用户名: 密码: 验证码:
计及结构弹性效应的砰击载荷与响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶与海洋结构物在作业环境下难免发生砰击现象。规范处理结构与流体之间的相互作用时,一般是将结构视为刚体,把实验或计算分析得到的砰击压力修正为静态压力,以此进行结构强度的评估。而实际结构是可变形的,流固耦合的现象是真实存在的,这种刚性壁的假设往往使流体作用在结构上的冲击压力偏大,以这个压力进行结构的强度分析会使结果偏于保守。本文以此为动机,研究结构弹性对砰击载荷的影响,目的是为工程应用更准确地分析或修正砰击载荷,提供一些有价值的结论和相关分析处理方法。为此,文中着重在下列几个方面进行了探讨:
     首先,基于Wagner简化方法,考虑结构与流体的相互作用,应用Galevkin法求解板的微分方程,将得到的结构变形速度修正流场速度势,得出了一组耦合方程。通过数值算法求解偶合方程,分析了一组弹性楔形结构入水的砰击压力,并讨论了入水速度、底倾角、板厚等参数对砰击载荷水弹性效应的影响。最后讨论了该方法的应用范围和局限性。
     其次,仿真研究了一系列不同特征参数的弹性楔形结构的冲击入水过程。与刚性结构入水时的砰击压力相比,总结了结构弹性对砰击载荷的影响规律。研究指出,与刚性体相比,弹性结构降低了砰击压力的峰值,同时也导致了峰值点位置的改变。由于结构弹性效应,砰击瞬时物体表面砰击压力的时间历程呈现了明显的波动性。在相同的冲击条件下,倾角越小,冲击速度越大、结构板厚越小,结构弹性的影响越大。
     再次,仿真研究了射流冲击弹性板的问题。在砰击发生的初始阶段,瞬间会产生巨大的砰击压力。与射流冲击刚性板的情况相比,结构弹性降低了砰击压力峰值。此外,在第一次压力峰值后,压力波动的第二次峰值也不可忽略。进一步发现既冲击初始阶段之后,射流自由液面向四周的扩散致使砰击压力作用区增大,扩散区的压力峰值与第一次峰值相比同样具有可观的量值。另外,根据仿真各阶段现象的观察,考察了射流自由液面的变化和内部冲击波的传播速度,验证了相关理论研究的假设。
     最后,把砰击载荷水弹性效应的研究,应用到弹塑性梁的动力屈曲问题。在一般梁动力屈曲的方程的基础上,结合相关理论与实验结果,提出了梁弹塑性屈曲的简化方法。分析了梁动力屈曲,载荷形式、持续时间和梁初始缺陷对屈曲临界载荷的影响。弹塑性条件下,载荷持续时间和几何初始缺陷对其屈曲载荷的影响规律为:载荷持续时间越长,屈曲载荷越小;初始缺陷越小,屈曲载荷越大。
It is unavoidable that slamming phenomenon happens on the ship and ocean structures during their long service life in harsh working environment. In general, the rules and codes take the hull as a rigid body to calculate the impact load by some effective experimental or numerical methods. Then the load is used to evaluate strength of impacted region. But, the real structure is deformable when it is subjected to high magnitude pressure. The interaction of body and fluid plays a considerable role in the synchronous slamming period. Therefore, a conservative way maybe utilized if these coupling reactions are neglected under the rigid body assumption. For this reason, the following problems are emphatically investigated.
     Firstly, a group of coupling differential equations were deducted based on Wagner simplified method. Galevkin method was used to solve the deformation of wedge structure. Wagner's flat plate fitting velocity potential was amended to perform numerical analysis. A group of elastic wedges'slamming pressure was analyzed by the numerical program. The influence of structural elasticity on slamming load was summarized and some wedge related parameters'effects were discussed also.
     Secondly, water entry of a series of elastic wedge models was simulated. The results show that, elasticity of structures not only reduces pressure magnitude contrasting against rigid body water entry, but also changes locations of the impacting peak pressure. The pressure time history has a wave characteristic. Smaller deadrise angles, lower entry velocity and thinner plate give more considerable elasticity influence on transient slamming pressure.
     Secondly again, the model of jet impacting elastic plate was investigate to explore the load effect. In the initial period of impact, a lower magnitude pressure was produced, then the second pressure wave peak followed with a considerably notable value. Induced pressures on the extended free liquid surface also have a considerable magnitude after the initial period. For validation of related theories, free surface variation and shock wave propagation were researched against some resumes of related theories, which suppose that the free surface is changeless and the shock wave propagations velocity is on the assumption of velocity of the sound in the water.
     Finally, a simplified method is proposed to solve the elastic-plastic buckling of beam under slamming load. The difference with previous study is that, the real experimental measurement of slamming pressure history and the experimental material constitutive equation were utilized in this thesis. The influences of initial geometric imperfections, duration of pressure loads were investigated and finally some conclusions are reached.
引文
[1]Bert Sweetman. Air gap analysis of floating structures subject to random seas:prediction of extremes using diffraction analysis versus model test results.2001. A Dissertation of Stanford University, p15
    [2]Charles E. Smith, D.Sc. P.E. Recovery and Rebuilding Following Hurricanes Katrina and Rita.2006. Minerals Management Service, Transportation Research Board, Washington, DC
    [3]Fokk T. Veslefrikk B Air Gap Model Tests.1995. Tech rept.512167.00.01. MAR-INTEK Trondhem, Norway
    [4]ODD M.FALTINSEN, MAURIZIO LANDRINI and MARILENA GRECO. Slamming in marine applications.2004, Journal of Engineering Mathematics.48:187-217
    [5]Technical Report of 25th International Towing Tank Conference (ITTC). 2008. Fukuoka, Japan
    [6]Proceedings of International Workshop on Water Waves and Floating Bodies (IWWWFB).2005-2009
    [7]T. Von Karman, The impact of seaplane floats during landing.1929. Nat. Adv. Com. for Aeronautics. Tech. Note 321, pp 309-313
    [8]H.Wagner, Uber Stoss- und Gleitvorgange an der Oberflache von Fliissigkeiten.1932. ZAMM Vol.12. pp 192-235
    [9]Z. N. Dobrovolskaya, On some problems of similarity flow of fluid with a free surface.1969. J. Fluid Mech.36:805-829
    [10]Greenhow, M.& Lin, W.-M.1983 Nonlinear free-surface effects: experiments and theory. Report, MIT, Department of Ocean Engineering, pp. 83-119
    [11]R. Cointe and J. L. Armand, Hydrodynamic impact analysis of a cylinder. J. Off. Mech. Arctic Eng. ASME 109 (1987) 237-243
    [12]Armank J.L.and Cointe R.Hydrodynamci impact analysis of a cylinder. 1986. Proc. Of Fifth Int. Offshore Mech. And Arctic Engng. Symp(OMAE). Tokyo, Japan. Vol.1, pp 609-634
    [13]R. Cointe, Free-surface flows close to a surface-piercing body. In:T. Miloh (ed.), J. Mathematical Approaches in Hydrodynamics. Philadelphia:SIAM (1991)319-334
    [14]Howison, S. D., Ockendon, J. R. & Wilson, S. K. Incompressible water-entry problems at small deadrise angles.1991. J. Fluid Mech.222, 215-230
    [15]J.M. Oliver. Water Entry and Related Problems.2002. Ph.D thesis of University of Oxford.
    [16]G. Riccardi and A. Iafrati. Water impact of an asymmetric floating wedge.2004. Journal of Engineering Mathematics. Vol.49:No.1. Pp 19-39.
    [17]V. N. Gavrilenko. Penetration of a compressible fluid by a parabolic cylinder.1984. Prikl. Mekh. Vol.20:No.2, pp 65-71
    [18]Kubenko, V. D. Penetration of Elastic. Shells in Compressible Fluid.1981a. Kiev:Nau-kova Dumka.160 pp
    [19]Kubenko. V.D. Penetration of cylindrical bodies in compressible liquid. 1981b. Prikl. Mekh. Vol.17, pp 26-33
    [20]Leneweit, G., Koehler, R., Roesner, K.G. and Schafer, G., Regimes of drop morphology in oblique impact on deep fluids. J. Fluid Mech. v543.303-331
    [21]Hirt, C. W. and Nichols, B. D., "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," J. Comput. Phys., Vol.39, pp.201-225 (1981)
    [22]Marcal P V. Hydrodynamic impact analysis.1978. EPRI NP-824, Research Project 812-3
    [23]Wu, G.X., Hu, Z.Z.,2004. Simulation of nonlinear interactions between waves and floating bodies through a finite element based numerical tank. Proceedings of the Royal Society of London A 460,2797-2817
    [24]T. Belytschko and T. L. Geers. Computational Methods for Fluid-Structure Interaction Problems.1977. ASME, pp.83-93
    [25]Vinje, T.& Brevig, P. Nonlinear, two-dimensional ship motions.1981a. Ship Res. Inst. Norway R-112-81
    [26]Vinje, T.& Brevig, P. Breaking waves on_nite depth water; a numerical study.1981b. Ship Res.Inst. Norway R-118-81
    [27]Greenhow, M.1982 Numerical simulation of standing waves in Finite depth. Adv. Water Resources 5,185-189
    [28]Greenhow, M.1987 Wedge entry into initially calm water. Appl. Ocean Res.9,214-223
    [29]Greenhow, M.1988 Water-entry and exit of a horizontal circular cylinder. Appl. Ocean Res.10,191-198
    [30]Greenhow, M.1993 A complex variable method for the floating-body boundary-value problem.J. Comput. Appl. Math.46,115-128
    [31]Greenhow, M.& Li, Y.1987 Added masses for circular cylinders near or penetrating fluid boundaries|review, extension and application to water-entry, exit and slamming. Ocean Engng 14,325-348
    [32]R. Zhao and O. M. Faltinsen, Water entry of two-dimensional bodies.1993. J. Fluid Mech.246.pp 593-612
    [33]R. Zhao, O. M. Faltinsen and J. Aarnes, Water entry of arbitrary two-dimensional sections with and without flow separation.1997. In:Proc. of 21st Symp. on Naval Hydrod. Trondheim:National Academy Press, pp 408-423
    [34]O. M. Faltinsen, Water entry of a wedge with finite dead rise angle.2002. J. Ship Res.46:pp 39-51
    [35]钱勤.分析撞水和动接触问题的计算方法和数值模拟.1994.华中理工大学博士学位论文
    [36]钱勤,黄玉盈,王石刚等.任意的拉格朗日-欧拉边界元-有限元混合法分析物体撞水响应.1994.固体力学学报.Vol.15:No.1
    [37]卢炽华 何友声。二维弹性结构入水冲击工程中的流固耦合效应.2000.力学学报.Vol.32(2):129-140
    [38]卢炽华,何友声,王刚.船体砰击问题的非线性边界元分析.水动力学研究与进展.Vol.14:No.2,pp 169-176
    [39]孙辉,卢炽华,何友声.二维楔形体冲击入水时的流固耦合响应的实验研究.2003.水动力学研究与进展.Vol.18:1
    [40]孙辉.二维楔形体结构自由冲击入水的流固耦合研究.2001.上海交通大学硕士论文
    [41]Liu W. K., Belytschko T., Oden J. T. Meshless methods. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4, special issue):1-400
    [42]Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics:theory and application to non spherical stars.1977. Monthly Notices Rastronomy Soc. (MNRAS),181:375-389
    [43]郑兴,段文洋.光滑质点流体动力学(SPH)及其算法特性.2008.船舶力学.第12卷第04期
    [44]郑兴,段文洋.光滑粒子流体动力学二阶算法精度研究.2008.水科学进展19(6):821-827
    [45]Sheng-Lun Chuang. Experiment on slamming of wedge-shaped bodies. Journal of Ship Research.1967. Vol.11:3,pp 190-198
    [46]Sheng-Lun Chuang. Theoretical investigations on slamming of cone-shaped bodies. Journal of Ship Research.1967. Vol.12, pp 276-283
    [47]Sheng-Lun Chuang. Investigation of impact of rigid and elastic bodies with water.1970. Report of Naval Ship Research and Development Center. AD702727
    [48]Shenglun-Chuang. Experiment on flat-bottom slamming.1969. Journal of ship Research. Vol.10, No.1,pp 116-130
    [49]戴仰山,沈进威,宋竞正.船舶波浪载荷.2007.北京:国防工业出版社
    [50]戴仰山,贺五洲.底部砰击预报.1979.中国造船
    [51]戴仰山,宋竞正.船体在海浪中的弯矩.1980.中国造船.(3):71-84
    [52]宋竞正,任慧龙,戴仰山.船体非线性波浪载荷的水弹性分析.1995.中国造船
    [53]唐友刚,董艳秋.Hamilton法计算肥大船砰击响应.1994.2(7),370-374
    [54]陆鑫森,叶伟,俞国新等.现代高速船舶结构设计问题.1996.30(10):129-135
    [55]王刚.高速船舶结构设计中流体冲击载荷的数值计算.船舶,1998(5):26-31
    [56]卢炽华,何友声,王刚.船体砰击问题的非线性边界元分析1999.水动力学进展与研究.14(2);169-176
    [57]张志民.船艏底部砰击强度的可靠性分析.2001.哈尔滨工程大学博士学位论文
    [58]张志民,戴仰山.底部砰击压力的长期极值分布.2002.哈尔滨工程大学学报.23(1):37-42
    [59]王辉,朱云祥,顾雪康,沈进威.Ro-Ro船首门砰击载荷设计值的确定.2003.船舶力学.Vol.2, pp 46-56
    [60]胡嘉骏 蔡新钢 船舶表面点砰击压力的预报方法.船舶力学.2003(2):46-56
    [61]Korobkin, A.A.,1998. Elastic response of catamaran of wetdeck to liquid impact. Ocean Engineering 25,687-714
    [62]Ge, C., Faltinsen, O.M., Moan, T.,2002, Global hydroelastic response of a catamaran due to wetdeck slamming accounting for forward speed, OMAE'02, Oslo. Norway
    [63]G.X. Wu. Numerical simulation of water entry of twin wedges. Journal of Fluids and Structures 22 (2006) 99-108
    [64]曹正林.高速三体船砰击强度研究.武汉理工大学博士论文.2008
    [65]Ochi M.K. and Motter L.E. Prdiction fo slamming characteristics and hull responses for ship design.1973. SNAME
    [66]M.K. Ochi and L.E. Motter. A Method to Estimate Slamming Characteristics for Ship Design.1971. Marine Technology, Vol.8, No.2: 219-232p
    [67]Landweber L. and Macagno M. Added Mass of A Three Parameter Family of Two-Dimensional Forces Oscillating in A Free Surface.1959. Journal of Ship Research, Vol.2, No.4:36-48p
    [68]ABS. Rules for Building and Classing Steel Vessels 2009.
    [69]ABS Guide for High-Speed Naval Craft.2007. ABS
    [70]夏斌.弹性平底结构入水冲击压力及船舶总体轻度研究与分析.上海交通大学硕士学位论文.2005
    [71]陈震.海洋结构物入水砰击载荷与响应研究.上海交通大学博士论文.2005
    [72]娜日萨.VLCC液舱晃荡仿真及结构强度评估方法研究.2006.哈尔滨工程大学博士论文
    [73]朱加刚.船底结构砰击入水时的水弹性分析.哈尔滨工程大学硕士学位论文.2006
    [74]董丽娜.计及弹性效应的砰击压力计算.哈尔滨工程大学硕士学位论文.2007
    [75]张晓波.船底结构流固耦合砰击时的数值模拟.大连理工大学硕士学位论文.2007.12
    [76]A.A. Korobkin, T.I. Khabakhpasheva, G.X. Wu. Coupled hydrodynamic and structural analysis of compressible jet impact onto elastic panels. Journal of Fluids and Structures 24 (2008) 1021-1041
    [77]T.I. Khabakhpasheva. VERIFICATION OF THE METHOD OF FLAT CROSS-SECTIONS FOR THE CASE OF JET IMPACT ONTO ELASTIC PLATE[C]. Proceedings of IWWWFB23.2008, Jeju, Korea
    [78]Zhaoqiang Ding, Bing Ren, Yongxue Wang, Xiaozhong Ren. Experimental study of unidirectional irregular wave slamming on the three-dimensional structure in the splash zone. Ocean Engineering 35 (2008) 1637-1646
    [79]Z. Qin, R.C. Batra. International Journal of Solids and Structures International Journal of Solids and Structures. (2008)
    [80]H.D. Kang, S.H. Oh, S.H. Kwon, J.Y. Chung, K.H. Jung, H.J. Jo. An experimental study of shallow water impact[C]. Proceedings of IWWWFB23.2008, Jeju, Korea
    [81]A.A. Korobkin. Shallow water impact problems. Journal of Engineering Mathematics. Vol 35, pp 233-250
    [82]J.H.G. Verhagen. The impact of a flat plate on a water surface.1967. Journal of Ship Research,11(3):211-223
    [83]Y.M. Scolan, A.A. Korobkin. Three-dimensional theory of water impact. Part 1. Inverse Wagner Problem.2001. Journal of Fluid Mechanics. Vol. 440, pp 293-326
    [84]G.X. Wu. Lecture Notes on Fluid/Structure Impact Delivered at Harbin Engineering University.2006.
    [85]O. M. Faltinsen, Water entry of a wedge by hydroelastic orthotropic plate theory.1999. J. Ship Res.43:180-193
    [86]Korobkin, A. A., Global characteristics of jet impact.1996. Journal of Fluid Mechanics 307,63-84
    [87]Eroshin, V.A., Pomanenkov, N.I., Serebrjakov, I.V., Yakimov, Y.L.,1980. Hydrodynamic forces at blunt body impact on a compressible fluid surface. Izvestiya Akadademii Nauk SSSR, Mekhanika Zidkosti i Gaza 6,44-51
    [88]Peregrine, D.H.,1972. Flow due to vertical plate moving in a channel. Unpublished notes, Department of Mathematics, University of Bristol, UK.
    [89]Wu, G.X.,2001. Initial pressure distribution due to jet impact on a rigid body. Journal of Fluids and Structures 15,365-370
    [90]Korobkin, A.A.,1998. Wave impact on the center of an Euler beam. Journal of Applied Mechanics and Technical Physics 39,770-781.
    [91]Korobkin, A.A., Khabakhpasheva, T.I.,2006. Regular wave impact onto an elastic pate. Journal of Engineering Mathematics 55,127-150
    [92]C.W. Hirt, A.A. Amsden and J.L. Cook. An arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds.1997. Journal of computational physics 135,203-216
    [93]Noh W.F. CEL:A time-dependent weo-space-dimentional coupled Eulerian-lagrangian code, in B. Alder, S. Fernbach and M. Rotenberg, eds. 1964. Methods in Computational Physics 3, (Academic press, New York, 1964)
    [94]李德元,徐国荣,孙鸿寿.二维非定常流体力学数值方法.1987.科学出版社.北京
    [95]Hughes T.J.R, Liu W.K. and Zimmerman T.K. Lagrangian-Eulerian finite element formulation for imcompressible viscous flows. Comput. Meths. Appl. Mech. Engng.29:329:349
    [96]Wing Kam Liu, Ted Belytschko and Herman Chang. An arbitray Lagrangian-Eulerian finite element method for path-dependent materials. 1986. Couputer methods in applied mechanics and engineering.58:227-245
    [97]MSC Corporation. MSC.Dytran theory manual.2005
    [98]Huges TJR, Liu W.K. Zimmerman TK. Lagrangian-eulerian finite element formulation for incompressible viscous flows. Comput. Meths. Appl. Mech. Engrg.29:329-349
    [99]王德禹,金咸定,李龙渊.液舱流体晃荡的模型试验上海交通大学学报.1998年11期,116-119
    [100]King A.C. and Needham D.J. The initial development of a jet caused by fluid, body and free-surface interaction. Part 1. A uniformly accelerated plate.1994. Journal of Fluid Mechanics 268:89-101
    [101]Needham D.J., Billingham J. and King A.C. The initial development of a jet caused by fluid, body and free-surface interaction. Part 2. An impulsively moved plate.2007. Journal of Fluid Mechanics.578:67-84
    [102]Korobkin A. A. Global characteristics of jet impact.1996. Journal of Fluid Mechanics 307:63-84
    [103]Wu, G.X.,1991. Hydrodynamic impact of the water waves. In:Proceedings of the Sixth International Workshop on Water Waves and Floating Bodies, Wood Hole, MA, USA, pp.259-263
    [104]Timoshenko, S.,1955. Vibration Problems in Engineering. D.van Nostrand Company, New York
    [105]金咸定,赵德有.船体振动学.2000.上海交通大学出版社.上海
    [106]Hong Hao, Hee Kiat Cheong and Shijie Cui. Analysis of imperfect column buckling under intermediate velocity impact. Int. J. Solids Struct. Vol. 37(2000), p.5297-5313
    [107]彭诚洋.砰击载荷作用下的结构的动力屈曲.2005.哈尔滨工程大学硕士学位论文
    [108]Ulo Lepik. On dynamic buckling of elastic-plastic beams.2000. Int. J. Non-Linear Mech. Vol.35, p.721-734
    [109]D. Karagiozova, N. Jones,1992b. Dynamic pulse buckling of a simple elastic-plastic model including axial inertia.1992. Int. J. Solids Struct. Vol. 29, p.1255-1272
    [110]Qingjie Zhang, Shiqi Li and Jijia Zheng. Dynamic response, buckling and collapsing of elastic-plastic straight columns under axial solid-fluid slamming compression -Ⅰ. experiments.1992. Int. J. Solids Struct. Vol.29, No.3. p.381-397
    [111]Cui Shijie, H.K.Cheong,Hong Hao. Dynamic buckling of simply-supported columns under axial slamming.1999. Journal of Engineering Mechanics, (5):513-520P
    [112]Shijie Cui, Hong Hao and Hee Kiat Cheong. Dynamic buckling and post-buckling of imperfect columns under fluid-solid interaction.2001. International Journal of Solids and Structures,38:8879-8897P
    [113]Shijie Cui, Hong Hao and Hee Kiat Cheong. Numerical analysis of dynamic buckling of rectangular plates subjected to intermediate velocity impact. 2001. International Journal of Impact Engineering.25:147-167P
    [114]Shijie Cui, Hong Hao and Hee Kiat Cheong. Theoretical study of dynamic elastic buckling of columns subjected to intermediate velocity impact loads. 2002. International Journal of Mechanical Sciences.44:687-702P
    [115]束长庚、周国华。船舶结构的屈曲强度.2003.国防工业出版社.北京
    [116]B. Budiansky, R. S. Roth,1962. Ax symmetric dynamic buckling of clamped shallow spherical shells. Collected papers on instability of shell structures, NASA TND-1510
    [117]顾学康,沈进威.非线性波浪载荷作用下的船体结构疲劳损伤.船舶力学.Vol.4:No.5,pp 22-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700