用户名: 密码: 验证码:
碳基超级电容器单体性能相关理论与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:超级电容器是一种介于传统电容器和充电电池之间的新型储能元件,其电容量大、功率密度高、充放电循环寿命长、充电时间短、可靠性高,使其在各个领域都得到广泛应用,随着电力电子和储能技术的不断发展,超级电容器的应用也得到了更多的技术支持。但是在实用化过程中,仍有很多关键技术问题尚待解决。本论文在目前的超级电容器生产水平和现代变换控制技术的基础上,以双电层超级电容器为研究对象,以MATLAB仿真平台和电力电子新技术为研究手段,针对其单体性能,结合储能应用技术,进行了如下研究:
     第一,从超级电容器单体能量密度和功率密度的关键性能出发,分析超级电容器的单体内部结构,基于制备双电层电容器的电极及电解质材料的特性,从理论上探讨其所能制备的能量密度与功率密度的极限值,并分析了在实际应用的过程中,双电层超级电容器能量密度与功率密度的影响因素,并绘制各个特性曲线图,对超级电容器的结构优化具有指导作用。
     第二,选取目前超级电容器充放电方法中应用最广泛的恒流充放电法进行超级电容器单体恒电流充放电性能的实验研究。为了满足超级电容器工作特性的实验研究要求,设计并制作了基于DSP控制的恒流测试系统,通过该系统对实际双电层超级电容器单体进行了充放电实验,分析测试数据结果,描绘不同电流水平下电容的电容量、内阻及效率的变化曲线,讨论其以上参数与充放电电流之间的关系,研究超级电容器在恒流充放电条件下的工作特性,并分析了产生该特性的原因,为超级电容器在各种系统中的实际应用中选择最有效的产品,配置系统的最优方案提供了依据。
     第三,在比较已有电参数模型的基础上,针对双电层超级电容器的多孔电极材料的特殊物理特征,通过对电极孔径和形状的分析和近似,提出一种新的双电层超级电容器的电参数模型,并将EIS电化学实验测试方法引入对超级电容器的建模研究中,选用不同参数的超级电容器单体进行实验,MATLAB/CFTOOL软件拟合结果验证了文中所提出的新模型的有效性和精准性。满足某些高动态精度要求的超级电容器应用系统的系统仿真和能量管理需求。
     第四,作为超级电容器的储能特性应用研究,针对目前超级电容器充电电路频率噪声高的问题,提出一种改进的低噪声充电电路,优化充电控制方案,突破传统的PWM型恒流充电模式,降低开关损耗、减小工作噪声,建立该电路的数学模型,进行了超级电容器充电电路的整体化结构和参数设计,进行了仿真分析,并对仿真结果进行了对比,通过开展实验研究,验证本文提出的充电电路方案的可行性和有效性。
ABSTRACT:Ultracapacitors are emerging new energy storage device whose electrochemical properties make these systems act as intermediate power and energy sources between electrochemical batteries and dielectric capacitors. As compared to dielectric capacitors, ultracapacitor has large capacity, high power density, charge-discharge cycle life, short charging time and high reliability. It has being applied in various fields. With the development of power electronics and energy storage technologies, its application got more technical support. However, there are still a lot of key technical issues need to be solved. Combined with the power integration requirements, this dissertation used the electric double layer capacitor as the research object, MATLAB simulation software and power electronic new technology as the research means, did the following research:
     First, the cell structure was analyzed from the point of view of the ultracapacitor characteristics. Based on the characteristics of the electrode and electrolyte materials in the electric double layer capacitor, its theoretical limit of the energy density and power density is discussed. Meanwhile, the influencing factors in its practical application are also analyzed and each characteristic curves is drew, which provides a guiding role of ultracapacitors structure optimization.
     Second, the constant current charge-discharge method is selected to do the experimental study of the ultracapacitor operating characteristics. In order to meet the charge-discharge experimental research requirements, a constant current test system based on DSP control is designed and produced. Then the actual cells are tested by this system. How that these parameters such as capacitance, equivalent series resistance and efficiency change as a function of current are plotted by analyzing the test results. The constant current charge-discharge operating characteristics of ultracapacitors are studied and the causing reasons were analyzed. It provides the basis for choosing the effective product and configuring the optimal solution in a variety of ultracapacitor application systems.
     Third, basing on the existing ultracapacitor model and the particular physical characteristics of the porous electrode material of the electric double layer capacitor, a new ultracapacitor model is proposed through analyzing and approximating the size and shape of electrode pores. EIS (electrochemical impedance spectroscopy) test method is introduced in the dissertation. Different ultracapacitors are tested. Fitting results by the MATLAB/CFTOOL software show its effectiveness and accuracy. It met some high dynamic accuracy requirement system simulation and energy management needs.
     Fourth, for the low charging efficiency and high frequency noise of current ultracapacitor charging circuit, an improved ultracapacitor charging circuit is proposed, which optimized charging control scheme, broke the traditional PWM constant current charging mode, reduced switching losses and working noise. The circuit mathematical model is established. The circuit structure and parameters are designed and simulated. Simulation results are compared and experiment verified the feasibility and effectiveness of the new charging circuit proposed in the dissertation.
引文
[1]费世民,张旭东,杨灌英等.国内外能源植物资源及其开发利用现状[J].四川林业科技,vol.26, pp.20-26,2005.
    [2]B. E. Conway, Electrochemical Supercapacitors, Kluwer Academic Publishers/Plenum Press, New York,1999.
    [3]桂长清.新型贮能元件超级电容器[J].船电技术,vol.23, pp.23-26,2003.
    [4]B. E. Conway, Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society, vol.138, pp.1539-1548,1991.
    [5]T. B. Atwater, P. J. Cygan, and F. C. Leung, Man portable power needs of the 21st century [J]. Journal of power sources, vol.91, pp.27-36,2000.
    [6]牧伟芳,蔡克迪,金振兴,张庆国.超级电容器的应用与展望[J].炭素,vol.29, pp.42-45, 2010.
    [7]J. Miller, P. McClear, and M. Cohen, Ultracapacitors as Energy Buffers in a Multiple Zone Electrical Distribution System, Maxwell Technologies Inc. White Paper, www.maxwell.com.
    [8]R. Schupbach, et al., Design Methodology of a Combined Battery-Ultracapacitor Energy Storage Unit for Vehicle Power Management [C]. IEEE 2003 Power Electronics Specialists Conference (PESC), June 16th,2003, Acapulco, Mexico.
    [9]A. Burke, Ultracapacitors:why, how, and where is the technology [J]. Journal of Power Sources, vol.91, pp.37-50,2000.
    [10]J. Mierlo, P. Bossche, and G. Maggetto, Models of energy sources for EV and HEV:fuel cells, batteries, ultracapacitors, flywheels, and engine generators [J]. Journal of Power Sources, vol. 128, pp.76-89,2003.
    [11]R. Dougal, L. Gao, S. Liu, Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation [J]. Journal of Power Sources, vol.126, pp.250-257, 2003.
    [12]A. Chu, P. Braatz, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial Characterization [J]. Journal of Power Sources, vol.112, pp.236-246,2002.
    [13]S. Sarangapani, B. V. Tilak, and C. P. Chen, Review-materials for electrochemical capacitors [J]. Journal of the Electrochemical Society, vol.143, pp.3791,1996.
    [14]M. Endo, T. Takeda, Y. J. Kim, K. Koshiba, and K. Ishii, High Power Electric Double Layer Capacitor (EDLCs) from Operating Principle to Pore Size Control in Advanced Activated Carbons[J]. Carbon Science, vol. 1,pp.117-128,2001.
    [15]H. von Helmholtz, Ann. Phys. (Leipzig), vol.89, pp.211-233,1853.
    [16]H. I. Becker, Low voltage electrolytic capacitor, United States Patent 2,800,616 (1957).
    [17]R. A. Rightmire, Electrical energy storage apparatus, United States Patent 3,288,641 (1966).
    [18]J. M. Miller, R. Smith, Ultracapacitor assisted electric drives for transportation [C]. IEEE International Electric Machines and Drives Conference,2003.
    [19]D. L. Boos, S. D. Argade, International Seminar on Double Layer Supercapacitors and Similar Energy Storage Devices [C]. Florida Educational Seminars, Deerfield Beach, FL, pp.1,1991.
    [20]G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, and J. L. Morris, Operating Principles of the Ultracapacitor [C]. IEEE Transactions on Magnetics, vol.25, pp.102-106,1989.
    [21]A. F. Burke, Prospects for Ultracapacitors in Electric and Hybrid Vehicles [C].11th Annual Battery Conference on Applications and Advances,1996.
    [22]D. L. Boos, Electrolytic capacitor having carbon paste electrodes, United States Patent 3,536,963 (1970).
    [23]H. J. Byker, L. E. Vaaler, High-Discharge-Capacity Bipolar and Capacitive Batteries, Report R-6188, U.S. Army Missile Command, Redstone Arsenal, Alabama, June 1985.
    [24]J. M. Miller, Propulsion Systems for Hybrid Vehicles:IEE, ISBN 0-86341-336-6,2004.
    [25]K. Otsuka, C. L. Segal, Advanced Capacitor World Summit:Building the Technology Applications and New Business Opportunities for High Performance Electrochemical Capacitors (ECs), Washington, DC,2003.
    [26]J. P. Zhang, J. Huang, and T. R. Jow, The limitations of energy density for electrochemical capacitors [J]. Journal of the Electrochemical Society, vol.144, pp.2026-2031,1997.
    [27]王然,苗小丽.大功率超级电容器的发展与应用[J].电池工业,vo1.13,pp.191-194.2008.
    [28]B. E. Conway, Some basic principles involved in supercapacitor operation and development [C]. Proc.3rd Int. Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida, August 1993.
    [29]R. Kotz, M. Carlenb. Principle and applications of electrochemical capacitors [J]. Electrochimica Acta (2000), vol.45, pp.2483-2498,2000.
    [30]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评[J].电源技术,vo1.31,no.11,pp.921-925,2007,
    [31]技术动态[J].世界电子元器件,no.3, pp.10,2010.
    [32]刘霞.预测2010年十大科技趋势[J].科学咨询(决策管理),no. 1,pp.13-14,2010.
    [33]胡毅,陈轩恕,杜砚,尹婷.超级电容器的应用与发展[J].电力设备,vo1.9,no.1,PP.19-2,2008
    [34]董恩沛,蔡公和,5VDC2.2F双电层电容器[J].电子学报,vol.11, no.5, pp.15-18,1984.
    [35]董恩沛,双电层电容器[J].电子科学技术,vol.8, pp.19-21,1981.
    [36]张熙贵,王涛,夏保佳.一种优秀的储能器件-超级电容器[J].世界产品与技术,no.8, pp.40-42,2003.
    [37]张琦,王金全.超级电容器及应用探讨[J].电气技术,no.8, pp.67-70,2007.
    [38]张步涵,王云玲,曾杰.超级电容器储能技术及其应用[J].水电能源科学,vol.24, no.5,pp.52-53,2006.
    [39]于凌宁,冯玉萍.世界超级电容器发展动态[J].今日电子,no.12., pp.53-55,2008.
    [40]M. Jayalakshmi, K. Balasubramanian. Simple Capacitors to Supercapacitors-An Overview [J]. Journal of the Electrochemical Society, vol.3, pp.1196-1217,2008.
    [41]李品,刘业翔,赖延清.新型储能元件一超级电容器的应用、原理与研究进展[C].中国储能电池与动力电池及其关键材料学术研讨会,长沙,2005.
    [42]S. M. Halpin, S. R. Ashcraft. Design Considerations for Single-Phase Uninterruptable Power Supplies Using Double-Layer Capacitors as the Energy Storage Element [C]. In Proceedings of IEEE Industry Applications Conference, San Diego, US, pp.2396-2403, April 1996.
    [43]S. Nomoto, H. Nakata, K. Yoshioka, et al. Advanced Capacitors and Their Applications [J]. Journal of Power Sources, pp.97-98,2001.
    [44]M. Okamura, Energy Capacitor System-Part 1 & Part 2 [C]. The 11th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices,2001.
    [45]张治安,邓梅根,胡永这,杨邦朝.电化学电容器的特点及应用[J].电子元件与材料,no. 11, pp.3-7,2003.
    [46]A. Yoshida, Surface Technology for Electric Double-layer Capacitors [J]. Japan Surf. Technol., vol.48, pp.1163-1168,1997.
    [47]G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, and J. L. Morris, Operating Principles of the Ultracapacitor [J]. IEEE Transactions on Magnetics, vol.25, pp.102-106,1989.
    [48]R. A. Huggins, Supercapacitors and Electrochemical Pulse Sources [J]. ELSEVIER Journal on Solid Sate Ionics, vol.134, pp.179-195,2000.
    [49]A. Namisnyk, A survey of Electrochemical Supercapacitor Technology [C]. University of Technology Sydney, June 2003.
    [50]P. P. Barker, Ultracapacitors for Use in Power Quality and Distributed Resource Applications [C]. IEEE Power Engineering Society,2002.
    [51]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,vol.26, no.6, pp.466-469,2002.
    [52]陈永真,超级电容器原理及应用[J].第十五届全国电源技术年会论文集[C].上海,2001.
    [53]于凌宇,冯玉萍.超级电容器迅猛发展商机无限[J].产业聚焦,no.9, pp.27-30,2008.
    [54]X. Yan, D. Patterson, Novel Power Management for High Performance and Cost Reduction in an Electric Vehicle [J]. Renewable Energy, Vol.22, pp.177-183,2000.
    [55]D. Napoli, et al., Design and Testing of a Fuel-Cell Powered Propulsion System Supported by Hybrid UC-Battery Storage [J]. SAE Journal, pp.151-160,2004.
    [56]L.T. Lam, N.P. Haigh, C.G. Phyland, and A. J. Urban, Failure Mode of Valve-regulated Lead-acid Batteries Under High-rate Partial-state-of-charge Operation [J]. Journal of Power Sources, Vol.133, pp.126-134,2004.
    [57]J. Mierlo, P. Bossche, and G. Maggetto, Models of Energy Sources for EV and HEV:Fuel Cells, Batteries, Ultracapacitors, Flywheels, and Engine Generators [J]. Journal of Power Sources, Vol.128, pp.76-89,2003.
    [58]A. Cooper, Development of A Lead-acid Battery for A Hybrid Electric Vehicle [J]. Journal of Power Sources, Vol.133, pp.116-125,2004.
    [59]R. L. Spyker, R. M. Nelms, Predicting Capacitor Run Time for a Battery/Capacitor Hybrid Source [C]. In Proceedings of IEEE International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, Perth, Australia, pp.809-814, February 1998.
    [60]黄军,超级电容电动公交客车高效直流驱动系统的研究[D],哈尔滨工业大学,2010.
    [61]鲁蓉,张建成.超级电容器储能系统在分布式发电系统中的应用[J].电力科学与工程,no.3, pp.63-67,2006.
    [62]S. M. Halpin, R. L. Spyke, R. M. Nelms, Application of Double-Layer Capacitor Echnology to Static Condensers for Distribution System Voltage Control [J]. IEEE Transactions on Power Systems, vol.11, no.4, pp.1899-1904,1996.
    [63]T. Mishima, T. Ohnishi, Power Compensation System for Partially Shaded PV Array Using Electric Double Layer Capacitors [C]. In Proceedings of IEEE Industrial Electronics Society Conference, Sevilla Spain, pp.3262-3267,2002.
    [64]X. Chen, G. F. Li, S. Liu, and H. Y. Zhang, Study of the fuzzy PID controlled supercapacitor auxiliary power system of the electrical vehicle, Computer Design and Applications (ICCDA), 2010 International Conference, pp.25-27, June 2010.
    [65]A. Poullikkas, Implementation of Distributed Generation Technologies in Isolated Power Systems [J]. Renewable and Sustainable Energy Reviews, vol.11, pp.30-56,2007.
    [66]K. Green, J. C. Wilson, Future Power Sources for Mobile Communications [J]. Electronics & Communication Engineering Journal, vol.13, issues 1, pp.43-47,2001.
    [67]H. Watanabe, N. Jinguji, and H. Matsuki, Consideration of EDLC as Emergency Power Source for Totally Implantable Medical Device [C]. In Proceedings of the 2nd International Conference on Bioelectromagnetism, Melbourne, Australia, pp.51-52, February 1998.
    [68]J. Flinn, M. Satyanarayanan, Energy-aware Adaptation for Mobile Applications [J]. Proceedings of the Seventeenth ACM Symposium on Operating Systems Principles, vol.33, issue 5,1999.
    [69]袁国辉.电化学电容器[M].北京:化学工业出版社,2006.
    [70]张治安,邓梅根,胡永达,杨邦朝.电化学电容器的特点及应用[J].电子元件与材料,no.11,pp.1-5,2003.
    [71]I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, Overview of Current and Future Energy Storage Technologies for Electric Power Applications [J]. Renewable and Sustainable Energy Reviews, vol.13, pp.1513-1522, August-September 2009.
    [72]N. Rizoug, P. Bartholomefis, and X. Pierre, Voltage Sharing in Supercapacitor Modules: Experimental Study[C]. In Proceedings of IEEE Power Electronics Specialists Conference, Aachen, Germany, vol.1, pp.690-696,2004.
    [73]王亚君.超级电容器在整流滤波中的应用.辽宁工学院学报主,2006,(4).
    [74]周强PEMFC发电机电气特性补偿研究.硕士毕业论文,2005,(6).
    [75]刘建新.超级电容器在直流电源系统中的应用.华东交通大学学报,2002,19.
    [76]P. H. Mellor, N. Schofield, and D. Howe, Flywheel and Supercapacitor Peak Power Buffer Technologies [C]. IEEE Hybrid and Fuel Cell Vehicles, pp.1-5,2000.
    [77]翟楠松,张东来,徐殿国,佟强.超级电容国内外研究及应用现状[J].仪器仪表学报,vol. 28, no.8, pp.1-4,2007.
    [78]B. Siura, Ultra Capacitors Better Than Batteries for Hybrid Electric Vehicles [J]. The Battery Man, vol.9, pp.16-23,2001.
    [79]B. J. Arnet and L. P. Haines, High Power DC-to-DC Converter for Supercapacitors [C]. IEEE International Electric Machines and Drives Conference (IEMDC),2001.
    [80]蔡国营,王亚军等.超级电容器储能特性研究[J].电源世界,no.1,2009.
    [81]J. P. Zhang, J. Huang, T. R. Jow, The limitations of energy density for electrochemical capacitors [J]. Journal of the Electrochemical Society, vol.144, pp.2026-2031,1997.
    [82]K. C. Tsay, L. Zhang, J. J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor [J]. Electrochimica Acta, vol.60, pp.428-436,2012.
    [83]张玲,唐冬汉.超级电容器极化电极的研究进展[J].重庆大学学报:自然科学版.vol.25, no.5, pp.152-156,2002.
    [84]T. C. Murphy, R. B. Wright, R. A. Sutula, Electrochemical Capacitors II, Proceedings of the Electrochemical Society, vol.96, issue 25, pp.258,1997.
    [85]A. Ivanov, L. Poliashov, A. Gerasimov, F. Lev, Proceedings of the 5th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, December 1995.
    [86]E. Frackowiak, F. Beguin, Carbon Materials for the Electrochemical Storage of Energy in Capacitors, Carbon, vol.39, issue 6, pp.937-950,2001.
    [87]M. Morita, M. Ishikawa, Y. Matsuda, in:M. Wakthara, O. Yamamoto (Eds.), Lithium-ion Batteries, Chapter 7. Organic Electrolytes for Rechargeable Lithium Ion Batteries. Wiley, pp. 162-163,1998.
    [88]M. Galinski, A. Lewandowski, and I. Stepniak, Ionic Liquids as Electrolytes [J]. Electrochimica Acta, vol.51, issue 26, pp.5567-5580,2006.
    [89]R. A. Huggins, Supercapacitors and Electrochemical Pulse Sources [J]. Solid State Ionics, vol. 134, issues 1-2, pp.179-195,2000.
    [90]S. Nomotoa, H. Nakataa, K. Yoshiokaa, A. Yoshidaa, and H. Yonedab, Advanced capacitors and their application [J]. Journal of Power Sources, vol.97-98, pp.807-811,2001.
    [91]E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, and H. Kahlen, Supercapacitors for the Energy Management of Electric Vehicles [J], Journal of Power Sources, vol.84, issues 2, pp. 261-269,1999.
    [92]A. Lewandowski, M. Galinski, and S. R. Krajewski, Differential Capacity of the Double-Layer Formed at a Solid Electrode (Pt, Au)/Ionic Liquid Interface [C]. The EUCHEM Conference on Molten Salts and Ionic Liquids, Hammamet, Tunisia, pp.187-190, September 2006.
    [93]J. Gambya, P. L. Tabernaa, P. Simona, J. F. Fauvarquea, M. Chesneaub, Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors [J]. Journal of Power Sources, vol.101, issue 1,pp.109-116,2001.
    [94]T. Welton, Room-temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chemical Reviews, vol.99, pp.2071-2083,1999.
    [95]M. J. Earle, K. R. Seddon, Ionic Liquids. Green Solvents for the Future [J]. Pure and Applied Chemistry, vol.72, no.7, pp.1391-1398,2000.
    [96]P. Wasserscheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis [J]. Angewandte Chemie, pp.3772-3789,2000.
    [97]J. N. Barisci, G. G. Wallace, D. R. MacFarlane, R. H. Baughman, Investigation of ionic liquids as electrolytes for carbon nanotube electrodes [J]. Electrochemistry Communications, vol.6, issue 1, pp.22-27,2004.
    [98]A. Lewandowski, M. Galinski, Carbon-ionic Liquid Double-layer Capacitors [J]. Journal of Physics and Chemistry of Solids, vol.65, issues 2-3, pp.281-286,2004.
    [99]A. Lewandowski, A. Swiderska, Electrochemical capacitors with polymer electrolytes based on ionic liquids [J]. Solid State Ionics, vol.161, issues 3-4, pp.243-249,2003.
    [100]A. Lewandowski, A. Swiderska, New composite solid electrolytes based on a polymer and ionic liquids [J]. Solid State Ionics, vol.169, issues 1-4, pp.21-24,2004.
    [101]张丹丹,罗曼,何俊佳.低内阻炭基双电层电容器的实验研究[J].中国电机工程学报.vol.27, no.18, pp.102-107,2007.
    [102]张丹丹,李劲.双电层电容器外特性研究[J].高电压技术,vol.27,no.5,pp.34-36,2001.
    [103]S. Masuda, Y. Wu, T. Urabe, and Y. Ono, Pulse Corona Plasma Chemical Process for DeNOx, DeSOx and Mercury Vapor Control of Combustion Gases [C]. Proceedings of 3rd International Conference on Electrostatic Precipitation, Padova, Italy, pp.667-676,2001.
    [104]G. Dinelli, M. Rea, Pulse Power Electrostatic Technologies for the Control of Flue Gas Emissions [J]. Journal of Electrostatics, vol.25, issue 1, pp.23-40,1990.
    [105]李忠学,陈杰.超级电容器容量特性的试验研究[J].电子元件与材料,vol.25, no.7, pp. 9-11,2006.
    [106]李忠学,彭启立,陈杰.超级电容器端电压动态特征的研究[J].电池,vol.35, no.2, pp. 85-86,2005.
    [107]储军,陈杰,李忠学.电动车用超级电容器充放电性能的实验研究[J].机械,vol.31, no. 3, pp.20-22,2004.
    [108]邓隆阳,黄海燕,卢兰光,杨福源.超级电容性能试验与建模研究[J].车用发动机,no.186, pp.28-32,2010.
    [109]A. G. Simpson, Life Cycle Costs of Ultracapacitors in Electric Vehicle Applications [C]. IEEE Annual Power Electronics Specialists Conference, pp.1015-1020,2001.
    [110]张月芹.基于TMS320F2812的SPWM波的实现研究[J].常州工学院学报,vol.22, no.6, pp.29-32,2009.
    [111]S. H. Kim, W. J. Choi. A Method for Performance Evaluation and Optimal Sizing of the Supercapacitor Module by the Electrochemical Impedance Spectroscopy [C]. Proceedings of 31 st International Telecommunications Energy Conference (INTELEC), Seoul, South Korea, 2009.
    [112]O. Bohlen, J. Kowal, D. U. Sauer, Ageing behaviour of electrochemical double layer capacitors Part Ⅱ. Lifetime simulation model for dynamic applications [J]. Journal of Power Sources, vol.173, pp.626-632,2007.
    [113]W. Lajnef, J. M. Vinassa, O. Briat, S. Azzopardi, and E. Woirgard, Characterization Methods and Modelling of Ultracapacitors for Use as Peak Power Sources [J]. Journal of Power Sources, vol.168, pp.553-560,2007.
    [114]A. G. Pandolfo, A. F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors [J]. Journal of Power Sources, vol.157, pp.11-27,2006.
    [115]H. Gualous, D. Bouquain, and A. Berthon, et al., Experimental study of supercapacitor serial resistance and capacitance variations with temperature [J]. Journal of Power Sources, vol.123, no.1, pp.86-93,2003.
    [116]N. Bertrand, J. Sabatier, O. Briat, and J. M. Vinassa, Embedded Fractional Nonlinear Supercapacitor Model and Its Parametric Estimation Method [J]. IEEE Transactions on Industrial Electronics, vol.57, no.12, pp.3991-4000,2010.
    [117]Y. H. Cheng, Assessments of Energy Capacity and Energy Losses of Supercapacitors in Fast Charging-Discharging Cycles [J]. IEEE Transactions on Energy Conversion, vol.25, no.1, pp.253-261,2010.
    [118]R. L. Spyker, R. M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor [J]. IEEE Trans on Aerospace and Electronic Systems, vol.36, no.3, pp.829-836, 2000.
    [119]G. Sikha, R. E. White, and B. N. Popov, A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System [J]. Journal of the Electrochemical Society, vol.152, issue 8, pp.1682-1693,2005.
    [120]V. Srinivasan, J. W. Weidner, Mathematical Modeling of Electrochemical Capacitors [J]. Journal of the Electrochemical Society, vol.146, issue 5, pp.1650-1658,1999.
    [121]J. N. Marie-Francoise, H. Gualous, and A. Berthon, Supercapacitor Thermal and Electrical Behavior Modeling Using ANN [J]. IEEE Power Applications, vol.153, no.2, pp.255-261, 2006.
    [122]W. Lajnef, J. M. Vinassa, O. Briat, S. Azzopardi, and C. Zardini, Study of Ultracapacitors Dynamic Behavior Using Impedance Frequency Analysis on a Specific Test Bench [C]. IEEE International Symposium on Industrial Electronics, vol.2, pp.839-844,2004.
    [123]F. Rafik, H. Gualous, R. Gallay, M. Karmous, and A. Berthon, Contribution to the Sizing of Supercapacitors and Their Applications [C].1st European Symposium on Supercapacitors and Applications. Belfort, France, November 2004.
    [124]L. Zubieta, R. Boner, Characterization of Double-layer Capacitors for Power Electronics Applications [J]. IEEE Trans on Industry Applications, vol.36, no.1, pp.199-205,2000.
    [125]R. D. Levie, On Porous Electrodes in Electrolyte Solutions [J]. Electrochimica Acta: Pergamon Press Ltd.:Northern Ireland, vol.8, pp.751-780,1963.
    [126]S. Buller, E. Karden, D. Kok, and R. W. De Doncker, Modeling the Dynamic Behavior of Supercapacitors Using Impedance Spectroscopy [J]. IEEE Industry Applications Society, vol. 38, pp.1622-1626, December 2002.
    [127]F. Mansfeld, M. W. Kendig, S. Tsai, Recording and Analysis of AC Impedance Data for Corrosion Studies:1. Experimental Approach and Results, vol.38, pp.570-580,1982.
    [128]W. J. Lorenz, F. Mansfeld, Determination of Corrosion Rates by Electrochemical DC and AC Methods, Corrosion Science, vol.21, pp.647,1981.
    [129]D. D. Macdonald, B. C. Syrett, S. S. Wing, The Corrosion of Copper-Nickel Alloys 706 and 715 in Flowing Seawater:Ⅱ. Effect of Dissolved Sulfide, vol.35, pp.367-378,1979.
    [130]J. R. Macdonald, Impedance Spectroscopy:Emphasizing Solid Materials and Systems; John Wiley & Sons:New York,1987.
    [131]J. F. McCann, S. P. S. Badwal, Equivalent Circuit Analysis of the Impedance Response of Semiconductor/Electrolyte/Counter-electrode Cells [J]. Journal of the Electrochemical Society, vol.129, pp.551-559,1982.
    [132]Introduction Application Note AC-1-Princeton Applied Research, Basic of Electrochemical Impedance Spectroscopy, www.princetonappliedresearch.com.
    [133]曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002.
    [134]Application Note:Basics of Electrochemical Impedance Spectroscopy, Gamry Instruments, Inc.,2010.
    [135]S. A. Brazill, S. E. Bender, N. E. Hebert, J. K. Cullison, and E. W. Kristensen, W. G. Kuhr, Sinusoidal Voltammetry:A Frequency Based Electrochemical Detection Technique [J]. Journal of Electroanalytical Chemistry, vol.531, pp.119-132,2002.
    [136]K. Darowicki, Differential analysis of impedance data [J]. Electrochim. Acta, vol.43, pp. 2281-2285,1998.
    [137]P, Barrade, Series Connection of Supercapacitors:Comparative Study of Solutions for the Active Equalization of the Voltages [C]. Electrimacs (2002),7th International Conference on Modeling and Simulation of Electric Machines, Converters and Systems, Montreal, Canada, 18-21 August,2002.
    [138]J. V. Mierlo, P. V. Bossche, G. Maggetto, Models of energy sources for EV and HEV:fuel cells, batteries, ultracapacitors, flywheels and engine-generators [J]. Journal of Power Sources, vol.128, pp.76-89,2004.
    [139]H. Gualous, D. Bouquain, A. Berthon, J. M. Kauffmann, Experimental study of supercapacitor serial resistance and capacitance variations with temperature [J]. Journal of Power Sources, vol.123, pp.86-93, September 2003.
    [140]P. L. Taberna, P. Simon, and J. F. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors [J]. Journal of the Electrochemical Society, vol.150, issue 3, pp. A292-A300, January 2003.
    [141]D. Y. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors [J]. Journal of Power Sources, vol.74, pp.99-107,15 July 1998.
    [142]E. Karden, S, Buller, R. W. D. Doncker, A frequency-domain approach to dynamical modeling of electrochemical power sources [J]. Electrochimica Acta, vol.47, pp.2347-2356,25 May 2002.
    [143]R. D. Levie, in:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. T. Tobias (Eds), vol.6, pp.329-397, Wiley, New York,1967.
    [144]L. Zubieta, R. Bonert, Characterization of double-layer capacitors for power electronics applications [J]. IEEE Industry Applications Society (1998), pp.1149-1154,1998.
    [145]F. Rafik, H. Gualous, R. Gallay, A. Crausaz, and A. Berthon, Frequency, thermal and voltage supercapacitor characterization and modeling [J]. Journal of Power Sources, vol.165, pp. 928-934,20 March 2007.
    [146]D. Riu, N. Retiere, and D. Linzen, Half-order modelling of supercapacitors [C]. Industry Applications Conference,39th IAS Annual Meeting. Conference Record of the 2004 IEEE, 3-7 November 2004.
    [147]M. Spandana, A. Jagruthi, Energy Storage Ultracapacitors [C]. Yuva Engineers,2nd BTech, EEE,29 April 2010.
    [148]袁秀萍.用矩阵方法求分式递归数列xn=(axn-1+b)/(cxn-1+d)的通项公式[J].西华师范大学学报(自然科学版),vol.26, no.1, pp.102-104,2005.
    [149]金永龙,王全,梯形网络等效复阻抗的普适解[J].高等函授学报(自然科学版),vol.23, no. 4, pp.38-40,2010.
    [150]M. Itagaki, S. Suzuki, I. Shitanda, K. Watanabe, and H. Nakazawa, Impedance analysis on electric double layer capacitor with transmission line model [J]. Journal of Power Sources, vol. 164, pp.415-424,10 January 2007.
    [151]Z. Zhang, O. C. Thomsen, M. Andersen, J. D. Schmidt, and H. R. Nielsen, Analysis and Design of Bi-directional DC-DC Converter in Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor [C]. Applied Power Electronics Conference and Exposition (APEC). pp.714-719,2009.
    [152]G. Ma, W. L. Qu, G. Yu, Y. Y. Liu, N. C. Liang, and W. Z. Li, A Zero-Voltage-Switching Bidirectional DC-DC Converter With State Analysis and Soft-Switching-Oriented Design Consideration [J]. IEEE Transactions on Industrial Electronics, vol.56, no.6, pp.2174-2184, 2009.
    [153]E. J. Cegnar, H. L. Hess, and B. K. Johnson, A Purely Ultracapacitor Energy Storage System for Hybrid Electric Vehicles Utilizing a Microcontroller-Based DC-DC Boost Converter [C]. IEEE Applied Power Electronics Conference and Exposition (APEC), vol.2, pp.1160-1164, 2004.
    [154]D. Linzen, S. Buller, E. Karden, and R. W. D. Donckner, Analysis and Evaluation of Charge Balancing Circuits on Performance, Reliability and Lifetime of Supercapacitor Systems [C]. Conference Record of the Industry Applications Conference, vol.3, pp.1589-1595,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700