, 2005, 111:926-931.
    [159] T. Asahara, T. Murohara, M. Sullivan. Isolation of putative progenitor cells for angiogenesis[J]. Science, 1997, 275:964-967.
    [160] Q. Shi, S. Rafii, M.H. Wu, E.S Wijelath, C. Yu, A. Ishida, et al. Evidence for circulating bone marrow-derived endothelial cells[J]. Blood, 1998, 92:362-367.
    [161] C. Kalka, H. Masuda, T. Takahashi, W.M Kalka-Moll, M. Silver, M. Kearney, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization[J]. Proc Natl Acad Sci USA, 2000, 97:3422-3427.
    [162] H.Z. Fu, D.C.Yun, N.J.Ze, Z.L. Shu. Are impaired endothelial progenitor cells involved in the processes of late in-stent thrombosis and re-endothelialization of drug-eluting stents[J]. Medical Hypotheses, 2008, 70(3):512-514.
    [163] M.M. Mazumder, J.L. Mehta, M.K. Mazumder, N. Ali, S. Trigwell, R. Sharma, et al. Encased stent[p]. United States, Patent No. 7311727, 2007,12,25:1.
    [164] K. Belly, W. Anat, F. Lukas, G. Zoya, P. Meir, A. Naomi, et al. Efficient transduction andseeding of human endothelial cells onto metallic stents using bicistronic pseudo-typed retroviral encoding vascular endothelial growth factor[J]. Cardiovascular Revascularization medicine, 2006, 7:173-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700