用户名: 密码: 验证码:
浮游动物和细菌对海水中二甲基巯基丙酸内盐迁移转化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-二甲基巯基丙酸内盐(DMSP)是海水中一种重要的含硫化合物,在微生物食物链中有重要的作用,是海洋细菌、浮游植物生长所需的主要碳源和硫源。DMSP可以经过DMSP裂解酶裂解产生二甲基硫(DMS),DMS对全球气候变化和酸雨的形成有重要影响。DMSP转化为DMS的过程错综复杂,其中生物过程被认为是影响DMSP转化为DMS的主要因素,控制着海水中DMS、DMSP的含量及DMS的海-气通量。研究海洋生物对DMS、DMSP的作用机制,有助于深入了解海洋生源硫的生物地球化学循环。
     在本论文中,我们以影响DMSP浓度分布的两个生物因素:浮游动物摄食及细菌消耗作为研究重点,旨在深入探究浮游动物摄食和细菌降解对水体中DMS、DMSP产生和转化的影响机制。本文首先以位于青岛近岸的胶州湾海域为调查海区,于2010年7月~11月对胶州湾夏、秋季浮游动物种类和丰度进行现场调查,分析讨论了胶州湾夏、秋季浮游动物丰度的分布与环境因子(水深、温度、盐度、叶绿素a含量)和DMS、溶解态β-二甲基巯基丙酸内盐(DMSPd)、颗粒态β-二甲基巯基丙酸内盐(DMSPp)浓度的相关性。其次,通过实验室培养实验,利用MPN法,研究了摄食不同DMSP含量的无菌浮游植物对桡足类动物体表和体内DMSP消耗细菌(DMSP-Consuming Bacteria,DCB)生物量的影响,并进一步对所分离的DCB进行富集培养,在不同碳源下观测其生长状态,以了解DCB对DMSP的可能裂解机制。最后,在美国切萨皮克湾的约克河流域,定量研究了水体中自由DCB和与该海域的优势种(汤氏纺锤水蚤)相关DCB的分布和季节变化。本论文的主要研究结果如下:
     1.胶州湾夏、秋季浮游动物丰度与DMS分布之间的关系研究
     于2010年7月~11月对胶州湾浮游动物丰度进行了现场调查,调查结果显示夏、秋季浮游动物主要优势种有短尾类溞状幼虫、鸟喙尖头溞、长尾类幼体、强壮箭虫、双刺唇角水蚤、背针胸刺水蚤、太平洋纺锤水蚤、五角水母、球型侧腕水母、夜光虫和中华哲水蚤等。
     (1)胶州湾浮游动物分布受水体的环境因子(水深、温度、表层盐度、叶绿素a含量等)不同程度的影响。胶州湾浮游动物平均丰度分布不均匀,以湾口(E3站)最高,湾内东部沿岸海域(B5站)最低。胶州湾东部海域(B5、C5、D4站)浮游动物平均丰度普遍偏低,均低于100ind/m~3。浮游动物的月际变化中,优势种季节变化控制着水体中浮游动物的丰度,再加上周期性浮游动物幼体和成体的出现对浮游动物丰度的影响较大,胶州湾浮游动物丰度具有明显的季节变化,浮游动物7~11月份平均丰度的变化范围为87.2~246.2ind/m~3,最大丰度出现在夏季8月份(246.2ind/m~3),最低值出现在秋季10月份(87.2ind/m~3)。秋季浮游动物丰度低于夏季浮游动物丰度。
     (2)胶州湾浮游动物丰度与水深、温度、表层盐度、叶绿素a含量、细菌生物量相关性不明显。2010年10月浮游动物丰度与DMS呈显著正相关(p <0.05),11月浮游动物丰度与DMSPp呈显著正相关(p <0.05),说明浮游动物生物量对DMS、DMSP的释放具有积极的作用。其他月份(7、8、9月)的浮游动物丰度与DMS、DMSPd、DMSPp浓度的相关性均不明显(p>0.05)。由于浮游动物摄食活动对DMS释放的影响受多种因素的制约,因此浮游动物与DMS的相互作用需要进一步研究。
     (3)桡足类是胶州湾浮游动物的主要类群,调查期间各个月份胶州湾均有桡足类的出现,占总浮游动物总量的3%~60.4%不等,9月桡足类占总浮游动物总量的60%。在胶州湾调查海域,桡足类在各站位呈现分布不均匀的现象,平均丰度相差一个数量级。最大值出现在湾内东北海域的A2站位,桡足类丰度达到80.21ind/m~3,湾口次之,而胶州湾沿岸海域桡足类丰度普遍较低,均低于20ind/m~3,湾内西部沿岸C1站位最低,仅为8.79ind/m~3。
     (4)桡足类丰度与水深、温度、表层盐度、叶绿素a含量、细菌生物量相关性不明显(p>0.05)。桡足类丰度只与10月、11月的站位水深呈显著正相关(p<0.05),在11月与海水温度呈显著负相关(p<0.05),在其他月份(7、8、9月)与各环境因子均不具有显著相关性(p>0.05)。桡足类丰度仅与7月的DMS浓度和11月的DMSPp浓度呈显著正相关(p<0.05),在其他月份(8、9、10月),桡足类丰度与DMS、DMSPd、DMSPp均没有显著相关性(p>0.05)。
     2.饵料对汤氏纺锤水蚤体表和体内DMSP消耗细菌的数量及碳利用程度的影响
     本实验选取了五种不同DMSP含量的无菌浮游植物,即玛氏骨条藻(Skeletonma marinoi)、周氏扁藻(Tetraselmis sp.)、亚历山大藻(Alexandriumtamarense)、盐生红包藻(Rhodomonas salina)、杜氏藻(Dunaliella tertiolecta)作为饵料藻,通过实验室培养实验,利用MPN方法,研究了摄食不同饵料藻后汤氏纺锤水蚤(Acartia tonsa)体表和体内的DCB含量,并研究了DCB在不同结构的碳源有机物上的生长状况。结果表明:
     (1)在所有的实验组中均发现了DMSP消耗细菌的存在。摄食五种饵料藻的汤氏纺锤水蚤中,摄食玛氏骨条藻的汤氏纺锤水蚤体表和体内DCB密度最大(平均浓度为3.64×10~6/ind),而摄食盐生红包藻的DCB密度最小(平均浓度为1.72×10~5/ind)。几乎检测不到DMSP含量的杜氏藻组却与DMSP高产种亚历山大藻、玛氏骨条藻含有相当数量的DCB,表明桡足体表和体内DCB的含量与饵料中的DMSP含量具有相对独立的关系。
     (2)在汤氏纺锤水蚤体上分离出的DCB可以在除DMSP外的其他碳源底物上生长,不同的生长速率反映了不同菌种对底物利用能力的差异。在实验中选取的五种底物中,甜菜碱(glycine betaine,GBT)与DMSP具有相似的分子结构,都含有以碳链形式存在的碳,DCB可以在DMSP和GBT中生长,说明DCB具有利用碳链中碳的能力。而甲胺(monomethylamine,MMA)、二甲胺(dimethylamine,DMA)、二甲亚砜(dimethylsulfoxide,DMSO)分子中只含有甲基形式的碳,细菌可以在MMA,DMA,DMSO培养基中生长说明了DCB可以同化还原甲基碳。
     (3)摄食实验结果中,纺锤水蚤体表和体内DCB的数量不受饵料中DMSP含量的影响,暗示了即使在DMSP含量较少的海洋环境中,浮游动物体内依然可能含有相当数量的DCB。汤氏纺锤水蚤及其体内的DCB在水体中是DMSP迁移去除的一个重要的源,对DMSP的转化有重要作用。
     3.约克河与桡足类相关的DMSP消耗细菌的昼夜迁移及季节分布
     DCB广泛存在于海洋环境中,对DMSP的迁移和转化有着重要的作用。本研究于2012年5~10月,在美国弗吉尼亚州约克河流域,对水体中的自由DCB和与汤氏纺锤水蚤相关的DCB做了现场调查。结果发现,DCB普遍存在于水体中,所有的样品中均含有自由DCB和与汤氏纺锤水蚤相关的DCB。对DCB的昼夜迁移研究发现,月初采样时,海水表层自由细菌表现出白天丰度低于夜晚的趋势。相反,月末采样时,夜晚自由细菌丰度低于相应的白天值,具体机制还有待于进一步探讨。自由DCB与温度和盐度呈显著正相关(p<0.05),与浮游动物相关的DCB仅与表层盐度呈显著正相关(p<0.05)。表明在异养微生物生长过程中,底物浓度可能是比温度更为重要的参数。附着在浮游动物营养物质丰富的地方,使细菌更易于接触到可利用的底物有机物,从而减小了细菌丰度对环境因子中温度的依赖程度。
Dimethylsulfoniopropionate (DMSP), an important sulfur compound in marinewaters, was considered to play significant roles in microbial food chain and served asprimary carbon/sulfur source for phytoplankton. It was generally known that DMSPcould mainly product dimethylsulfide (DMS) through enzymatic cleavage pathway.DMS has key effects on global climate regulation and the formation of acid rain. Theoccurrence of DMSP and its further turnover to DMS are complex web in whichbiological processes were thought to be the principal factor involved. Biologicalprocesses control the concentration of DMS/DMSP in seawaters and flux of DMSrelease to the atmosphere. Studies on how biological processes were act on the DMSand DMSP contribute to understanding of the biogeochemical cycles of sulfur in theocean.
     In the present dissertation, we focused on zooplankton grazing and bacteriaconsumption which were the two main factors influence the distribution of DMSP,aimed at exploring the mechanism of how zooplankton grazing and bacteriaconsumption affected the release of DMSP into the water column. At first, we chosethe Qingdao coastal water-Jiaozhou Bay as the study area. Zooplankton compositionand abundance were studied based on the zooplankton in situ samples collected inJiaozhou Bay during the time period from July to November,2010. The distributionand seasonal varied of zooplankton, and their relationships with the environmentalfactors of the seawater (water depth, temperature, salinity and Chl-a concentrations),as well as concentrations of dimethysulfide (DMS), dissolveddimethylsulfoniopropionate (DMSPd), particulate dimethylsulfoniopropionate(DMSPp) were analyzed. Secondly, we used the axenic phytoplankton culture ofdifferent DMSP contents fed copepods. By using MPN (Most Probable Numbers)method, we studied whether the concentration of DMSP-consuming bacteria (DCB)associated with copepod was related to DMSP content in the food under laboratorial experiments. DCB isolated from copepod body were incubated in different carbonsources afterwards. By observing their growth situation, we could get to know thepossible pathway of DCB utilize DMSP. Another objective of this dissertation was toquantitatively study the free-living DCB and Acartia tonsa-associated DCB in YorkRiver, Chesapeake Bay, USA. A. tonsa was the dominant species in this area,furthermore, we monitored the distribution and monthly variation of DCB. The mainconclusions were drawn as follows:
     1. Study on relationship between zooplankton abundance and DMSdistribution in Jiaozhou Bay in summer and autumn of2010
     Zooplankton composition and abundance were studied in Jiaozhou Bay during thetime period from July to November,2010. The dominant species in this ara wereBrachyura zoea larva、Penilia avirostris Dana、Macrura larva、 Sagitta crassaTokioka、Labidocera bipinnata Tanaka、Centropages dorsispinatus Thompson etScott、Acartia pacifica Steuer、Muggiaea atlantica Cunningham、Pleurobrachiaglobosa Moser、Noctiluca scientillans Kofoid et Swezy、Calanus sinicus Brodsky, etal.
     (1) Zooplankton distribution in Jiaozhou Bay were impacted by environmentalfactors of the water column (water depth, temperature, salinity and Chl-aconcentrations, et al) by varying degrees. As it was shown by the results, the averagezooplankton abundance in Jiaozhou Bay was unevenly distributed, with highestzooplankton abundance observed at Bay month (E3station), and the lowest at Easterncoast (B5station). The average zooplankton abundance of eastern stations (B5, C5,D4) were generally low which all below100ind/m~3. For the monthly variation ofzooplankton abundance, on the one hand, because the dominant species of water bodycontroled the total abundance of zooplankton, on the other hand, periodicityzooplankton larvae and adult emergence greatly impacted zooplankton abundance, thezooplankton abundance of Jiaozhou Bay showed significant seasonal variation. Theaverage zooplankton abundance from July to November ranged from87.2~246.2ind/m~3, with highest value found in summer at August (246.2ind/m~3), and lowest one in autumn at October (87.2ind/m~3). Zooplankton abundance in summer was higher thanthat in autumn.
     (2) Zooplankton abundance didn’t show strong relationships with water depth,temperature, salinity, Chl-a concentration, bacteria number. There was significantlypositive correlation between zooplankton abundance and DMS in October (p<0.05),and zooplankton abundance and DMSPp in Novemeber (p<0.05). Zooplanktonbiomass could accelerate DMSP release. But in other months (July, August,September), the correlations were not significant (p>0.05). Our results showed thatthe influence of zooplankton grazing on the release of DMS from water column wasaffected by complex environmental factors and further research was needed betweenzooplankton and DMS.
     (3) Copepod was the dominant group of zooplankton in Jiaozhou Bay, it wasobserved in each month during our observation period and could compose about3~60.4%of total zooplankton abundance, with the highest percentage (60%) inSeptember. The copepods were inhomogeneous in their horizon distribution, it couldvaried up to an order of magnitude. The highest copepod abundance, which reach to80.21ind/m~3was found in northeast (A2station), followed by Bay mouth. Generally,copepod abundance of coastal water in Jiaozhou Bay was low, all below20ind/m~3,with the lowest value (8.79ind/m~3) state on the west (C1station).
     (4) There was no strong correlation between copepod abundance and water depth,temperature, surface salinity or Chl-a concentration (p>0.05). Copepod abundancewas significantly positive related to water depth in October and November (p<0.05),while negatively related to water temperature in November (p<0.05). In other months(July, August, September), the correlations between copepod abundance andenvironemtnal factors were not significant (p>0.05). It only showed significantpositive correlation between copepod abundance and DMS in July, DMSP inNovember (p<0.05), in other months (August, September, October), the correlationsbetween copepod abundance and DMS/DMSPd/DMSPp were not significant(p>0.05).
     2. Dietary effects on abundance and carbon utilization ability of
     DMSP-consuming bacteria associated with the copepod Acartia tonsa Dana
     In this part, we chose five axenic phytoplankton culture: Skeletonema marinoi、Tetraselmis sp.、Alexandrium tamarense、Rhodomonas salina、Dunaliella tertiolectaas food. Under the laboratorial experiments, we measured DMSP-consuming bacteria(DCB) number associated with A. tonsa by using MPN method. Then studied howDCB growth on different carbon sources. The results showed that:
     (1) DCB were recovered from all treatments, among which the S. marinoitreatment yielded the highest abundance (3.64×10~6DCB copepod-1) and the R. salinatreatment the lowest (2.40×10~4DCB copepod-1). We found comparable number ofDCB in D. tertiolecta treatment and A. tamarense, while D. tertiolecta had nodetectable amount of DMSP and A. tamarense was a DMSP high producer, DCBabundance associated with A. tonsa was independent from dietary DMSP content.
     (2) The DCB were able to grow on carbon sources other than DMSP, differentgrowth rates indicated different substrates utilize abilities. Among the five substrates,Glycine betaine and DMSP had similar molecular structure in which all containedcarbon in the carbon chain form, and MMA, DMA, DMSO all contained carbon inmethyl form. The ability of utilize all the substrates indicating their ability toassimilate both carboxyl chain carbon and methyl carbon.
     (3) The grazing experiment results showed that DCB abundance associated withzooplankton was independence from food DMSP, this would allow DCB to maintaintheir populations among zooplankton even under DMSP-poor conditions, and theywould readily consume DMSP when it became available. This coupling between DCBand zooplankton represented a persistent and potentially important sink of DMSP inthe marine system.
     3. The diel migration and seasonal distribution of DMSP-consuming bacteriaassociated with copepod in York River
     DCB were ubiquitous in ocean environment and play important roles on DMSPtransportation. In this section, we studied free-living DCB and zooplankton-associatedDCB in York River, Virginia, USA, during May to October,2012. As it was shown inresults, DCB were present in all the samples indicating their universal existence in the seawater. For DCB dial migration, we found it was interestingly that free-living DCBwas lower in the daytime when sample at the beginning of the month, on the contrary,it would be lower in the nighttime when sample at the end of the month.The specificmechanism which controled this process needed to be further studied. Free-livingDCB showed positive correlations with temperature and salinity (p<0.05), whilezooplankton-associated DCB only showed positive correlation with salinity, indicatedthat substrates availability could be as important as or more important thantemperature in regulating heterotrophic microbial process. Association withzooplankton might give attached bacteria access to resources, thereby moderatingtheir responses to environmental temperature.
引文
[1] Yang G P, Tsunogai S, Watanabe S. Biogenic sulfur distribution and cycling in the surfacemicrolayer and subsurface water of Funka Bay and its adjacent area. Continental ShelfResearch,2005,25:557~570.
    [2] Moller D. On the global natural sulfur emission. Atmospheric Environment,1984,18:29~39
    [3] Andreae M O. The emission of sulfur to the remote atmosphere. In: Galloway J N, Charlson RJ, Andreae M O, et al., eds. The Biogeochemical Cycling of Sulfur and Nitrogen in theRemote Atmosphere. Dordrecht Holland: D. Reidel Publishing Company,1985.5~52
    [4] Bates T S, Cline J D, Gammon R H, et al. Regional and seasonal variations in the flux ofoceanic dimethylsulfide to the atmosphere. Journal of Geophysical Research,1987,92:2930~2938
    [5] Kettle A J, Andreae M O. Flux of dimethylsulfide from the oceans: A comparison of updateddata sets and flux models. Journal of Geophysical Research,2000,105:26793~26808
    [6] Lovelock J E, Maggs R J, Rasmussen R A. Atmospheric dimethylsulphide and the naturalsulphur cycle. Nature,1972,237:452~453
    [7] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur,cloud albedo and climate. Nature,1987,326:655~661
    [8] Simó R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecologicaland evolutionary links. Trends in Ecology and Evolution,2001,16(6):287~294
    [9] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Marine Chemistry,1990,30:1~29
    [10] Dacey J W H, Wakeham S G. Oceanic dimethylsulfide: production during zooplanktongrazing on phytoplankton. Science,1986,233:1313~1316
    [11] Taylor B F, Gilchrist D C. New routes for the aerobic biodegradation ofdimethysulfoniopropionate. Applied and Environmental Microbiology,1991,57(12):3581~3584
    [12] Visscher P T, Taylor B F. Demethylation of dimethylsulfoniopropionate to3-mercaptopropionate by an aerobic marine bacterium. Applied and EnvironmentalMicrobiology,1994,60:4617~4619
    [13] Diaz MR, Visscher PT, Taylor BF. Metabolism of dimethylsulfoniopropionate and glycinebetain by a marine bacterium. FEMS Microbiology Letters,1992,96:61~66
    [14] Visscher PT, Diaz MR, Taylor BF. Enumeration of bacteria which cleavedimethylsulfoniopropionate in the Caribbean Sea. Marine Ecology Progress Series,1992,89:293~296
    [15] Tang KW, Dziallas C, Hutalle-Schmelzer K, et al. Effects of food on bacterial communitycomposition associated with the copepod Acartia tonsa Dana. Biology Letter,2009,5:549~553
    [16] Challenger F, Simpson M I. Studies on biological methylation. Part Ⅻ: A precursor of thedimethyl sulphide evolved by Polysiphonia fastigiata,Dimethyl-2–carboxyethyl-sulphonium hydroxide and its salts. Journal of the ChemicalSociety,1948,3:1591~1597
    [17] Keller M D, Bellows W K, Guillard R R L. Dimethylsulfide production in marinephytoplankton. In: Saltzman E S, Cooper W J, eds. Biogenic sulfur in the environment.Washington DC: American Chemical Society,1989.167~182
    [18] Kirst G O. Osmotic asjustment in phytoplankton and macroalage: The use ofdimethylsulfoniopropionate (DMSP). In: Kiene R P, Visscher P T, Keller M D, et al., eds.Biological and environmental Chemistry of DMSP and related sulfonium Compounds. NewYork: Plenum Press,1996.121~130
    [19] Andreae M O. The ocean as a source of atmospheric sulfur compounds, In Buat-Menard P,ed. The role of Air-Sea Exchange in Geochemical Cycling. Dordrecht Holland: D. ReidelPublishing Company,1986.331~362
    [20] Turner S M, Malin G, Liss P S. Dimethyl sulfide and (dimethylsulfonio) propionate inEuropean coastal and shelf waters. In: Saltzman E S, Cooper W J, eds. Biogenic sulfur in theEnvironment. Washington D C: American Chemical Society,1989.283~200
    [21] Kiene R P, Linn L J, Bruton J A. New and important roles for DMSP in marine microbialcommunities. Journal of Sea Research,2000,43:209~224
    [22] Laroche A, Vezina A F, Levassseur M, et al. DMSP synthesis and exudation inphytoplankton: a modeling approach. Marine Ecology Progress Series,1999,180:37~49
    [23] Nguyen B C, Belviso S, Mihalopoulos N, et al. Dimethylsulfide production during naturalphytoplanktonic blooms. Marine Chemistry,1988,24,133~141
    [24] Stefels J. Physiological aspects of the production and conversion of DMSP in marine algaeand higher plants. Journal of Sea Research,2000,43:183~197
    [25] Gage D A, Rhodes D, Nolte K D, et al. A new route for synthesis ofdimethylphoniopropionate in marine algae. Nature,1997,387:891~894
    [26] Matrai P A, Keller M D. Total organic sulfur and dimethylsulfoniopropionate in marinephytoplankton: intracellular variations. Marine Biology,1994,119:61~68
    [27] Andersen R A, Saunders G W, Paskind M P, et al. Ultrastructure and18S rRNA genesequence for Pelagomonas Calceolata gen. et sp. Nov. and the description of a new algalclass, the Pelagophyceae classis nov, Journal of Phycology,1993,29:701~715
    [28] Simo R, Pedros-Alio C. Role of vertical mixing in controlling the oceanic production ofdimethylsulphide. Nature,1999,402:396~399
    [29] Goericke R. Response of phytoplankton community structure and taxon-specific growthrates to seasonally varying physical forcing in the Sargasso Sea off Bermud. Limnology andOceanography,1998,43:921~935
    [30]陈葵,沈颂东. DMSP对大气环境的影响及其对水产动物营养的促进作用.海洋湖沼通报,2002,3:36~45
    [31] Challenger F, Bywood R, Heywood B J. Studies on biological methylation. XVII. Thenatural occurrence and chemical reactions of some thetins. Archives of BiochemistryBiophysics,1957,69:514~523
    [32] Vairavamurthy A, Andr eae M O, I verso n R L. Biosynthesis of Dimethylsulfide andDimethylpropiothetin by Hymenomonas Carterae in relation to sulfur source and salinityvariations. Limnology and Oceanography,1985,30:59~70
    [33] Nishigchi M K, Somero G N. Temperature and concentration dependence of compatibility ofthe organic osmolyte β-dimethylsulphoniopropionate. Cryobiology,1992,29:1~7
    [34] Karsten U, Kück K, Vogt C. Dimethylsulphoniopropionate (DMSP) production inphototrophic organisms and its physiological function as a cryoprotectant. In: Kinen R P. ed.Biological and environmental chemistry of DMSP and related sulfonium compounds. NewYork: Plenum Press,1996.109~119
    [35] Kiene R P, Linn L J. Distribution and turnover of dissolved DMSP and its relationship withbacteria production and dimethysulfide in the Gulf of Mexico. Limnology andOceanography,2000,45:849~861
    [36] Matrai P A, Keller M D. Dimethylsulphide in a large scale coccolithophore bloom in theGulf of Maine. Continental Shelf Research,1993,13:831~843
    [37] Sieburth J M. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosisof polar marine animals. Journal of Bacteriology,1961,82:72~79
    [38] Wolfe G V, Steinke M. Grazing-activated production of dimethyl sulfide (DMS) by twoclones of Emiliania huxleyi. Limnology and Oceanography,1996,41:1151~1160
    [39] Wolfe G V, Steinke M, Kirst G O. Grazing-activated chemical defense in a unicellularmarine alga. Nature,1997,387:894~897
    [40] Nevitt G A, Veit R P, Kareiva P. Dimethyl sulphide as a foraging cue for AntarcticProcellariiform seabirds. Nature,1995,376:680~682
    [41] Sunda W, Kieber D J, Kiene R P, et al. An antioxidant function for DMSP and DMS inmarine algae. Nature,2002,418:317~320
    [42] Lesser M P, Shick J M. Effects of irradiance and ultraviolet radiation on photo-adaptation inthe zooxanthellae of Aiptasia pallida: primary production, photoinhibition and enzymaticdefenses against oxygen toxicity. Marine biology,1989,102:243~255
    [43]王艳.温度和盐度对球形棕囊藻细胞DMSP产量的影响.水生生物学报,2003,27(4):367~370
    [44] De Sonza M P, Chen Y P, Yoch D C. Dimethylsulfoniopropionate from the marinemacroalga ulva curvata: purification and characterization of the enzyme. Planta,1996,199:433~438
    [45] Iverson R L, Neaehoof F L, Andreae M O. Production of dimethylsulfoniumpropionate anddimethyl sulphide by phytoplankton in estuarine and coastal waters. Limnology andOceanography,1989,34:53~67
    [46] Cerqueira M A, Pio C A. Production and release of dimethylsulfide from an estuary inPortugal. Atmospheric Environment,1999,33:3355~3366
    [47] Tang K W, Dam H G, Visscher P T, et al. Dimethylsulfoniopropionate (DMSP) in marinecopepods and its relation with diets and salinity. Marine Ecology Progress Series,1999,179:71~793
    [48] Karsten U, Wiencke C, Kirst G O. Growth patter n and β-Dimethylsulphoniopropionate(DMSP) content o f green macroalgae at different irradiance. Marine Biology,1991,108:151~155
    [49] Karsten U, Wiencke C, Kirst G O. β-Dimethylsulphoniopropionate (DMSP) accumulationin green macroalgae from polar to temperate regions: interactive effects of light versussalinity and light versus temperature. Polar Biology,1992,12:603~607
    [50] Karsten U, Wiencke C, Kirst G O. The effect of light intensity and daylength on theβ-Dimethylphoniopropionate (DMSP) content of marine macroalgae from Antarctica. PlantCell and Environment,1990,13:989~993
    [51]杨和福.紫外辐射对南极棕囊藻细胞DMSP合成和DMS释放率的影响.海洋学报,1998,20(5):101~108
    [52] Sheets E B, Rhodes D. Determination of DMSP and other onium compounds in Tetraselmissubcordiformis by plasma desorption mass spectronmetry. In: Kiene R P, Visscher P T,Keller M D, et al., eds. Biological and environmental chemistry of DMSP and relatedsulfonium compounds. New York: Plenum press,1996.55~63
    [53] Van Rijssel M, Gieskes W W C. Temperature, light and the dimethylsulfoniopropionate(DMSP) content of Emiliania huxleyi (Prymnesiophyceae). Journal of Sea Research,2002,48:17~27
    [54] Hass P. The liberation of methylsulfide in seaweed. Biochemistry,1935,29:1297~1299
    [55] Kiene R P, Bates T S. Biological removal of dimethysulphide from seawater. Nature,1990,345:702~705.
    [56] Galí M, Simó R. Occurrence and cycling of dimethylated sulfur compounds in the Arcticduring summer receding of the ice edge. Marine Chemistry,2010,122(1–4):105~117
    [57] Gabric A J, Matrai P A, Vernet M. Modelling the production and cycling ofdimethylsulphide during the vernal bloom in the Barents Sea. Tellus B,1999,51:919~937
    [58] Kiene, R.P. Microbial sources and sinks for methylated sulfur compounds in the marineenvironment. In: Kelly, D P, Murrell J C, eds. Microbial Growth on C1Compounds. London:Intercept,1993.15~33
    [59] De Zwart JM, Kuenen J G. Aerobic conversion of dimethyl sulfide and hydrogen sulfideby Methylophaga sulfidovorans: implications for modeling DMS conversion in a microbialmat. FEMS Microbiology Ecology,1997,22:155–165
    [60] González J M, Kiene R P, Moran M A. Transformations of sulfur compounds by anabundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appliedand Environmental Microbiology,1999,65:3810~3819
    [61] Vila-Costa M, Del Valle D A, González J M, et al. Phylogenetic identification andmetabolism of marine dimethylsulfide-consuming bacteria. Environmental Microbiology,2006,8:2189~2200
    [62] Malmstrom R, Kiene R P, Kirchman D L. Identification and enumeration of bacteriaassimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico.Limnology and Oceanography,2004,49:597–606
    [63] Visscher P T, Taylor B F. A new mechanism for the aerobic catabolism of dimethylsulfide.Applied and Environmental Microbiology,1993,59:3784~3789
    [64] Dacey J W H, Wakeham S G. Oceanic dimethysulfide: production during zooplanktongrazing on phytoplankton. Science,1986,233:1314~1316
    [65] Kwint R L, Irigoien X, Kramer K J M. Copepods and DMSP. In: Kiene P T, Keller M D,Kirst G O, eds. Biological and environmental chemistry of DMSP and related sulphoniumcompounds. New York: Plenum Press,1996.239~254
    [66] Malin G, Turner S M, Liss P S. Sulfur: The plankton/climate connection. Journal ofPhycology,1992,28:590~597
    [67] Lancelot C, Billen G. Carbon-nitrogen relationships in nutrient metabolism of coastal marineecosystems. Advances in Aquatic Microbiology.1985,3:263~321
    [68] Belviso S, Kim S K, Rassoulzadegan F, et al. Production of DMSP by a microbial food web.Limnology and Oceanography,1990,35:1810~1821
    [69] Leck C, Larsson U, Bagander L E, et al. DMS in the Baltic Sea-annual variability in relationto biological activity. Journal of Geophysical Research,1990,95:3353~3363
    [70] Christaki U, Belviso S, Dolan JR, et al. Assessment of the role of copepods and ciliates inthe release to solution of particulate DMSP. Marine Ecology Progress Series,1996,141:119~127
    [71] Daly K L, Ditullio G R. Particulate dimethylsulfoniopropionate removal and dimethylsulfideproduction by zooplankton in the Southern Ocean. In: Kiene R P, Visscher P T, Keller M D,et al., eds. Biological and environmental chemistry of DMSP and related sulfoniumcompounds. New York: Plenum Press,1996.223~238
    [72] Tang K W. Dynamics of dimethylsulfoniopropionate (DMSP) in a migratory grazer: alaboratory simulation study. Journal of Experimental Marine Biology and Ecology,2000,243:283~293
    [73] Wolfe G V, Steinke M S. Contrasting production of dimethylsulfoniopropionate in marinesurface waters. Marine Chemistry,1996,54:69~83
    [74] Archer S D, Widdicombe C E, Tarran G A, et al. Production and turnover of particulatedimethylsulphoniopropionate during a coccolithophone bloom in the northern North Sea.Aquatic Microbial Ecology,2001,24:225~241
    [75] Cantin G, Levasseur M, Gosselin M, et al. Role of zooplankton on the mesoscale distributionof dimethylsulfide concentrations in the Gulf of St. Lawrence, Canda. Marine EcologyProgress Series,1996,141:103~117
    [76] Tang K W, Fenn T D, Visscher P T, et al. Regulation of body dimethylsulfoniopropionate(DMSP) content by the copepod Temora longicornis: a test of four mechanisms. MarineBiology,2000,136(5):749~757
    [77] Hanson A D, Gage D A.3-dimethylsulfoniopropionate biosynthesis and use by floweringplants. In: Kiene R P, Visscher P T, Keller M D, Kirst G O, eds. Biological andenvironmental chemistry of DMSP and related sulfonium compounds. New York: PlenumPress,1996.75~86
    [78] Karsten U, Kuck K, Vogt C, Kirst G O. Dimethylsulfoniopropionate production inphototrophic organisms and its physiological function as a cryoprotectant. In: Kiene R P,Visscher P T, Keller M D, Kirst G O, eds. Biological and environmental chemistry of DMSPand related sulfonium compounds. New York: Plenum Press,1996.143~153
    [79] Ledyard K M, Dacey J W H. Dimethylsulfide production from dimethylsulfoniopropoionateby a marine bacterium. Marine Ecology Progress Series,1994,110:95~103
    [80] Wolfe G V. The cycling of climatically active dimethylsulfide (DMS) in the marine euphoticzone: biological and chemical constraints on the flux to atmosphere:[Ph. D. Thesis].Washington: University of Washington,1992
    [81] Kwint R L J, Kramer K J M. A new sensitive tracer for the determination of zooplanktongrazing activity. Journal Plankton Research,1996,18:1513~1518
    [82] Archer S D, Gilber F J, Nightingale P D, et al. Transformation ofdimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with anexamination of key process via a modeling approach. Limnology and Oceanography,2002,49:3067~3101
    [83] Zubkov M V, Fuchs B M, Burkill P H, Amann R. Comparison of cellular and biomassspecific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea,Applied and Environmental Microbiology,2001,67:5210~5218
    [84] Michaels A F, Silver M W. Primary production, sinking fluxes, and the microbial food wed.Deep Sea Research,1988,35:473~490
    [85] Wolfe G V, Sherr E B, Sherr B F. Release and consumption of DMSP from Emilianiahuxleyi during grazing by Oxyrrhis marina. Marine Ecology Progress Series,1994,111:111~119
    [86] Malin G, Liss PS, Turner SM. Dimethylsulfide: production and atmospheric consequences.In: Green J C, Leadbeater B S C, eds. The haptophyte Algae. Oxford: Clarendon Press,1994.303~320
    [87] Tang K W, Dziallas C, Schmelzer K H, Grossart H P. Effects of food on bacterialcommunity composition associated with the copepod Acartia tonsa Dana. Biology Letters,2009,5:549~553
    [88] Kasamatsu N, Kawaguchi S, Watanabe S, et al. Possible impacts of zooplankton grazing ondimethylsulfide production in the Antarctic Ocean. Canadian Journal of Fisheries andAquatic Sciences,2004,61(5):736~743
    [89] Simon M, Grossart H P, Schweitzer B, Ploug H. Microbial ecology of organic aggregates inaquatic ecosystems. Aquatic Microbial Ecology,2002,28:175~211
    [90] Nagasawa S, Nemoto T. Presence of bacteria in guts of marine crustaceans and on their fecalpellets. Journal of Plankton Research,1988,10:559~564
    [91] Pruzzo C, Crippa A, Bertone S, et al. Attachment of Vibrio alginolyticus to chitin mediatedby chitinbinding proteins. Microbiology,1996,142:2181~2186
    [92] Selmi G. Ectosymbiotic bacteria on ciliated cells of a rotifer. Tissue Cell,2001,33:258~261
    [93] Schuett C, Doepke H. Endobiotic bacteria and their pathogenic potential in cnidariantentacles. Helgoland Marine Research,2010,64(3):205~212
    [94] Grossart H P. Ecological consequences of bacterioplankton lifestyles: changes in conceptsare needed. Environmental Microbiolgy,2010,2(6):706~714
    [95] Tang KW, Turk V, Grossart H P. Linkage between Crustacean zooplankton and aquaticbacteria. Aquatic Microbial Ecology,2010,61:261~277
    [96] Smith L T, Pocard J A, Bernard T, Le Rudulier D. Osmotic control of glycine betainebiosynthesis and degradation in Rhizobium meliloti. Journal of Bacteriology,1988,170:3142~3149
    [97] Barnard T, Pocard J A, Perroud B, et al.Variations in the response of salt-stressed Rhizohiumstrains to betaines. Archives of Microbiology,1988,143:359~364
    [98] Visscher P T, Diaz M R, Taylor B F. Enumeration of bacteria which cleave or demethylatedimethysulfoniopropionate in the Caribbean Sea. Marine Ecology Progress Series,1992,89:293~296
    [99] White R H. Analysis of dimethyl sulfoniurn compounds in marine algae. Journal of MarineResearch,1982,40:529~535
    [100] Reed R H. Measurement and osmotic significance of p~dimethylsulfoniopropionate inmarine algae. Marine Biology Letters,1983,4:173~181
    [101] Holllgan P M, Turner S M, Liss P S. Measurements of dimethyl sulphide in frontal regions.Continental Shelf Research,1987,7:213~224
    [102] Turner S M, Malin G, Liss P S. The seasonal variation of dimethyl sulfide anddirnethylsulfoniopropionate concentrations in nearshore waters. Limnology andOceanography,1988,33:364~375
    [103] Gibson J A E, Garrick R C, Burton H R, McTaggart A R. Dimethylsulfide and the algaPhaeocystis pouchetii in antarctic coastal waters. Marine Biology,1990,104:339~346
    [104] Rasmussen R A. Emission of biogenic hydrogen sulfide. Tellus,1974,1(2):254~260
    [105] Brody S S, Chaney J E. Flame photometry detector with improved specificity to sulfur andphosphorus. Journal of Gas Chromatography,1966,4:42
    [106]孙传经,气相色谱分析原理与技术,化学工业出版社,1979,155~160
    [107] Black M S, Herbst R P, Hitchcock D R. Solid adsorbent preconcentration and gaschromatographic analysis of sulfur gases. Analytical Chemistry,1978,50:848~853
    [108] Bentley R, Thomas G C. Environmental VOSCs-formation and degradation of dimethylsulphide, methanethiol and related materials. Chemosphere,2004,55(3):291~317
    [109] Wardencki W. Problems with the determination of environmental sulphur compounds bygas chromatography. Journal of Chromatography,1998,793:1~19
    [110] Simó R. Trace chromatographic analysis of dimethyl sulfoxide and related methylatedsulfur compounds in natural waters. Journal of Chromatography A,1998,807:151~164
    [111] Steudler P A, Kijowski W. Determination of reduced sulfur gases in air by solid adsorbentpreconcentration and gas chromatography. Analytical Chemistry,1984,56:1432~1433
    [112] Nguyen B C, Gardry M O, Ayers G P. Reevaluation of the role of dimethylsulfide in thesulphur budget. Nature,1978,275:637~639
    [113]陈猛,李和阳,袁东星,王大志,林益明.微波辅助-顶空固相微萃取-气相色谱-脉冲火焰光度法测定海水中二甲基硫和藻体中二甲基巯基丙酸.环境化学,2002,21(2):183~188
    [114]金晓英,袁东星,陈猛.海水样品中二甲基硫的气相色谱测定.厦门大学学报(自然科学版),2004,43(2):221~224
    [115] Andreae M O, Barnard W R, Ammons J M. The biological production of dimethylsulfidein the ocean and its role in the global atmospheric sulphur budget. EnvironmentalBiogeochemistry Ecology Bull,1983,35:167~177
    [116] Cline J D, Bates T S. Dimethylsulfide in the equatorial Pacific Ocean: a natural source tothe atmosphere. Geophysical Research Letters,1983,10:949~952
    [117] Bates T S, Cline J D, Gammon R H, et al. Regional and seasonal variations in the flux ofoceanic dimethylsulfide to the atmosphere. Journal of Geophysical Research,1987,92:2930~2938
    [118] Leck C, Lars E, B gander L E. Determination of reduced sulfur compounds in aqueoussolutions using gas chromatography flame photometric detection. Analytical Chemistry,1988,60(17):1680~1683
    [119] Gerbersmann C, Ryszard L, Freddy C A. Determination of volatile sulfur compounds inwater samples, beer and coffee with purge and trap gas chromatography-microwave-inducedplasma atomic emission spectrometry. Analytica Chimica Acta,1995,316:93~104
    [120]张洪海,杨桂朋.胶州湾及青岛近海微表层与次表层中二甲基硫(DMS)与二甲基巯基丙酸(DMSP)的浓度分布.海洋与湖沼,2010,41(5):683~691
    [121]杨桂朋,康志强,景伟文,等.海水中痕量DMS和DMSP的分析方法研究.海洋与湖沼,2007,38:322~328
    [122] Dacey J W H, Blough N V. Hydroxide decomposition of DMSP to form DMS.Geophysical Research Letters,1987,14:1246~1249
    [123] Kiene R P. Dynamics of dimethylsulfide and dimethylsulfoniopropionate in oceanic watersamples. Marine Chemistry,1992,37:29~52
    [124] Simó R, Grimalt J O, Albaiges J. Sequential method for the field determination ofnanomolar concentrations of dimethylsulsulfoxide in natural waters. Analytical Chemistry,1996,68:1493~1496
    [125] Kiene R P, Kieber D J, Slezak D, et al. Distribution and cycling of dimethylsulfide,dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in theSouthern Ocean south of New Zealand. Aquatic Sciences-Research Across Boundaries,2007,69(3):305~319
    [126] Yang G P, Zhang H H, Su L P, et al. Biogenic emission of dimethylsulfide (DMS) from theNorth Yellow Sea, China and its contribution to sulfate in aerosol during summer.Atmospheric Environment,2009,43(13):2196~2203
    [127] Kwint R L J, K J M Kramer. Dimethylsulphide production by plankton communities [J].Marine Ecology Progress Series,1995,121:227~237.
    [128]郝建华,霍文毅,俞志明.胶州湾增养殖海域营养状况与赤潮形成的初步研究.海洋科学,2000,24(4):37~40
    [129]霍文毅,俞志明,邹景忠,等.胶州湾浮动弯角藻赤潮生消动态过程及其成因分析.水产学报,2001,25(3):222~226
    [130]刘光兴,张志南.胶州湾北部浮游动物的生物量和生产力.青岛海洋大学学报,2000,30(2):58~64
    [131]孙军, John Dawson,刘东艳.夏季胶州湾微型浮游动物摄食初步研究.应用生态学报,2004,15(7):1245~1252
    [132] Yang G P, Tsunogai S, Watanabe S.Biogenic sulfur distribution and cycling in the surfacemicrolayer and subsurface water of Funka Bay and its adjacent area. Continental ShelfResearch,2005,25:557~570
    [133] Parsons T R, Maita Y, Lalli C M. A Manual for Chemical and Biological Methods forSeawater Analysis. Oxford: Pergamon Press,1984.23~58
    [134]孙儒永.动物生态学原理.北京:北京师范大学出版社,1992:356~357
    [135]黄凤鹏,孙爱荣,王宗灵,等.胶州湾浮游动物的时空分布.海洋科学进展,2010,28(3):332~341
    [136]陈亚瞿,徐兆礼,王云龙,等.长江口河口锋区浮游动物生态研究Ⅱ:种类组成、群落结构、水系指示种.中国水产科学,1995,2(1):59~63
    [137]Hawkins S J, Southward A J, Genner M J. Detection of environmental change in a marineecosystem-evidence from the western English Channel. Science of the total environment,2003,310(1~3):245~256
    [138]陈洪举,刘光兴.2006年夏季长江口及其临近水域浮游动物的群落结构.北京师范大学学报:自然科学版,2009,45(4):393~398
    [139]徐兆礼.长江口邻近水域浮游动物群落特征及变动趋势.生态学杂志,2005,4(7):780
    [140]章菁,杨关铭,王春生,等.舟山群岛附近海域浮游动物生态研究.海洋学研究,2008,26(4):20~28
    [141] Sommer U, Sommer F, Santer B, et al. Daphnia versus copepod impact on summerphytoplankton: functional compensation at both trophic levels. Oecologia,2003,135:639~647
    [142] Sasaki H, Hattori H, Nishizawa S. Downward flux of particulate organic matter and verticaldistribution of calanoid copepods in the Oyashio Water in summer. Deep-Sea Research I,1988,35:505~515
    [143] Yamaguchi A, Watanable Y J, Ishida H, et al. Community and trophic structures ofpelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC).Deep~Sea Research,2002,49:1007~1025
    [144] Maugeri T L, Carbone M, Fera M T, et al. Distribution of potentially pathogenic bacteria asfree living and plankton associated in a marine coastal zone. Journal of AppliedMicrobiology,2004,97:354~361
    [145] Unanue M, Ayo B, Azua L, Barcina I, et al. Temporal variability of attached andfree~living bacteria in coastal waters. Microbial Ecology,1992,23:27~39
    [146] Bidle K D, Fletcher M. Comparison of free-living and particle-associated bacterialcommunities in the Chesapeake Bay by stable low-molecular-weight RNA analysis. Appliedand Environmental Microbiology,1995,61:944~952
    [147]景伟文,杨桂朋,康志强.胶州湾海水中DMS和DMSP的分布及其影响因素.中国海洋大学学报,2010,40(11):095~100
    [148]王小东.胶州湾浮游动物对浮游植物选择性摄食的初步研究:[硕士学位论文].青岛:中国海洋大学,2006
    [149] Keller M D, Bellows W K. Physiological aspects of the production ofdimethylsulfoniopropionate (DMSP) by marine phytoplankton. New York: Plenum Press,1996.131~142
    [150] Kiene R P. Production of methanethiol from dimethysulfoniopropionate in marine surfacewaters. Marine Chemistry,1996,54:69~83
    [151] Turner J T. Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay,1992. Hydrobiologia.292/293:405~413
    [152]黄凤鹏,黄景洲,杨玉玲,等.胶州湾浮游桡足类时空分布.生态学报,2009,29(8):4045~4052
    [153] Levasseur M, Michaud S, Egge J, et al. Production of DMSP and DMS during amesocosom studdy of an Emiliania huxleyi bloom: influence of bacteria and Calanusfinmarchicus grazing. Marine Biology,1996,126(4):609~618
    [154] Kettle A J. et al1999. A global database of sea surface dimethylfude (DMS) measurementsand a procedure to predict sea surface DMS as a function of latitude, longitude, and month.Global Biogeochem. Cycles13,399~444
    [155] Kiene R P, Service S K. Decomposition of dissolved DMSP and DMS in estuarine waters:dependence on temperature and substrate concentration. Marine Ecology Progress Series,1991,76:1~11
    [156] Ledyard K M, Dacey JWH. Microbial cycling of DMSP and DMS in coastal andoligotrophic seawater. Limnology and Oceanography,1996,41:33~40
    [157] Kiene RP, Linn LJ. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater:tracer studies using35S~DMSP. Geochimica et Cosmochimica Acta,2000,64:2797~2810
    [158] Kiene R P, Linn L J, Gonzalez J, et al. Dimethylsulfoniopropionate and methanethiol areimportant precursors of methionine and protein-sulfur in marine bacterioplankton. Appliedand Environmental Microbiology,1999,65:4549~4558
    [159] Ledyard K M, Delong E F, Dacey J W H. Characterization of a DMSP~degradingbacterial isolate from the Sargasso Sea. Archives of Microbiology,1993,160:312~318
    [160] Reisch C R, Moran M A, Whitman W B. Bacterial catabolism of dimethylsulfonioproionate(DMSP). Frontiers Microbiology,2011,2:1~12
    [161] Visscher P T, Kiene R P, Taylor B F. Dimethylation and cleavage ofdimethysulfoniopropionate in marine intertidal sediments. FEMS Microbiology Ecology,1994,14:179~190
    [162] Tang KW, Visscher PT, Dam HG.. DMSP-consuming bacteria associated with the calanoidcopepod Acartia tonsa (Dana). Journal of Experimental Marine Biology and Ecology,2001,256:185~198
    [163] Strathmann, R. R. Estimating the organic carbon content of phytoplaknton from cellvolume or plasma volume. Limnology and Oceanography,1967,12:411~418
    [164] Lin,Y. M., Li, H.Y., Wang, D.Z., et al. Study on DMS and DMSP producing byAlexandrium tamaranse. Journal of Oceanography in Taiwan Strait,2001,20:335~339
    [165] Tang KW. Copepods as microbial hotspots in the ocean: effects of host feeding activitieson attached bacteria. Aquatic Microbial Ecology,2005,38:31~40
    [166] Guillard R R L. Culture of phytoplankton for feeding marine invertebrates.In: Smith W L,Chanle M H, eds. Culture of Marine Invertebrate Animals. New York: Plenum Press,1975.26~60
    [167] Guillard R R L, Ryther J H. Studies of marine planktonic diatoms. I. Cyclotella nanaHustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology,1962,8:229~239
    [168] Tang KW, Jakoson HH, Visser AW. Phaeocystis globosa (Prymnesiophyceae) and theplanktonic food web: feeding, growth and trophic interactions among grazer. Limnology andOceanogry,2001,46:1860~1870
    [169] Hines M E, Visscher P T, Devereux R. Sulfur cycling. In: Hurst C J, Knudsen G R,McInerney M J, Stetzenbach L D, Walter M V, eds. Manual of Environmental Microbiology.Washington, DC: American Society of Microbiologists,1997.324~334
    [170] Porter K G, Feig Y S. DAPI for identifying and counting aquatic microflora. Limnologyand Oceanography,1980,25:943~948
    [171] DeMan J C. The probability of most probable numbers. European Journal of AppliedMicrobiology,1975,1:67~78
    [172] Vrede K, Heldal M, Norlandand S, Bratbak G. Elemental Composition (C, N, P) and CellVolume of Exponentially Growing and Nutrient-Limited Bacterioplankton. Applied andEnvironmental Microbiology,2002,8:2965~2971
    [173] Malin G. The role of DMSP and DMS in the global sulfur cycle and climate regulation. In:Kiene R P, Visscher P T, Keller M D, Kirst G O, eds. Biological and environmentalchemistry of DMSP and related sulfonium compounds. New York: Plenum Press,1996.171~189
    [174] Gabric A, Murray N, Stone L, Kohl M. Modelling the production of dimethylsulfide duringa phytoplankton bloom. Journal of Geophysical Research,1993,98:22805~22816
    [175] Gowing M M, Silver M W. Origins and microenvironments of bacteria mediating fecalpellet decomposition in the sea. Marine Biology,1983,73:7~16
    [176] Nagasawa S, Simidu U, Nemoto T. Scanning electron microscopy investigation of bacterialcolonization of the marine copepod Acartia clausi. Marine Biology,1985,87:61~66
    [177] Delielle D, Razouls S. Community structures of heterotrophic bacteria of copepod fecalpellets. Journal of Plankton Research,1994,16:603~615
    [178] Hansen B, Bech G. Bacteria associated with a marine planktonic copepod in culture. Ⅰ.Bacterial general in seawater, body surface, intestines and fecal pellets and successionduring fecal pellet degradation. Journal of Plankton Research,1996,18:257~273
    [179] Hansen B, Fotel F L, Jensen N J, Madsen S D. Bacteria associated with a marine planktoniccopepod in culture. Ⅱ. Degradation of fecal pellets produced on a diatom, a nanoflagellateor a dinoflagellate diet. Journal of Plankton Research,1996,18:275~288
    [180] Hatton A D, Wilson S T. Particulate dimethylsulphoxide and dimethylsulphoniopropionatein phytoplankton cultures and Scottish coastal waters. Aquatic Science,2007,69:330~340
    [181] Simó R, Pedrós~Alió C, Malin G, Grimalt J O. Biological turnover of DMS, DMSP andDMSO in contrasting open-sea waters. Marine Ecology Progress Series,2000,203:1~11
    [182] Vallina S M, Simo R. Strong relationship between DMS and the solar radiation dose overthe global surface ocean. Science,2007,315:506–508
    [183] Kiene R P, Taylor B F. Demethylation of dimethylsulfoniopropionate and production ofthiols in anoxic marine sediments. Applied and Environmental.Microbiology,1988,54:2208–2212
    [184] Howard E C, Henriksen J R, Buchan A, et al. Bacterial taxa that limit sulfur fux from theocean. Science,2006,314:649–652
    [185] Reisch C R, Moran M A, Whitman W B. Bacterial catabolism ofdimethylsulfoniopropionate. Frontiers in microbiology,2011,2:1~12
    [186] Bates T S, Kiene R P, Wolfe G V, et al.1994.The cycling of sulfur in surface seawater ofthe northeast Pacifc. Journal of Geophysical Research,1994,99:7835–7843
    [187] Matrai P A,Vernet M. Dynamics of the vernal bloom in the marginal ice zone of theBarents Sea:dimethylsulfde and dimethylsulfoniopropionatebudgets. Journal of GeophysicalResearch,1997,102:22965–22979
    [188] Wagner C, Stadtman E R. Bacterial fermentation of dimethyl-β-propiothetin. Archives ofBiochemistry Biophysics,1962,98:331–336
    [189] Van der M, M J E C, Hansen T A. Anaerobic microorganisms involved in the degradationof MDSP. In: Kiene R P, Visscher P T, Keller M D, Kirst G O, eds. Biological andenvironmental chemistry of DMSP and related sulfonium compounds. New York: PlenumPress,1996,369~379
    [190] Van der M, M J E C, Aukema W, Hansen T A. Purification and characterization of adimethysulfoniopropionate cleaving enzyme from Desulfovibrio acrylicus. FEMSMicrobiology Letters,1996,143:241~245
    [191] Carman K R, Dobbs F C. Epibiotic microorganisms on copepods and other marinecrustaceans. Microscopy Research and Technique,1997,37:116–135
    [192] Grossart H-P, Dziallas C, Tang K W. Bacterial diversity associated with freshwaterzooplankton. Environmental Microbiology Reports,2009,1:50–55
    [193] Riemann L, Winding A. Community Dynamics of Free-living and Particle-associatedBacterial Assemblages during a Freshwater Phytoplankton Bloom. Microbial Ecology,2001,42(3):274~285
    [194] Eilers H, Pernthaler J, Gl ckner FO, Amann R. Culturability and in situ abundance ofpelagic bacteria from the North Sea. Applied and Environmental Microbiology,2000,66:3044~3051
    [195] Cottrell M T, Kirchman D L. Contribution of major bacterial groups to bacterial biomassproduction (thymidine and leucine incorporation) in the Delaware Estuary. Limnology andOceanography,2003,48:168~178
    [196] Kragh T, Sondergaard M, Borch N H. The effect of zooplankton on the dynamics andmolecular composition of carbohydrates during an experimental algal bloom. Journal ofLimnology,2006,65:52~58
    [197] Kobari T, Ikeda T. Ontogenetic vertical migration and life cycle of Neocalanus plumchrus(Crustacea: Copepoda) in the Oyashio region, with notes on regional variations in body sizes.Journal of Plankton Research,2001,23:287~302
    [198] Tang K W, Bickel S L, Dziallas C, Grossart H P. Microbial activities accompanyingdecomposition of cladoceran and copepod carcasses under different environmentalconditions. Aquatic Microbial Ecology,2009,57:89~100
    [199] Delong E F, Franks D G, Alldredge A L. Phylogenetic diversity of aggregate-attached vs.free-living marine bacterial assemblages. Limnology and Oceanography,1993,38(5):924~934
    [200] Cantin G, Levasseur M, Schultes S, Michaud S. Dimethylsulfide (DMS) production bysize-fractionated particles in the Labrador Sea. Aquatic Microbial Ecology,1999,19:307~312
    [201]de Souza M P, Yoch D C.Purification and characterization of dimethylsulfoniopropionatelyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate. Applied andEnvironmental Microbiology,1995,61:21~26
    [202] Sin Y, Wetzel R L, Anderson I C. Spatial and temporal characteristics of nutrient andphytoplankton dynamics in the York River Estuary, Virginia: analyses of long term data.Estuaries,1999,22:260~275
    [203] Raymond P A, Bauer J E, Cole J J. Atmospheric CO2evasion, dissolved inorganic carbonproduction, and net heterotrophy in the York River estuary. Limnology and Oceanography,2000,45:1707~1717
    [204] Raymond P A, Bauer J E. DOC cycling in a temperate estuary: a mass balance approachusing natural14C and13C isotopes. Limnology and Oceanography,2001,46:655~667
    [205] Neubauer S C, Anderson I C. Transport of dissolved inorganic carbon from a tidalfreshwater marsh to the York River estuary. Limnology and Oceanography,2003,48:299–307
    [206] McCallister S L, Bauer J E, Cherrier J E, Ducklow H W. Assessing sources and ages oforganic matter supporting river and estuarine bacterial production: a multiple-isotope (△14C,δ13C, and δ15N) approach. Limnology and Oceanography,2004,49:1687~1702
    [207] Steinberg D K, Condon R H. Zooplankton of York River. Journal of Coastal Research,2009,57:66~79
    [208] Keller M D, Kiene R P, Matrai P A, Bellows W K. Production of glycine betaine anddimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures.Marine Biology,2009,135(2):249~257
    [209] Kiene R P, Gerard G. Evaluation of glycine betaine as an inhibitor of dissolveddimethylsulfoniopropionate degradation in coastal waters. Inter-Research:MEPS,1995,128:121~131
    [210] Williams A B, Rona P A. Two new caridean shrimps (Bresiliidae) from a hydrothermalfield on the Mid-Atlantic Ridge. Journal of Crustacean Biology,1986,6:446~462
    [211] Zbinden M, Le Bris N, Gaill F, Compère P. Distribution of bacteria and associated mineralsin the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemicalprocesses. Marine Ecology Progress Series,2004,284:237~251
    [212] Caro A, Escalas A, Bouvier C, Grousset E, Lautredou-Audouy N, Roques C, CharmantierM, Gros O. Epibiotic bacterial community of Sphaeroma serratum (Crustacea, Isopoda) inrelation with molt status. Marine Ecology Progress Series,2012,457:11~27
    [213] Gebruk A V, Pimenov N V, Savichev A S. Feeding specialization of bresiliid shrimps inthe TAG site hydrothermal community. Marine Ecology Progress Series,1993,98:247~253
    [214] Shiah F, Ducklow H W. Temperature regulation of heterotrophic bacterioplanktonabundance, production, and specific growth rate in Chesapeake Bay. Limnology andOceanography,1994,39:1243~1258
    [215] Schultz G, White E, Ducklow H. Bacterioplankton dynamics in the York River estuary:Primary influence of temperature and freshwater inputs. Aquatic Microbial Ecology,2003,30:135~148
    [216] Ducklow H W. Bacterioplankton production and biomass in the oceans. In: Kirchman D ed.Microbial ecology of the oceans. John Wiley&Sons: New York,2000.85~120
    [217] Nedwell D B. Effect of low temperature on microbial growth: lowered affinity forsubstrates limits growth at low temperature. FEMS Microbiology Ecology,1999,30:101~111
    [218] Nedwell D B. Life in the cooler-starvation in the midst of plenty; and implications formicrobial polar life. In: Bell C R, Brylinsky M, Johnson-Green P, eds. Microbial biosystems:new frontiers. Atlantic Canada Society for Microbial Ecology: Halifax,2000.299~305
    [219] Christian R R, Wiebe W J. The effects of temperature upon the reproduction and respirationof a marine obligate psychrophile. Canadian Journal of Microbiology,1974,20:1341~1345
    [220] Morita R Y. Temperature effects on marine microorganisms. In: Colwell R R, Morita R Y,eds. Effect of the ocean environment on microbial activities. University Park Press:Baltimore,1974.75~79
    [221] Pomeroy L, Wiebe W. Temperature and substrates as interactive limiting factors for marineheterotrophic bacteria. Aquatic Microbial Ecology,2001,23:187~204
    [222] Rivkin R B, Anderson M R, Lajzerowicz C. Microbial processes in cold oceans.1.Relationship between temperature and bacterial growth rate. Aquatic Microbial Ecology,1996,10:243~254
    [223] Fuhrman J A, Eppley R W, Hagstrom A, Azam F. Diel variations in bacterioplankton,phytoplankton and related parameters in the Southern California Bight. Marine EcologyProgress Series,1985,27:9~20
    [224] Gasol J M, Doval M D, Phinassi J, Calderon-Paz,J L, Guixa-Boixareu N, Vaque D,Pedros-Alio C. Diel variations in bacterialheterotrophic activity and growth in the northwestern Mediterranean Sea. Marine Ecology Progress Series,1998,164,107~124
    [225] Jacquet S, Prieur L, Avois-Jacquet C, Lennon J F, Vaulot,D. Short-time scale variability ofpicophytoplankton abundance and cellular parameters in surface waters of the AlboranSea(western Mediterranean). Journalof Plankton Research,2002,24:635~651
    [226] Puddu A, Alberighi L, DelNegro P, Manganelli M, Zaccone R. Diel cycles of microbialproduction and abundance in northern Adriatic surface waters. Biologia MarinaMediterranea,2000,7:196~205
    [227] Iriarte A, Madariaga I, Revilla M, Sarobe A. Short-term variability in microbial food webdynamics in a shallow tidal estuary. Aquatic Microbial Ecology.2003,31:145~161
    [228] Cuevas A, Morales C E. Nanoheterotroph grazing on bacteria and cyanobacteria in oxic andsuboxic waters in coastal upwelling areas off northern Chile. Journal of Plankton Research.2006,28:385~397
    [229] Celussi M, Paoli A, Aubry F B, Bastianini Mauro, Negro Paola Del. Diel microbialvariations at a coastal Northern Adriatic station affected by Po River outflows. Estuarine,Coastal and Shelf Science,2008,76:36~44
    [230] Gifford D J. Impact of grazing by microzooplankton in the northwest arm of Halifax harbor,Nova Scotia. Marine Ecology Progress Series,1988,47:249~258
    [231] Lawrence S G, Ahmad A, Azam F. Fate of particlebound bacteria ingested by Calanuspacificus. Marine Ecology Progress Series,1993,97:299–307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700