用户名: 密码: 验证码:
虹膜图像块状纹理检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体虹膜表面具有由坑洞、色素斑、裂缝和环状条纹构成的丰富纹理,这些纹理中所蕴含的特征信息是虹膜身份识别和虹膜诊断的重要依据。现有的虹膜纹理特征提取方法无法获得指定类型虹膜特征纹理的大小、位置、形态和类型信息,而这些信息所反映的虹膜纹理特征是现有虹膜识别系统中特征信息的有效补充,并且能够为虹膜诊断提供所需的纹理特征信息。
     为了解决上述问题,本文主要研究虹膜图像中特定类型纹理的检测方法。文中依据四种纹理的形状特征将虹膜纹理分为三大类,分别为块状、线状和环状纹理。其中坑洞和色素斑同属于块状纹理,裂缝属于线状纹理,环状条纹属于环状纹理。本文以虹膜块状纹理为检测对象,研究虹膜图像中块状纹理的检测方法、坑洞与色素斑的分类方法以及检测所得块状纹理的特征描述方法。主要研究工作及贡献如下:
     (1)针对现有虹膜纹理特征提取方法无法获得虹膜中特定类型纹理的大小、形状、位置等特征信息的问题,本文提出一种虹膜纹理特征提取的新思路。将虹膜纹理分为三大类,通过在虹膜图像中检测特定类型纹理,获得其几何和位置等特征信息作为虹膜纹理特征。在虹膜识别领域,这类空间域上的纹理特征信息可以作为现有频域方法所得特征信息的补充。在虹膜诊断领域,可将这些特征作为后续诊断的依据。
     (2)针对虹膜块状纹理的检测问题,提出三种实现虹膜图像块状纹理检测的方法,这些方法能够实现仅存在色素斑的简单背景虹膜图像和多种纹理并存的复杂背景虹膜图像中块状纹理的检测,三种方法适用环境不同,检测正确率和算法复杂度各具优劣。算法遵循由粗到精的思路,能够依据虹膜图像中是否存在特征纹理将虹膜进行两分类,并且能够在存在块状特征纹理的虹膜图像中实现块状纹理的正确检测,从而得到用于虹膜识别和虹膜诊断的块状纹理特征参数。
     方法一:基于局部灰度极小值和水平集的虹膜块状纹理检测方法,能够实现仅存在色素斑的简单背景虹膜图像的块状纹理检测。该方法首先根据色素斑的灰度分布特性,在预处理后的虹膜图像中寻找灰度极小值点,确定色素斑存在的可能区域,实现色素斑的初定位。然后,利用水平集方法依据区域内的像素灰度,获得区域图像的边缘轮廓,通过判断所得轮廓的尺寸和闭合性,实现其中色素斑轮廓的检测。测试结果表明,该方法对于仅存在色素斑的虹膜图像中的块状纹理的检测效果较好,检测正确率为92.45%。
     方法二:基于组合窗口搜索的虹膜块状纹理检测方法,实现了多种类型纹理并存的复杂背景虹膜图像中的块状纹理检测。该方法针对虹膜块状纹理的灰度空间分布和形状特性,设计一组尺寸可变的块状纹理搜索窗口,利用窗口搜索预处理后的虹膜图像,获得满足块状纹理匹配条件的区域,并且排除其它类型纹理。再利用OTSU方法对所得的块状纹理区域进行图像分割,实现块状纹理检测。对图库中人工标定块状纹理的检测正确率分别为90.59%。
     方法三:基于纹理能量参数与边缘形状因子的虹膜块状纹理检测方法,同样能够实现多种类型纹理并存的复杂背景虹膜图像中块状纹理的检测。该方法先从块状纹理区域的灰度分布特性出发,采用文中定义的区域纹理能量参数作为描述子,利用支持向量机方法将虹膜图像中包含块状、线状和环状纹理在内的灰度变化较剧烈的区域分割出来,实现块状纹理可能存在区域的初定位;再依据块状纹理的形状特征,分析初定位所得区域的边缘信息,针对检测目标的形状特征定义一种边缘形状因子,将块状纹理的轮廓从所得区域边缘图像中提取出来,最终实现虹膜图像中块状纹理的检测。测试结果表明该算法对人工标定块状纹理的检测正确率为85.7%。
     (3)针对两种虹膜块状纹理的分类问题,提出一种坑洞和色素斑的分类检测方法。该方法首先采用灰度聚类方法实现虹膜图像中块状纹理可能存在区域的初定位,然后对分割所得区域进行闭运算实现相邻区域的连通。再依据坑洞和色素斑的灰度空间分布特性,定义一组由区域灰度标准差和闭运算前后平均变化率组成的区域特征参数作为分类依据,利用支持向量机实现坑洞、色素斑与其它纹理区域的分类。测试结果表明,该方法对于块状纹理的检测和分类正确率分别为87.39%和95.84%。
     (4)为了获得块状纹理的特征信息,针对块状纹理的特性,选择其面积、周长、长轴长度、短轴长度和重心坐标作为特征参数描述检测所得块状纹理的形态和位置信息,定义了上述参数的计算方法以及虹膜图像块状纹理的特征向量和特征矩阵。
     另外,文中还讨论了标准分类图库的建立问题与虹膜图像的预处理问题。给出了基于人工分类和统计的不同类型虹膜纹理的标准分类图库的建立方法,并依据彩色虹膜图像的饱和度分量实现了可见光虹膜图像中光照干扰部分的去除。
There are plenty of textures on the surface of human irises, which are consisted of crypts,plaques, furrows and circle lines. The feature information contained in iris textures is thesignificant basis for iris identification and iris diagnosis. At present, the existing iris texturesdetection methods cannot offer the detailed characteristics of the iris textures, such as size,location, morphology and category, but these characteristics are the effective supplement ofthe existing feature of iris identification systems and can also provide the texture featurerequired for iris diagnosis systems.
     In order to solve the problems discussed above, this thesis studied the approaches of iristextures detection for specific type. According to the shape characteristics, four kinds of iristextures were divided into three categories: plaque-like textures, line textures and circletextures. The crypts and plaques were classified as the plaque-like textures, the furrows as theline textures, and the circle lines as the circle textures. Focusing on the plaque-like textures,the thesis studied the detection methods and the classification methods of crypts and plaques.The main contributions of this thesis are as follows:
     (1) For the problem that the existing iris texture feature extraction methods can not obtainthe features of the specific type of textures, such as the size, shape and position, a new idea ofiris textures feature extraction was proposed. The iris textures were divided into threecategories. By detecting the specific kind of textures, the geometric and located information ofthe iris texture was acquired to use as the iris texture feature. These features of space domaincan supplement the existing frequency methods in the iris identification systems. In the irisdiagnosis systems, these features can be used to get diagnosis.
     (2) For the problem of the inefficiency of iris plaque-like textures detection, threeapproaches were proposed. These approaches can detect the targets in the iris whether it issimple background only with plaques or complex background with multi-kinds of texturescoexisting. These methods are availiable to different environments and the detectioncomplexity is their merits. Following the coarse to fine ideas, the plaque-like textures existingin the iris image could be detected so that the feature parameters of the plaque-like texturescan be acquired when used in iris recognition systems or iris diagnosis systems.
     Method I: To solve the problem of plaque-like textures detection of the irises only withplaques, a method based on local gray minimum and level set was proposed. Firstly, accordingto the gray distribution of the plaque-like textures, the local gray minimums were searched forin the preprocessed iris image to find the probable plaque regions. Therefore, the plaques wereinitially located. And then, the regions’ edge contours were evolved with level set method.Finally, by judging the size and closing feature of the contours, the plaques were detectedamong them. The test results show that the method proposed is effective for plaque-liketextures detection of the irises only with plaques, and the accuracy was92.45%.
     Method II:To solve the problem of plaque-like textures detection of the irises withmulti-kinds of textures, a method based on combinational windows searching was proposed. Aseries of variable size combinational windows was designed based on the gray distribution andthe shape of the plaque-like textures. The preprocessed iris images were searched by thesewindows and the regions in which the plaque-like textures existed were found out and theother regions were excluded. And then, with OTSU method, the regions acquired weresegmented and the plaque-like textures were detected. The integrated accuracy of this methodwas90.59%.
     Method III: To solve the same problem, a method based on texture energy parameter andedge shape factor was proposed. According to the characteristics of the plaque-like textures, aregion texture energy parameter was defined in this thesis. By using it, the regions containingthe plaque-like, linear or annular textures were detected out by Support Vector Machine, andthe plaques were initially located. By analyzing the edge information of the initialized location,according to the shape of the plaque-like textures, an edge shape factor special for thedetecting target was defined. By using it, the edge contours of the plaque-like textures wereextracted from the edge image, and the plaque-like textures were detected. The integratedaccuracy of this method was85.7%.
     (3) To solve the problem of plaque-like textures classification, an approach of detectionand classification of crypts and plaques was proposed. First, the probable plaque-like existingregions were initially located by using clustering method based on the gray of the pixels. Andthen, the adjacent regions were connected by close operation. Finally, according to the graydistribution of crypts and plaques, two region feature parameters, i.e. gray standard deviationand average variation rate of close operation, were defined to constitute the feature vector of Support Vector Machine, by which the crypts, plaques and other textures were classified. Thedetection and classification accuracy were87.39%and95.84%respectively.
     (4) In order to obtain the feature information of the plaque-like textures, according totheir characteristics, the area, perimeter, long axis length, short axis length and barycentercoordinates were selected to be feature parameters to describe the morphology and the positionof the plaque-like textures. The computational formulas of these parameters were proposed,and the feature vector and matrix of iris plaque-like textures were defined.
     Moreover, the problems of standard classification gallery establishment and thepreprocessing of iris images were discussed in this thesis. The standard gallery of differenttypes of iris textures was established. According to the saturation component of the colored irisimage, the interference of light was removed from the visible light iris images.
引文
[1]刘家琦.实用眼科学[M].北京:人民卫生出版杜,1984.
    [2]倪绰.眼的解剖组织学及其临床应用[M].上海医科大学出版,1993.
    [3]李秋明,郑广瑛.眼科应用解剖学[M].郑州:郑州大学出版社,2001:71-75.
    [4] Hosseini M S, Araabi B N, Soltanian-Zadeh H. Pigment melanin: pattern for iris recognition[J]. IEEETransactions on Instrumentation and Measurement,2010,59(4):792-804.
    [5] Daugman J, Downing C. Epigenetic randomness, complexity and singularity of human iris patterns [J].Proceedings of the Royal Society of London. Series B: Biological Sciences,2001,268:1737-1740.
    [6] Daugman J. Statistical richness of visual phase information: update on recognizing persons by irispatterns [J]. International Journal of Computer Vision,2001,45(1):25-38.
    [7] Daugman J. How iris recognition works [J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2004,14(1):21-30.
    [8] Bowyer K W, Hollingsworth K P, Flynn P J. A survey of iris biometrics research:2008-2010[M].Handbook of iris recognition. Springer London,2013:15-54.
    [9] Flom L, Safir A. Iris recognition system: U.S.4641349[P].1987-02-03.
    [10] Johnson R G. Can iris patterns be used to identify people?[J]. Los Alamos National Laboratory,Chemical and Laser Sciences Division, Annual Report LA-12331-PR,1992,6:81-86.
    [11] Daugman J. Biometric personal identification system based on iris analysis: U.S.5291560[P].1994-03-01.
    [12] Daugman J. High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161.
    [13]丛峰.易虹膜生命健康学[M].北京:北京交通大学出版社,2009:28-29.
    [14]王龄.观虹膜知健康[M].沈阳:辽宁科学技术出版社,2010:2-4.
    [15] Bowyer K W, Hollingsworth K, Flynn P J. Image understanding for iris biometrics: a survey[J].Computer Vision and Image Understanding,2008,110:281-307.
    [16]田启川,刘正光.虹膜识别综述[J].计算机应用研究,2008,25(5):1297-1300,1314.
    [17] Daugman J. New methods in iris recognition[J]. IEEE Transactions on Systems, Man andCybernetics,2007,37(5):1167-1175.
    [18] Daugman J. The importance of being random: statistical principles of iris recognition[J]. PatternRecognition,2003,36:279–291.
    [19] Sun Z, Tan T. Ordinal measures for iris recognition[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2009,31(12):2211-2226.
    [20] Sun Z, Tan T, Wang Y. Robust encoding of local ordinal measures: a general framework of irisrecognition[C]//Biometric Authentication. Springer-Verlag Berlin Heidelberg,2004:270–282.
    [21] Vatsa M, Singh R, Noore A. Reducing the false rejection rated of iris recognition using textural andtopological features[J]. Signal Process,2005,2(2):66–72.
    [22] Ma L, Wang Y, Tan T. Iris recognition based on multichannel Gabor filtering[C]//The Fifth AsianConference Computer Vision.2002,1:279-283.
    [23] Sanchez-Reillo R, Sanchez-Avila C. Iris recognition with low template size[C]//Audio-andVideo-Based Biometric Person Authentication. Springer Berlin Heidelberg,2001:324-329.
    [24]徐涛,刘畅,明星等.基于实数形式Gabor变换的虹膜识别方法[J].吉林大学学报:工学版,2004,34(1):46-51.
    [25] Tisse C, Martin L, Torres L, et al. Person identification technique using human irisrecognition[C]//Proceeding of Vision Interface.2002:294-299.
    [26] Yao P, Li J, Ye X, et al. Iris recognition algorithm using modified log-gabor filters[C]//InternationalConference on Pattern Recognition.18th International Conference on Pattern Recognition,2006:461–464.
    [27] Seif A, Zewail R, Saeb M, et al. Iris identification based on log Gabor filtering[C]//46th MidwestSymposium on Circuits and Systems. IEEE,2003,1:333-336.
    [28]王风华,韩九强.一种Log-Gabor滤波结合特征融合的虹膜识别方法[J].西安交通大学学报,2007,41(8):889-893.
    [29]姚鹏,叶学义,张文聪等.基于改进的Log-Gabor小波的虹膜识别算法[J].计算机辅助设计与图形学学报,2007,19(5):563-568.
    [30]陈书贞,王林,侯莉等.基于Log—Gabor子带图像分割的虹膜识别算法[J].电子技术应用,2007,33(3):54-56.
    [31]王风华,韩九强.基于2D Log-Gabor滤波器的虹膜识别研究[J].系统仿真学报,2008,20(7):1808-1811.
    [32] Pozdin V A, Du Y. Performance analysis and parameter optimization for iris recognition usinglog-Gabor wavelet[C]//The International Society for Optics Engineering. SPIE,2007: No.6491-12.
    [33] Al-Zubi R T, Abu-Al-Nadi D I. Automated personal identification system based on human irisanalysis[J]. Pattern Analysis and Applications,2007,10(2):147-164.
    [34] Fares S, Al-Qunaieer, Ghouti L. Color iris recognition using hypercomplex gabor wavelets[C]//2009International Symposium on Bio-inspired, Learning, and Intelligent Systems for Security, IEEEComputer Society,2009:18-19.
    [35] Ghouti L, Al-Qunaieer, Fares S. Color iris recognition using quaternion phase correlation[C]//2009International Symposium on Bio-inspired, Learning, and Intelligent Systems for Security, IEEEComputer Society,2009:20-25.
    [36] Krichen E, Garcia S, Dorizzi B. A new phase-correlation-based iris matching for degraded images[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2009,39(4):924-934.
    [37] Miyazawa K, Ito K, Aoki T, et al.An Effective Approach for iris recognition using phase-basedImage matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(10):1741-1756.
    [38]张祥德,黎明奇,王琪等.基于多方向Gabor滤波器和Adaboost的虹膜识别方法[J].东北大学学报(自然科学版),2012,33(1):39-42.
    [39]李欢利,郭立红,王心醉等.基于加权Gabor滤波器的虹膜识别[J].吉林大学学报(工学版),2014,44(1):196-202.
    [40] Boles W, Boashash B, A human identification technique using images of the iris and wavelettransform[J]. IEEE Transactions on Signal Process,1998,46(4):1185–1188.
    [41] Ma L, Tan T, Wang Y, et al. Personal identification based on iris texture analysis[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2003,25(12):1519–1533.
    [42] Ma L, Tan T, Wang Y, et al. Efficient iris recognition by characterizing key local variations[J]. IEEETransactions on Image Process,2004,13(6):739–750.
    [43] Ma L, Tan T, Wang Y, et al. Local intensity variation analysis for iris recognition[J]. PatternRecognition,2004,37(6):1287–1298.
    [44] Ma L, Wang Y, Tan T. Iris recognition using circular symmetric filters[C]//International Conferenceon Pattern Recognition,2002, II:414–417.
    [45] Carmen S A, Raul S R. Multiscale analysis for iris biometrics[C]//IEEE International CarnahanConference on Security Technology,2002:35–38.
    [46] Carmen S A, Raul S R. Two different approaches for iris recognition using gabor filters andmultiscale zero-crossing representation[J]. Pattern Recognition,2005,38(2):231–240.
    [47] Wildes et al. Automated, non-invasive iris recognition system and method: U.S.5572596[P].1996-12-05.
    [48] Wildes R. Iris recognition: an emerging biometric technology[J]. Proceedings of IEEE,1997,85(9):1348–1363.
    [49] Wildes R. Iris recognition, in: Biometric Systems: Technology, Design and PerformanceEvaluation[M]. Springer-verlag,2005.
    [50] Wildes R, Jane C, Gilbert L, et al. A system for automated iris recognition[C]//Second IEEEWorkshop Application of Computer Vision,1994:121–128.
    [51] Wildes R., Jane C, Gilbert L, et al. A machine vision system for iris recognition[C]//Machine Visionand Applications. Springer-Velag,1996:1–8.
    [52] Thornton J, Savvides M, Kumar V. A Bayesian approach to deformed pattern matching of irisimages[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(4):596-606.
    [53] Lim S, Lee K, Byeon O, et al. Efficient iris recognition through improvement of feature vector andclassifier[J]. ETRI journal,2001,23(2):61-70.
    [54] Patil C M, Patilkulkarani S. Iris feature extraction for personal identification using lifting wavelettransform[C]//International Conference on Advances in Computing, Control, and TelecommunicationTechnologies (ACT’09), IEEE Computer Society,2009:764-766.
    [55] Tajbakhsh N, Araabi B, Soltanian-zadeh H. Noisy iris verification: a modified version of localintensity variation method[C]//Advances in Biometrics: Lecture Notes in Computer Science,Springer-Verlag,2009:1150-1159.
    [56] Velisavljevic V. Low-complexity iris coding and recognition based on directionlets[J]. IEEETransactions on Information Forensics and Security,2009,4(3):410-417.
    [57] Bodade R M, Talbar S N. Shift invariant iris feature extraction using rotated complex wavelet andcomplex wavelet for iris recognition system[C]//Proceedings of the7th International Conference onAdvances in Pattern Recognition(ICAPR’09), Inst. Of Elec. And Elec Eng. Computer Society,2009:449-452.
    [58] Tajbakhsh N, Misaghian K, Bandari N. A region-based iris feature extraction method based on2D-wavelet transform[C]//Lecture Notes in Computer Science (including subseries Lecture Notes inArtificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag,2009:301-307.
    [59] Haralick R, Shanmugam K, Dinstein L. Textural features for image classification[J]. IEEETransactions on Systems, Man, and Cybernetics,1973,3(6):610-621.
    [60] Chen W S, Huang R H, Hsieh L. Iris recognition using3D co-occurrence matrix[C]//Advances inBiometrics. Springer Berlin Heidelberg,2009:1122-1131.
    [61] Kannavara R, Bourbakis N. Iris biometric authentication based on local global graphs: an FPGAimplementation[C]//IEEE Symposium on Computational Intelligence for Security and DefenseApplications (CISDA2009),2009:1-7.
    [62] Kyaw S. Iris recognition system using statistical features for biometric identification[C]//International Conference on Electronic Computer Technology,2009:554-556.
    [63]罗忠亮,林土胜,杨军等.基于EMD和SVD的虹膜特征提取及识别[J].华南理工大学学报:自然科学版,2011,39(2):65-70.
    [64]李欢利,郭立红,陈涛等.基于PCHIP—LMD的虹膜识别方法[J].光学精密工程,2013,21(1):197-206.
    [65]李欢利,郭立红,陈涛等.基于改进的经验模态分解的虹膜识别方法[J].吉林大学学报:工学版,2013(1):198-205.
    [66]刘凯,周卫东,王玉.基于毯子维和缺项的虹膜特征提取算法[J].模式识别与人工智能,2011,24(6):839-845.
    [67] Wu D M, Wang J N. An improved iris recognition method based on gray surface matching[C]//FifthInternational Conference on InformationAssurance and Security (IAS’09),2009, I:247-249.
    [68] Mehrotra H, Badrinath G S, Majhi B, et al. An efficient dual stage approach for iris feature extractionusing interest point pairing[C]//IEEE Workshop on Computational Intelligence in Biometrics: Theory,Algorithms, and Applications (CIB2009),2009:59-62.
    [69] Mehrotra H, Majhi B, Gupta P. Annular iris recognition using SURF[C]//Pattern Recognition andMachine Intelligence: Lecture Notes in Computer Science#5909,2009:464-469.
    [70] Radhika K, Sheela S, Venkatesha M, et al. Multi-modal authentication using continuous dynamicprogramming[C]//Biometric ID Management and Multimodal Communication: Lecture Notes inComputer Science#5707,2009:228-235.
    [71] Patil C, Patilkulkarani S. A comparative study of feature extraction approaches for an efficient irisrecognition system[C]//Communications in Computer and Information Science, SpringerVerlag,2010,411-416.
    [72] Patil C, Patilkulkarani S. An Approach to Enhance Security Environment Based on SIFT FeatureExtraction and Matching to Iris Recognition[C]//Communications in Computer and InformationScience, Springer Verlag,2010,527-530.
    [73] Rathgeb C, Uhl A. Privacy preserving key generation for iris[C]//Biometrics, Communications andMultimedia Security: Lecture Notes in Computer Science#6109,2010:191-200.
    [74]李欢利,郭立红,李小明等.基于统计特征中心对称局部二值模式的虹膜识别[J].光学精密工程,2013,21(8):2129-2136.
    [75] Sun Z, Wang Y, Tan T, et al. Cascading statistical and structural classifiers for iris recognition[C]//International Conference on Image Processing, IEEE,2004,2:1261-1264.
    [76] Sun Z, Wang Y, Tan T, et al. Improving iris recognition accuracy via cascaded classifiers[J]. IEEETransactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2005,35(3):435-441.
    [77] Liang H, Cai Z, Chen X, et al. Iris recognition based on characters of iris’s speckles[C]//7th WorldCongress on Intelligent Control and Automation(WCICA2008). IEEE,2008:6793-6797.
    [78] Mira J, Mayer J. Image feature extraction for application of biometric identification of iris:amorphological approach[C]//XVI Brazilian Symposium on Computer Graphics and Image Processing.IEEE,2003:391-398.
    [79] Sunder M S, Ross A. Iris image retrieval based on macro-features[C]//20th International Conferenceon Pattern Recognition (ICPR), IEEE,2010:1318-1321.
    [80] Shen F, Flynn P J. Iris matching by crypts and anti-crypts[C]//2012IEEE Conference onTechnologies for Homeland Security (HST), IEEE,2012:208-213.
    [81] Shen F, Flynn P J. Are iris crypts useful in identity recognition[C]//2013IEEE Sixth InternationalConference on Biometrics: Theory, Applications and Systems (BTAS), IEEE,2013:1-6.
    [82] Wang J, Ma L, Wang K. Radii Solaris extraction through Primitive Modelling[C]//Lecture Notes inComputer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes inBioinformatics), Springer Verlag,2010:94-103.
    [83]辛国栋,王巍.虹膜卷缩轮提取方法研究[J].计算机工程与设计.2008,29(9):2290-2292.
    [84] Lodin A, Demea S. Design of an iris-based medical diagnosis system[C]//Proceeding InternationalSymposium on Signals, Circuits and Systems, IEEE,2009:1-4.
    [85] Wibawa A D, Purnomo M H. Early detection on the condition of pancreas organ as the cause ofdiabetes mellitus by real time iris image processing[C]//Circuits and Systems(APCCA),2006:4-7.
    [86] Hussein S E, Hassan O A, Granat M H. Assessment of the potential iridology for diagnosing kidneydisease using wavelet analysis and neural networks[J]. Biomedical Signal Processing and Control,2003(8):534-541.
    [87] Cheng L L, Chen L C. Health examination based on iris images[C]//Proceedings of the NinthInternational Conference on Machine Learning and Cybernetics,2010:11-14.
    [88] Shen B, Xu Y, Lu G, et al. Detecting iris lacunae based on Gaussian filter[C]//Third InternationalConference on Intelligent Information Hiding and Multimedia Signal Processing(IIHMSP2007), IEEE,2007,1:233-236.
    [89]赵丽斌.虹膜色素沉积斑的自动定位算法研究[D].沈阳工业大学,2012.
    [90]王钧慧.虹膜预处理及特征提取关键技术研究[D].哈尔滨工业大学,2010.
    [91] Ma L, Zhang D, Li N, et al. Iris-based medical analysis by geometric deformation features[J]. IEEEJournal of Biomedical and Health Informatics,2013,17(1):223-231.
    [92] Meredith P, Powell B J, Riesz J, et al. Towards structure–property–function relationships foreumelanin [J]. Soft Matter,2006,2(1):37-44.
    [93]苑玮琦,徐露,林忠华.一种基于人眼图像灰度分布特征的虹膜定位算法[J].光电子·激光,2006,17(2):226-230.
    [94] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man, and Cybernetics,1979,9(1):62-66.
    [95]何小海.图像通信[M].西安:西安电子科技大学出版社,2005.
    [96]章毓晋.图像工程(上册)——图像处理[M].北京:清华大学出版社,2012:283-284.
    [97]阮秋琦.数字图像处理[M].北京:电子工业出版社,2007:72-74.
    [98] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based onHamilton-Jacobi formulations[J]. Journal of Computational Physics,1988,79(1):12-49.
    [99] Caselles V, CattéF, Coll T, et al. A geometric model for active contours in image processing[J].Numerische Mathematik,1993,66(1):1-31.
    [100]Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computervision,1997,22(1):61-79.
    [101]危自福,毕笃彦,徐建军.基于最小错误率和快速水平集的图像分割[J].光电子·激光,2010,21(1):130-135.
    [102] Kimmel R. Fast edge integration[C]//Geometric Level Set Methods in Imaging, Vision, andGraphics. Springer New York,2003:59-77.
    [103]刘博,黄剑华,唐降龙等.结合全局概率密度差异与局部灰度拟合的超声图像分割[J].自动化学报,2010,36(7):951-959.
    [104]虞红伟,厉力华,徐伟栋等.一种基于水平集的多尺度乳腺肿块分割方法[J].仪器仪表学报,2010,31(6):1418-1423.
    [105]Wang L, Li C, Sun Q, et al. Active contours driven by local and global intensity fitting energy withapplication to brain MR image segmentation[J]. Computerized Medical Imaging and Graphics,2009,33(7):520-531.
    [106]Zhu S C, Yuille A. Region competition: unifying snakes, region growing, and bayes/MDL formultiband image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):884-900.
    [107]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associatedvariational problems[J]. Communications on Pure and Applied Mathematics,1989,42(5):577-685.
    [108]Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing,2001,10(2):266-277.
    [109]王兴梅,印桂生,门志国等.基于水平集改进的水下目标轮廓提取方法[J].哈尔滨工业大学学报,2010,42(4):660-664.
    [110]Sang E, Shen Z, Fan C, et al. Sonar image segmentation based on implicit active contours[C]//IEEEInternational Conference on Intelligent Computing and Intelligent Systems(ICIS2009), IEEE,2009,4:228-231.
    [111]Tsai A, Yezzi J A, Willsky A S. Curve evolution implementation of the Mumford-Shah functional forimage segmentation, denoising, interpolation, and magnification[J]. IEEE Transactions on ImageProcessing,2001,10(8):1169-1186.
    [112]Paragios N, Deriche R. Geodesic active regions: a new framework to deal with frame partitionproblems in computer vision[J]. Journal of Visual Communication and Image Representation,2002,13(1):249-268.
    [113]Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by theBhattacharyya gradient flow[J]. IEEE Transactions on Image Processing,2007,16(11):2787-2801.
    [114]Tsai A, Yezzi J A, Wells W, et al. A shape-based approach to the segmentation of medical imageryusing level sets[J]. IEEE Transactions on Medical Imaging,2003,22(2):137-154.
    [115]蒋欣.水平集方法及其在图像分割上的应用[J].上海生物医学工程,2004,25(3):29-32,61.
    [116]丁明跃,蔡超.医学图像处理[M].北京:高等教育出版社,2010.
    [117]郭海涛,田坦.变尺寸组合窗口在声呐图象搜索定位中的应用[J].哈尔滨工程大学学报,2000,21(5):28-31.
    [118]杨云,朱长青,张德.高分辨率遥感影像上道路中心线的半自动提取[J].计算机辅助设计与图形学学报,2007,19(6):781-785.
    [119]程江华,关永峰,库锡树等.利用双窗口检测和粒子滤波提取高分辨率SAR图像道路中心点[J].电子与信息学报,2012,34(5):1109-1114.
    [120]龚建伟,王安帅,熊光明等.一种自适应动态窗口车道线高速检测方法[J].北京理工大学学报.2008,28(6):486-490.
    [121]王倩,宋恩民,金人超等.自动获取肝脏纤维化定量指数的图像分割方法[J].计算机辅助设计与图形学学报,2007,19(6):775-780.
    [122]章毓晋.图像工程(中册)——图像分析[M].北京:清华大学出版社,2005:74-75.
    [123]Ahmed N, Natarajan T, Rao K R. Discrete cosine transform[J]. IEEE Transactions on Computers,1974,100(1):90-93.
    [124]Pun C M, Zhu H M. Textural image segmentation using discrete cosine transform[C]//Proceedingsof the3rd international conference on communications and information technology,2009:54-58.
    [125]Sorwar G, Abraham A, Dooley L S. Texture classification based on DCT and softcomputing[C]//The10th IEEE International Conference on Fuzzy Systems, IEEE,2001,2:545-548.
    [126]Huang Q, Dony R D. Neural network texture segmentation in equine leg ultrasoundimages[C]//Conference on Electrical and Computer Engineering, IEEE,2004,3:1269-1272.
    [127]Permuter H, Francos J, Jermyn I. A study of Gaussian mixture models of color and texture featuresfor image classification and segmentation[J]. Pattern Recognition,2006,39(4):695-706.
    [128]Huang Y L. A fast method for textural analysis of DCT-based image[J]. Journal of InformationScience and Engineering,2005,21(1):181-194.
    [129]Tsai T, Huang Y P, Chiang T W. Dominant feature extraction in block-DCT domain[C]//IEEEInternational Conference on Systems, Man and Cybernetics, IEEE,2006,5:3623-3628.
    [130]Shen B, Sethi I K. Direct feature extraction from compressed images[C]//Electronic Imaging:Science&Technology. International Society for Optics and Photonics,1996:404-414.
    [131]Kachouie N N, Alirezaie J, Fieguth P. A hybrid algorithm using discrete cosine transform and Gaborfilter bank for texture segmentation[C]//Conference on Electrical and Computer Engineering, IEEE,2004,3:1805-1808.
    [132]Ghouzali S, Hemami S, Rziza M, et al. A skin detection algorithm based on discrete cosinetransform and generalized Gaussian density[C]//15th IEEE International Conference on ImageProcessing(ICIP2008), IEEE,2008:605-608.
    [133]Pun C M, An N Y, Chen C L P. Region-based image segmentation by watershed partition and DCTenergy compaction[J]. International Journal of Computational Intelligence Systems,2012,5(1):53-64.
    [134]Lin H D, Ho D C. Detection of pinhole defects on chips and wafers using DCT enhancement incomputer vision systems[J]. The International Journal of Advanced Manufacturing Technology,2007,34(5-6):567-583.
    [135]Randen T, Husoy J H. Filtering for texture classification: a comparative study[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,1999,21(4):291-310.
    [136]Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
    [137]Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions onIntelligent Systems and Technology (TIST),2011,2(3):27.
    [138]Selim S Z, Ismail M A. K-means-type algorithms: a generalized convergence theorem andcharacterization of local optimality[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1984,6(1):81-87.
    [139]Umayahara K, Miyamoto S, Nakamori Y. Formulations of fuzzy clustering for categorical data[J].International Journal of Innovative Computing, Information and Control,2005,1(1):83-94.
    [140]Ollinger J M. Maximum-likelihood reconstruction of transmission images in emission computedtomography via the EM algorithm[J]. IEEE Transactions on Medical Imaging,1994,13(1):89-101.
    [141]Rajasekaran S. Efficient parallel hierarchical clustering algorithms[J]. IEEE Transactions on Paralleland Distributed Systems,2005,16(6):497-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700