用户名: 密码: 验证码:
基于视觉定位跟踪的大型机械部件数字化对接关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,伴随着航空航天、汽车、造船等领域在大型机械部件设计与制造方面的自动化水平日益提高,数字化装配和对接已经成为大型机械部件制造中不可或缺的重要环节之一。在工业现场,通常利用光学测量技术及设备辅助完成大型机械部件自动、快速、准确的装配和对接。然而,我国在该领域的研究相对薄弱,与发达国家的先进水平仍存在较大差距。
     本论文面向国内制造业中的大型机械部件数字化对接的实际需求,以国家自然科学基金和北京市自然科学基金等项目为依托,着重研究了基于视觉定位跟踪的大型机械部件数字化对接过程中若干关键技术与问题,并取得了以下成果:
     (1)构建视觉定位跟踪系统。针对大型机械部件数字化对接装配体系的工作流程,构建视觉定位跟踪系统以获取待对接部件的完整3D轮廓信息。视觉定位跟踪系统主要可以分为前端测量子系统和后端跟踪子系统:前者主要采用彩色编码结构光测量,以获取局部密集型测量点云;而后者则基于双目立体视觉原理,通过实时定位跟踪前端测量摄像机的瞬时空间位姿,实现多视局部测量点云的自动、准确拼接。
     (2)研究基于De Bruijn伪随机序列的彩色编码结构光技术。基于光学面-线三角法测量原理,利用5值3阶De Bruijn序列编码生成水平彩色条纹图案,针对于传统RGB解码算法的不足之处,提出了
     一种HSI空间解码算法,通过将颜色分量与亮度分量的有效分离,实现条纹边界的亚像素定位。最后,利用两组对比实验得出下列结论:a)HSI空间解码算法明显优于传统RGB解码方法,能够完全分离颜色分量与亮度分量,避免了二者之间的相互干扰对测量精度的影响;b)与水平彩色光条图案相比,水平彩色条纹图案具有较高的分辨率,且二者的测量精度基本一致。
     (3)建立坐标转换误差评价体系。针对机械部件数字化对接过程中广泛涉及的坐标转换问题,定义两种误差评价模型:转换点集-转换点集误差模型和转换点集-测试点集误差模型;详细分析了坐标值误差法、均方根误差法和相对欧氏距离误差法等3种误差评价方法,并利用理论推导证明相对欧氏距离误差法对于转换点集-测试点集误差模型的无效情况:即一旦测试点集位置固定,无论转换点集发生怎样的变化,相对欧氏距离误差参数值始终为一固定常数。
     (4)提出一种特征标志点规划布局方法,确保在规定的测量空间范围内,合理布局尽可能少的转换点即可满足预先给定的精度要求。该方法主要涉及以下几个方面:根据特征标志点的分类,定义标志点布局参数可以分为点集内布局参数和点集间布局参数,前者主要包括点个数、基准点坐标和坐标差值,后者则提出了转换点集和测试点集之间的包络融合度概念;理论推导了标志点布局对坐标转换精度的影响;归纳、总结出一系列标志点规划布局指导原则;提出了一种基于曲率特征加权质心点约束的自适应标志点规划布局算法。利用计算机仿真实验和实际实验两种方式分别证明了标志点个数、分布形式、包络融合度等布局参数对坐标转换精度的影响以及相对欧氏距离误差法的无效情况。此外,分别采用测量控制场和3D点云精简两组实验对前面提出的自适应标志点规划布局算法进行了止确性和有效性验证。该方法可广泛适用十地理测绘、视觉测量、生物医学、机器人导航、多传感器融合等众多涉及坐标转换的实际工程领域,具有十分重要的研究意义和应用价值。
     (5)研究测量点云数据与CAD设计模型之间的配准方法。将利用NURBS曲面表示的CAD模型均匀离散化,生成与测量点云具有相同数量级的离散模型点云。测量点云与离散模型点云之间的数据配准主要包括粗配准和精配准两个阶段。在粗配准阶段中,提出一种基于距离约束一致性的曲率特征粗配准算法,它主要根据曲率的刚体变换不变性,选取满足距离约束一致性原则的曲率特征点集作为基准,从而可以解算出两组点云之间的旋转矩阵和平移矢量;精配准阶段则设计一种基于网格四分搜索法的改进ICP精配准算法在每个点的对应邻域范围内,利用网格四分搜索法确定对应点到对应切平面之间的最小距离,即可实现两组点云之间的精配准。模拟实验和实际实验结果表明,这里提出的基于距离约束一致性的曲率特征粗配准算法能够达到较高的配准精度,可以为后续精配准工作提供可靠而有效的转换参数初值。
Recently, digital assembly and joining has already been one of indispensable parts for manufacturing large scale mechanical components thanks to the increasing level of automatic design and manufacture for mechanical components within several engineering fields, such as aerospace, automobile, and ship, etc. In practice, several optical measuring equipments and devices can be used to assist large scale mechanical components to assembly and join automatically, fast and accurately. However, domestic research on digital assembly and joining is still relatively weak and far away from the advanced technology of developed countries.
     To satisfy the requirement of digital joining for large scale mechanical components in the manufacturing industry, this dissertation has been supported by both National Natural Science Foundation and Beijing Natural Science Foundation, which focuses on few key technologies and issues of digital joining for mechanical components based on visual positioning and tracking. There are5achievements as following:
     (1) A visual positioning and tracking system is built. In the process of digital joining mechanical components, the visual positioning and tracking system can be used to acquire entirely3D profile of every component, which can be divided into a front measuring subsystem and a rear tracking subsystem. The former is applied to obtain local intensive point cloud by color-encoded structured light; according to the principle of stereo vision, the latter needs to complete automatic and accurate registration among different groups of point cloud by tracking positions and orientations of front cameras.
     (2) Based on De Bruijn sequence, color-encoded structured light is further studied. In accordance with optical plane-line triangulation, a color horizontal stripes pattern has been encoded by a De Bruijn sequence of order3over5color symbols. To avoid the drawback of traditional RGB algorithm, a HSI decoding algorithm has been developed to separate color values from intensity values effectively for locating edges of stripes with sub-pixel accuracy. Experimental results have shown that:a) Results from HSI decoding algorithm are better than that of RGB algorithm by isolating color values from intensity values, which ensures that the accuracy will not be affected by both mutual disturbance; b) Compared with the color horizontal slits pattern, the color horizontal stripes pattern can acquire higher resolution with similar accuracy.
     (3) An error evaluating system for coordinate transformation is established. Aiming to coordinate transformation involved in digital joining for mechanical components, both calculating sets-testing sets error evaluating model and calculating sets-calculating sets error evaluating model are defined; and3evaluating approaches e.g. the coordinate error method, RMS error method and the error method of relative Euclidean distance are analyzed in details; besides, an invalid case of the third evaluating method is proved that once testing set has been determined, error parameters is always a constant no matter what variation calculating set does.
     (4) An efficient approach for planning geometrical distribution of markers is proposed to ensure that planning a reasonable distribution of markers as few as possible within a known3D space will satisfy a given accuracy requirement. The approach mainly contains the following aspects:according to the classification of markers, distribution parameters is described by internal parameter and external parameter. The former is composed of point number, the coordinates of reference point and the coordinate difference, and the latter is defined as the overlapping degree between calculating set and testing set; influence of geometrical distribution of markers to transformation accuracy is formulated; subsequently, a guideline for planning geometrical distribution of markers is generalized and summarized; consequently, an adaptive algorithm for planning geometrical distribution of markers is presented based on a constraint of centroid with curvature weighted coefficients. Both computer simulating experiment and practical experiment have been used to prove influence of distribution parameters of markers to transformation accuracy and invalidation of the error method of relative Euclidean distance. Moreover, the adaptive algorithm has been verified to be correct and valid by measuring controlling field experiment and3D point cloud simplification experiment. With significance and application value, the proposed approach is suitable to solve coordinate transformation involved in several practical engineering fields, such as geological survey, vision measurement, biomechanics, robotic navigation, and multi-sensor fusion, etc.
     (5) Registration between measuring point cloud and CAD model is researched. Similar to point number of measuring point cloud, a discrete model point cloud can be generated through uniformly segmenting CAD model represented by NURBS surface. Registration between both groups of point cloud should be divided into coarse registration and fine registration. In the first stage, a coarse registration algorithm is presented based on a consistent distance constraint and a curvature invariant characteristic of rigid transformation, where a curvature point set is chosen to be invariant to calculate a rotation matrix and a translation vector. Subsequently, a proved ICP fine registration algorithm based on grid quartering searching method is designed by determining a least distance between a point and its corresponding tangent plane. Both simulating experiment and practical experiment has illustrated that the coarse registration algorithm can achieve higher accuracy and provide reliable initial values for the fine registration.
引文
[1]G. Bishop, G. Welch and B. D. Allen. Tracking:Beyond 15 Minutes of Thought[M]. SIGGRAPH 2001 Course Notes. University of North Carolina at Chapel Hill, 2001.
    [2]吴剑.三维高精度光学定位技术及其临床应用[D].博士学位论文.清华大学,2004.
    [3]http://www.mindflux.com.au/products/vti/cyberglove.html
    [4]http://www.inition.co.uk/inition/product.php?URL_=product_mocaptrack_intersense_is600 & SubCatID=51
    [5]http://www.ascension-tech.com/
    [6]王建华.飞机总装对接技术[J].航空制造技术,2010,(2):32-35.
    [7]张滋黎.基于视觉引导的大尺度空间坐标测量方法研究[D].硕士学位论文.天津大学,2010.
    [8]高纯玲.基于双目立体视觉的手术器械跟踪定位研究[D].硕士学位论文.华中科技大学,2008.
    [9]刘晶晶.基于双目立体视觉的三维定位技术研究[D].硕士学位论文.华中科技大学2007.
    [10]王保丰.航天器交会对接和月球车导航中视觉测量关键技术研究与应用[D].博士学位论文.中国人民解放军信工程大学,2007.
    [11]Giovanna Sansoni, Marco Trebeschi. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation[J]. Sensors, 2009,9 (1):568-601.
    [12]Halim SETAN. Applications of Digital Photogrammetric Systems for Dimensional Measurement and 3D Modelling[J].3rd FIG Regional Conference,2004:1-10.
    [13]Halim Setan & Mohd Sharuddin Ibrahim. Precise and rapid industrial measurement technique for 3D modeling of objects. Paris,2003:28-29.
    [14]Fraser, C.S. Automated Vision Metrology:A Mature Technology For Industrial Inspection And Engineering Surveys[J].6th South East Asian Surveyors Congress,1999,11:1-6.
    [15]Woodhouse N.G., Robson S. Vision metrology and Three Dimensional Visualisation in Structural Testing and Monitoring. The Photogrammetric Record,1999,16 (94):625-642.
    [16]Jian Xu, Z.P. Fang. A Robust Close-Range Photogrammetric System for Industrial Metrology [J].2002.
    [17]薛婷.三维视觉检测仪器化关键技术研究[D].硕士学位论文.天津大学,2006.
    [18]邹冀华,许国康.大型飞机装配中的数字化测量[J].航空制造技术,2010,(3):49-53.
    [19]ZOU JIHUA, RIAZ AHMAD, FAN YUQING. Research for Major-Parts Digital Assembly System of Large-Scale Airplane[J]. Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING,2006, 11:337-343.
    [20]Hartmann J, Zieve P. Wing manufacturing:Next generation[J]. SAE Aerofast Proceedings, 1999, (4):9-14.
    [21]Muske S, Salisbury D, Calkins J.747 data management system development and implementation[J]. Long Beach:Boeing Large Scale Metrology Conference,2000.
    [22]许国康.飞机大部件数字化对接技术[J].航空制造技术,2009,(24):42-45.
    [23]张旭. 飞机大部件对接装过程中的干涉检测技术研究[D].浙江大学博十论文,2008.
    [24]范玉青.飞机数字化装配技术综述[J].航空制造技术,2006,(10):44-48.
    [25]刘善国.先进飞机装配技术及其发展[J].航空制造技术,2006,(10):38-41.
    [26]于勇,陶剑,范玉青.波音787飞机装配技术及其装配过程[J].航空制造技术,2009,(14):44-47.
    [27]吴晓峰,赵祉江,柳权.大空间尺寸测量及大部件运输、跟踪、定位技术[J].航空制造技术,2009,(24):38-41.
    [28]李原.大飞机部件数字化柔性装配若干关键技术[J].航空制造技术,2009,(14):48-51.
    [29]李雷,崔钢,陈桂琴.飞机数字化装配技术的研究[J].计算机工程应用技术,2010,6(13):3522-3526.
    [30]Branko Sarh, James Buttrick, Clayton Munk and Richard Bossi. Aircraft Manufacturing and Assembly[M]. Springer Handbook of Automation.2009, Part F:893-910.
    [31]S. D. Zemlyakov, V. Yu. Rutkovsky and V. M. Sukhanov. Computer-based derivation and transformations of spatial motion equations of a large space structure in the course of its assembly[J].2007,46 (1):137-149.
    [32]Masayuki Otani, Kiyohiko Hattori, Hiroyuki Sato and Keiki Takadama. Large-Scale Structure Assembly by Multiple Robots Which May Be Broken[J]. Lecture Notes in Electrical Engineering,2010,67 (6):567-576.
    [33]邹方,薛汉杰,周万勇,许国康.飞机数字化柔性装配关键技术及其发展[J].航空制造技术,2006,(9):30-35.
    [34]Graham Burley, Randolph Odi, Soe Naing, et al. J. A. M project. Project Summary, School of Industrial and Manufacturing Science, Cranfield University,2001.
    [35]Mozafar Saadat, Lylian Cretin, Roy Sim, Farid Najafi. Deformation analysis of large aerospace components during assembly[J]. Int J Adv Manuf Technol,2009,41:145-155.
    [36]孟俊涛,王仲奇.飞机部件精准对接技术研究[J].机械制造,2008,46(528):42-44.
    [37]S. D. Zemlyakov, V. Yu. Rutkovskii and V. M. Sukhanov. Some questions of control of the robotized in-orbit assembly of large space structures[J]. Automation and Remote Control, 2006,67(8):1215-1227.
    [38]Mozafar Saadat. Challenges in the Assembly of Large Aerospace Components[M]. Integrated Systems, Design and Technology,2011, Part 1:37-46.
    [1]邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制 造系统,2007,13(7):1367-1373.
    [2]邹方,张书生.飞机总装自动化校准对接系统[J].航空制造技术,2008,(7):32-36.
    [3]梅中义,范玉青.基于激光跟踪定位的部件对接柔性装配技术[J].北京航空航天大学学报,2009,35(1):65-69.
    [4]王巍,黄宇,庄建平.激光跟踪仪在飞机装配工装制造中的应用[J].航空制造技术,2004,(12):81-84.
    [5]ZOU JIHUA, RIAZ AHMAD, FAN YUQING. Research for Major-Parts Digital Assembly System of Large-Scale Airplane[C]. Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING,2006: 337-343.
    [6]牛鎏,孟飙,范玉青.基于激光跟踪的数字化装配定位系统实时仿真[J].计算机测量与控制,2008,16(5):707-710.
    [7]孟俊涛,王仲奇,殷俊清.飞机部件精准对接技术研究[J].机械制造,2008,46(528):42-44.
    [8]邹冀华.飞机数字化测量辅助装配技术及应用[J].航空制造技术,2009,(24):48-52.
    [9]许国康. 飞机大部件数字化对接技术[J].航空制造技术,2009,(24):42-45.
    [10]熊瑞斌,刘刚,章明,柯映林.针对大部件位姿调整、装配的一种随动固持方法[J].机械工程学报,2009,45(10):235-240.
    [11]郭志敏,蒋君侠,柯映林.基于POGO柱三点支撑的飞机大部件调姿方法[J].航空学报,2009,30(7):1319-1324.
    [12]黄翔,陈磊,方伟.民用飞机大部件数字化对接关键技术[J].航空制造技术,2010,(3):54-56.
    [13]王建华.飞机总装对接技术[J].航空制造技术,2010,(2):32-35.
    [14]张旭. 飞机大部件对接装过程中的干涉检测技术研究[D].浙江大学博士论文,,2008.
    [15]范玉青,现代飞机制造技术[M].北京航空航天大学出版社,2001.
    [16]李薇.数字化技术在飞机装配中的应用研究[J].航空制造技术,2004,(8):24-29.
    [17]邹冀华,刘志存,范玉青.大型飞行器舱段数字化装配方法[J].制造业自动化,2007,29(1):1-4,24.
    [18]郭恩明.国外飞机柔性装配技术[J].航空制造技术,2005,(9):29-32.
    [19]邹方. 飞机制造中数字化柔性装配技术的发展[J].制造业自动化,2005,27增刊:263-270.
    [20]邹方,薛汉杰,周万勇,许国康. 飞机数字化柔性装配关键技术及其发展[J].航空制造技术,2006,(9):30-35.(单位:北京航空制造工程研究所)
    [21]范玉青. 飞机数字化装配技术综述[J].航空制造技术,2006,(10):44-48.
    [22]刘善国.先进飞机装配技术及其发展[J].航空制造技术,2006,(10):38-41.
    [23]吴晓峰,赵祉江,柳权.大空间尺寸测量及大部件运输、跟踪、定位技术[J].航空制造技术,2009,(24):38-41.
    [24]邹冀华,许国康.大型飞机装配中的数字化测量系统分析和研究[J].航空制造技术,2010,(3):49-53.
    [25]李雷,崔钢,陈桂琴. 飞机数字化装配技术的研究[J].计算机工程应用技术,2010,6(13):3522-3526.
    [26]韩建栋.结构光视觉测量中若干关键技术研究[D].博十学位论文.北京邮电大学,2009.
    [27]Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [28]马颂德,张正友.计算机视觉——计算理论与算法基础[M].北京:科学出版社,2003.
    [29]张广军.视觉测量[M].北京:科学出版社,2008.
    [30]Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the society for industrial and applied mathematics,1963,11 (2): 431-441.
    [31]K.Madsen, H.B.Nielsen, O.Tingleff. Methods for Non-linear Least Squares Problems[M]. Informatics and Mathemetical Modelling Technical University of Denmark: 2nd Edition,2004.
    [32]Pradit Mittrapiyanuruk. A memo on how to use the Levenberg-Marquardt algorithm for
    [33]Refining camera calibration parameters[J]. Purdue University,2003.
    [34]陈宝林.最优化理论与算法[M].北京:清华大学出版社,1989.
    [35]席少霖,赵风治.最优化计算方法[M].上海科学技术出版社,1983.
    [36]Harris C.. A combined corner and edge detector[C]. Proc.4th Alvey Vision Conference,1988:147-154.
    [37]Harris C. Geometry from visual motion, active motion[M]. Cambridge:MIT Press, 1992:263-284.
    [38]林义闽.视觉测量中光学定位跟踪技术研究[D].北京信息科技大学硕士学位论文,2010.
    [39]Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. Digital Image Processing Using MATLAB[M].北京:电子工业出版社,2005.
    [40]Chen D, Zhang G. A new sub-pixel detector for X-corners in camera calibration targets[C]. The 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision,2005:97-100.
    [41]Chen D, Wang Y, Zhang G. A new sub-pixel detector for grid target points in camera calibration[C].20th Congress of the International Commission for Optics,2005.
    [42]陈大志,于颖,张广军.摄像机标定中栅格标定点的亚像素级提取的研究[J].光学技术,2006,32(1):53-58.
    [43]马颂德,张正友.计算机视觉[M].北京:科学出版社,1998.
    [1]Frank chen, Gordon M.Brown, Mumin Song, Overview of three-dimensional shape measurement using optical methods[J], Optical Engineering,2000,39 (1):10-21.
    [2]Tsai M. J, Hung C. C. Development of a high-precision surface metrology system using structured light projection[J]. Measurement,2005,38:236-247.
    [3]Joaquim Salvi et al. A state of the art in structured light patterns for surface profilometry[J]. Pattern Recognition,2010,43:2666-2680.
    [4]Joaquim Salvi et al. Pattern codification strategies in structured light systems[J].Pattern Recognition,2004,37 (4):827-849.
    [5]K. Boyer, A. Kak. Color-encoded structured light for rapid active ranging[J]. IEEE TRANSACTIONS ON Pattern Analysis and Machine Intelligence,1987,9(1):14-28.
    [6]P. VUYLSTEKE, A. OOSTERLINCK. Range Image Acquisition with a Single Binary-Encoded Light Pattern[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,1990,12 (2):148-164.
    [7]T. Monks, J. Carter. Improved stripe matching for colour encoded structured light[C].5th International Conference on Computer Analysis of Images and Patterns,1993:476-485.
    [8]L. Zhang, B. Curless, S. M. Seitz. Rapid shape acquisition using color structured light and multi-pass dynamic programming[C]. Int. Symposium on 3D Data Processing Visualization and Transmission,2002:24-36.
    [9]J. Salvi, J. Batlle, E. Mouaddib. A robust-coded pattern projection for dynamic 3D scene measurement[J]. Pattern Recognition Letters,1998,19:1055-1065.
    [10]Philippe Lavoie, Dan Ionescu et al. A High Precision 3D Object Reconstruction Method Using a Color Coded Grid and NURBS[C]. Proceedings of the International Conference on Image Analysis and Processing,1999:370-375.
    [11]E. M. Petriu, Z. Sakr. Object recognition using pseudo-random color encoded structured light[C]. Proceedings of the 17th IEEE Instrumentation and Measurement technology Conference,2000,3:1237-1241.
    [12]Jordi Pages, Joaquim S., Joseq F.. A new optimized De Bruijn coding strategy for structured light patterns[C]. Proceedings of the 17th intermational conference on pattern recognition(ICPR'04).2004, Vol.4:284-287.
    [13]Jordi Pages, Joaquim Salvi et al. Optimised De Bruijn patterns for one-shot shape acquisition[J]. Image and Vision Computing,2005,23:707-720.
    [14]吴成东,狄飞等.基于彩色条纹结构光的物体三维重建方法[J].东北大学学报,2009,30(7):928-931.
    [15]傅媛媛,刘国忠.彩色条纹组合编码三维快速测量[J].仪器仪表学报增刊,2007,28(8):5-8.
    [16]朱清溢.彩色编码结构光三维测量的研究[D].四川大学,2006.
    [17]韦争亮,钟约先,袁朝龙.基于彩色栅线的结构光动态三维测量技术研究[J].光学技术,2009,35(4):569-574.
    [18]曲芳,钟金钢.基于数字彩色结构光投影的唇动三维测量[J].光学技术,2006,32(5):691-694.
    [19]邓晓辉.基于彩色结构光系统的三维视觉[D].浙江工业大学,2009.
    [20]王庆丰,张启灿,刘元坤.彩色编码结构光测量水中物体的三维面形[J].四川大学学报,2009,46(4):973-978.
    [21]李俊山,李旭辉.数字图像处理[M].清华大学出版社[M],2007.
    [22]Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing (Second Edition)[M].电子工业出版社,2004
    [23]张广军.视觉测量[M].科学出版社,2008:175-180.
    [24]Linda G.Shapiro, George C.Stockman.计算机视觉[M].机械工业出版社,2005:142-147.
    [1]Sun Junhua, Zhang Guangjun, Wei Zhenzhong. Large 3D free surface measurement using a mobile coded light-based stereo vision system[J]. Sensor and Actuators A:Physical, 2006,132 (2):460-471.
    [2]刘彦,谭久彬,王雷.差动电磁作动器的超大型光学仪器隔振基础的主动控制机理[J].光学精密工程,2007,15(10):1602-1608.
    [3]齐永岳,赵美蓉,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报,2006,39(8):989-993.
    [4]Maurice G. C, Bernd R.L.S. The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty[J]. Metrologia,2006,43 (4):S178-S188.
    [5]Trapet E., Savio E., De Chiffre L.. New advances in traceability of CMMs for almost the entire range ofindustrial dimensional metrology needs[J]. CIRP Annals:Manufacturing Technology,2004,53 (1):433-438.
    [6]Kenta Umetsu, Ryosyu Furutnani, Sonko Osawa, et al. Geometrical calibration of a coordinate measuring machine using a laser tracking system[J]. Measurement Science and Technology,2005,16:2466-2472.
    [7]Ma Liqun, Wang Liding, Cao Tieze, et al. A large-scale laser plane calibration system[J]. Measurement Science and Technology,2007,18:1768-1772.
    [8]邾继贵,王仲,周富强. IVECO车身视觉检测系统现场溯源研究[J].计量学报,2000,21(1):28-33.
    [9]郑荣才,陈超英,杨功流.大型舰船甲板变形测量[J].天津大学学报,2006,39(9):1077-1081.
    [10]ASME B89.4.19. Performance Evaluation of Laser Based Spherical Coordinate Measurement Systems[S]. American Society of Mechanical Engineers,2005.
    [11]GJB/J 6201-2008.大尺寸测量系统-激光跟踪仪校准规范[S].国防科学技术工业委员会,2008.
    [12]郭光荣,薛斌,陈娇.高速高精度跟踪系统跟踪精度的动态误差法评价分析[J].兵工自动化,2007,26(3):54-55.
    [13]王刚.基于离散点云的卷曲模型建模和精度评价[D].大连理工大学硕士论文,2007.
    [14]李春梅,周骥平,颜景平.基于视觉的三轴相交机械手姿态误差的计算与评价[J].机械设计与制造工程,2000,29(2):50-51.
    [15]莫卫东.数字平面检测系统误差和精度评价方法的研究[J].光学学报,2003,23(7):879-883.
    [16]许辉熙.遥感影像融合方法的精度评价[J].测绘与空间地理信息,2009,32(6):11-14.
    [17]张福民,曲兴华,叶声华.大尺寸测量中多传感器的融合[J].光学精密工程,2008,16(7):1236-1240.
    [18]张福民,曲兴华,叶声华.基于蒙特卡罗仿真方法的大尺寸测量不确定度分析[J].计算机集成制造系统,2009,15(1):184-187,196.
    [19]张福民,曲兴华,戴建芳,叶声华.现场大尺寸测量量值溯源[J].天津大学学报,2008,41(10):1167-1171.
    [20]杨剑.大尺寸视觉测量精度的理论和实验研究[D].北京邮电大学博十论文,2010.
    [21]张福民,曲兴华,戴建芳,叶声华.一种现场大尺寸测量精度的评价方法[J].光学学报,2008,28(11):215-2163.
    [22]许桢英.动态测量系统误差溯源与精度损失诊断的理论与方法研究[D].合肥工业大学博士论文,2004.
    [23]李晓惠.动态测量误差分解及溯源研究[D].合肥工业大学硕士论文,2006.
    [24]黄小明.基于误差分解与溯源的动态精度实验系统设计[D].硕士学位论文.合肥工业大学,2009.
    [25]刘大杰,施一民.全球定位系统(GPS)的原理与数据处理[M].上海:同济大学出版社,2006.
    [26]林文惠.刚体运动学的几何研究[J].力学与实践,2005,27(5):71-72.
    [27]耿娜,邾继贵,劳达宝,叶卢华.基于刚体运动学的坐标系配准理论及算法[J].传感技术学报,2010,23(8):1088-1092.
    [28]王亚平,郏永红.基于最小二乘原理建立坐标系方法的研究与实现[J].计算机测量与控制,2003,1](10):796-802.
    [29]Golub H.G., Van Loan F.C.. An Analysis of the Total Least-squares ProblemfJ]. SIAM Journal on Numerical Analysis,1980,17 (6):883-893.
    [30]Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[C]. IEEE Transactions on pattern Analysis and Machine Intelligence,1987,9(5):698-700.
    [31]程云鹏.矩阵论[M].西北工业大学出版社,2000.
    [32]Horn B K P. Closed-form solution of absolute orientation using quite quaternion[J]. Journal the Optical of Society American A:Optics Image Science and Vision,1987,4(4):629-642.
    [33]杨轶璐,徐心和.四元数在手术导航系统中的应用[J].东北大学学报(自然科学版),2005,26(1):21-24.
    [34]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航于大学出版社,1998.
    [35]杜兰,张捍卫,周庆勇,王若璞.坐标转换参数之间的相关性解忻[J].大地测量与地球动力学,2011,31(1):59-62.
    [36]费业泰.误差理论与数据处理[M].北京机械工业出版社,2003.
    [1]C. W. Spoor, F. E. Veldpaus. Rigid body motion calculated from spatial co-ordinates of markers[J]. Journal of Biomechanics,1980, V13 (4):391-393.
    [2]Jadran Lenarcic, Vincenzo Parenti Castelli. A method for determining movements of a deformable body from spatial coordinates of markers[J]. Journal of Roboic Systems,2001, 18 (12):731-736.
    [3]丁汉,朱利民,熊振华.复杂曲面快速测量、建模及基于测量点云的RP和NC加工[J].机械工程学报,2003,39(11):28-36.
    [4]耿娜,邾继贵,劳达宝,叶声华.基于刚体运动学的坐标系配准理论及算法[J].传感技术学报,2010,23(8):1088-1092.
    [5]H.S. Kutoglu, P. Vanicek. Effect of common point selection on coordinate transformation parameter determination[J]. Stud. Geophys. Geod.,2006,50:525-536.
    [6]王玉成,胡伍生.坐标转换中公共点选取对于转换精度的影响[J].现代测绘,2008,31 (5): 13-15.
    [7]Hakan S. Kutoglu, Tevfik Ayan. The role of common point distribution in obtaining reliable parameters for coordinate transformation[J]. Appl Math Comput.,2006,176:751-758.
    [8]朱利民,罗红根,王汉.测量定位误差度量与测点布局规划[J].中国科学E辑工程科学 材料科学,2004,34(11):1271-1282.
    [9]张旭,朱利民.盾构机姿态控制点的优化选取方法[J].中国机械工程,2009,20(8):902-905.
    [10]朱利民,丁汉,熊有伦.曲面测量定位与轮廓度误差评定的理论、方法和进展[C].第 二届海峡两岸制造技术研讨会,2001.
    [11]于先文,王庆.坐标转换精度的分布规律研究[J].地理信息世界,2009,(4):45-46,50.
    [12]刘东明,郭际明,施展,严悦.大角度三维基准转换及公共点的确定[J].测绘通报,2010(1):11-14.
    [13]赵宝锋,张雪,蒋廷臣.坐标转换模型及公共点选取对转换成果精度的影响[J].淮海工学院学报(自然科学版),2009,18(4):55-56.
    [14]牛琳,陈建平,田毅.三维坐标转换的公共点选择方法[J].北京测绘,2007,(4):9-11.
    [15]张松.复杂曲面布点策略与误差评定方法研究[D].天津大学硕士论文,2010.
    [16]来新民,黄田,林忠钦.数学模型已知的自由曲面数字化的自适应采样[J].计算机辅助设计与图形学学报,1999,11(4):359-362.
    [17]Merat F. L., Radack G.M.. Automatic Inspection Planning within a Feature-based CAD System[J]. Robotics & Computer-Integrated Manufacturing,1992,19(1):61-69.
    [18]王平江,陈吉红,李作清.空间自由曲面测量系统中的测点自动布置[J].计量技术,1995,12:10-13.
    [19]谢金,王文,李剑.自由曲面测量中测点自适应规划方法研究[J].机电工程,2001,18(5):54-56.
    [20]解则晓,冯国馨,张国雄.自由曲线曲面测量中的测点布置与平均误差[J].计量技术,1999,12:21-23.
    [21]Zhu L. M., Luo H. G., Ding H.. Accuracy Charaterization and Measurement Point Planning for Workpiece Location[J]. SCIENCE IN CHINA Ser. E Engineering & Materials Science, 2004,34 (11):1271-1282.
    [22]Luo R. C., Yih C. C., Su K. L.. Multisensor fusion and integration:approaches, applications, and future research directions[J]. IEEE Sensors J.,2002,2:107-119.
    [23]张福民,曲兴华,叶声华.大尺寸测量中多传感器的融合[J].光学精密工程,2008,16(7):1236-1240.
    [24]F. E. VELDPAUS, H. J. WOLTRING, L. J. M. G. DORTMANS. A LEAST-SQUARES ALGORITHM FOR THE EQUIFORM TRANSFORMATION FROM SPATIAL MARKER CO-ORDINATES[J]. J. Biomechanics,1988, V21 (1):45-54.
    [25]杜兰,张捍卫,周庆勇,王若璞.坐标转换参数之间的相关性解析[J].大地测量与地球动力学,2011,31(1):59-62.
    [26]吕乃光.傅里叶光学[M].北京:机械工业出版社,2007:57-62.
    [27]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003:48-53.
    [1]Thomas M.Tucker, Thomas R.Kurfess. Point Cloud to CAD Model Registration Methods in Manufacturing Inspection[J]. Journal of Computing and Information Science in Engineering,2006,6:418-421.
    [2]David W. Eggert, Andrew W. Fitzgibbon, Robert B. Fisher. Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,1998,69 (3):253-272;
    [3]陶军.基于三维测量数据和CAD模型的自由曲面数字化检测关键技术研究[D].上海交通大学博士论文,2003.
    [4]Yadong Li, Peihua Gu. Automatic Localization and Comparison for Free-Form Surface Inspection[J]. Journal of Manufacturing Systems,2006,25 (4):251-268.
    [5]Xinju Li, Igor Guskov, Jacob Barhak. Robust Alignment of Multi-view Range Data to CAD Model[C]. Proceedings of the IEEE International Conference on Shape Modeling and Application,2006.
    [6]张学昌.基于点云数据的复杂型面数字化检测关键技术研究及其系统开发[D].上海交通大学博十论文,2006.
    [7]施法中.计算机辅助儿何设计与非均匀有理B样条[M].高等教育出版社,2001.
    [8]朱心雄.自由曲线曲面造型技术[M].科学出版社,2000.
    [9]Les Piegl, Wayne Tiller. The NURBS Book (Second Edition) [M]. 清华大学出版社, 1996.
    [10]高斌.曲面造型中NURBS曲面曲线离散及显示算法的研究与实现[D].浙江大学硕十论文,2002.
    [11]李根.基于测量数据的CAD造型若干关键技术研究[D].浙江大学博士论文,2008.
    [12]http://baike.baidu.com/view/1983833.htm
    [13]http://zh.wikipedia.org/zh/%E5%BC%A0%E9%87%8F%E7%A7%AF
    [14]朱春红.三维扫描系统中点云的拼接及其后处理[D].东南大学硕十论文,2007.
    [15]刘晶.基于CAD模型的配准技术综述[J].机床与液压,2007,35(9):231,232,250.
    [16]张树森,李玮,程俊廷.基于逆向工程的三维测量点云数据与CAD数模配准算法研究[J].制造技术与机床,2008,(3):114-116.
    [17]Tae-wan Kim, Yeong-hwa Seo, etc.. Simultaneous registration of multiple views with markers[J]. Computer-Aided Design,2009,41:231-239.
    [18]袁亮.三维重建过程中的点云数据配准算法的研究[D].西安电子科技大学硕士论文,2010.
    [19]Joaquim Salvi. Carles Matabosch. David Fofi, Josep Forest. A review of recent range image registration methods with accuracy evaluation[J]. Image and Vision Computing, 2007,25:578-596.
    [20]C.J.R.Chua. Point signatures:a new representation for 3d object recognition[J]. Int. J.Comput. Vision,1997,25 (1):63-85.
    [21]J. Feldmar, N. Ayache. Rigid, affine and locally affine registration of free-form surfaces[J]. Technical Report of INRIA,1994.
    [22]C.S.Chen, Y.P.Hung, J.B.Cheng. A fast automatic method for registration of partially overlapping range images[C]. International Conference on Computer Vision,1998: 242-248.
    [23]J.Tarel,H.Civi,D.Cooper. Pose estimation of free-form 3d objects without point matching using algebraic surface models[C]. Proceedings of IEEE Workshop on Model-Based 3D,1998:13-21.
    [24]D.Chung,Y.D.S.Lee. Registration of multiple-range views using the reverse calibration technique[J]. Pattern Recogn,1998,31 (4):457-464.
    [25]K. Brunnstrom, A. Stoddart. Genetic algorithms for free-form surface matching[C]. International Conference of Pattern Recognition,1996:689-693.
    [26]P.Besl, N.McKay. A method for registration of 3d shapes[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1992,14 (2):239-256.
    [27]Y.Chen, G.Medioni. Object modeling by registration of multiple range images[C]. IEEE International Conference on Robotics and Automation,1991:2724-2729.
    [28]王侃昌,师帅兵.自由曲面的高斯曲率计算方法[J].西北农业大学学报,2000,28(6):150-153.
    [29]吴剑煌,刘伟军,王天然,王华兵.点采样曲面的曲率估计[J].仪器仪表学报,2006,27(12):1557-1562.
    [30]马骊溟,徐毅,李泽湘.基于高斯曲率极值点的散乱点云数据特征点提取[J].2008,20(9):2341-2344.
    [31]徐金亭,刘伟军,孙玉文.基于曲率特征的自由曲面匹配算法[J].计算机辅助设计与图形学报,2007,19(2):193-197.
    [32]毛颖,唐杰,张福炎.基丁NURBS曲面拟合的三角网格曲率计算[J].计算机应用,2005,25(2):341-343,347.
    [33]葛云,舒华忠,罗立民.基于曲率及相关性的相似区域的线性配准[J].电子学报,2000,(8):1-3.
    [34]孟令江.曲面的基本形式的欧氏变换下的固定性[J].唐山师范学院学报,2007,29(5):61-62.
    [35]张广军.视觉测量[M].北京:科学出版社,2008.
    [36]陈萌.柔性装配中工件配准方法研究[D].北京信息科技大学硕士论文,2011.
    [37]戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图像图形学报,2007,12(3):517-521.
    [38]ANDERSSON M., GIESEN J., PAULY M., Bounds on the neighborhood for locally uniformly sampled surfaces[C]. In Proceedings Symposium on Point-Based Graphics, Eurographics,2004:167-171.
    [39]张学吕,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,1l(5):727-731,737.
    [40]http://www.norelem.de/App/WebObjects/XSeMIPSNORELEMDE.woa/cms/page/locale. enDE/pid.7.11.213.212/agid.4387.4442/ecm.ag/Permanent-magnetic-feet.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700