用户名: 密码: 验证码:
信息物理融合系统优化调度理论与方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息物理融合系统(CPS, Cyber-Physical System)是信息计算和物理过程紧密结合与协作的网络化系统。CPS的特征可体现为:可靠感知、实时传输、普适计算、精确控制、可信服务。CPS强调物理世界与信息世界的深度融合与交互作用,CPS在对物理环境可靠感知的基础上,通过网络的实时传输,利用信息世界的普适计算和信息处理能力,实现对物理世界的精确控制,为人们提供可信高效的服务。
     本文重点研究CPS系统的可靠感知与优化调度模型与方法。针对物理世界的复杂性与时变性,建立异构互联的CPS体系结构和情景感知模型,在对海量异构信息可靠感知的基础上,建立资源调度模型,通过优化算法实现资源的优化调度,实现动态资源的高效组织与分配,从而协同服务与资源的最优化配置。
     本文取得的研究成果如下:
     (1)针对复杂系统内部大量自治个体的时变性和自治性,CPS系统的高异构性、强关联性与动态性,设计了基于功能部件划分的CPS网络拓扑模型,详细分析了感知部件、信息部件、决策部件、执行部件之间的内在联系及各自实现功能。明确了CPS体系设计思想,设计了多重层次划分的CPS体系结构,包括:接入层、感知层、网络层、数据处理层、应用层。为CPS情景可靠感知与资源优化调度奠定了基础架构。
     (2)针对海量多源异构的传感信息,提出了一种CPS-rCAF情景感知模型,该模型有效地结合了底层信息采集与上层应用的开发:向上可以对应用服务提供统一的情景信息应用接口,向下可以接入各种类型的异构传感器,有效屏蔽各种异类原始信息的差异性,为上层系统提供统一的规范的语义解释和情景信息。为解决情景处理过程的情景冲突问题,提出了一种情景防冲突算法,并仿真验证了其资源安排的合理性与高效性。
     (3)提出了CPS资源能力的概念,并设计了基于能力描述的CPS资源调度模型和基于任务-资源协同调度的CPS数学规划模型。针对一类不确定性系统的预测问题,分别提出了一种基于随机重采样改进的粒子滤波算法和一种遗传优化的粒子滤波算法,并通过区域交通车流状态预测模型仿真和验证了上述优化算法在预测非线性问题上具有良好的预测效果。
     (4)针对大规模多阶段系统的优化调度问题,提出了一种改进的蚁群优化算法,建立了区域交通灯信号滚动优化的决策模型,并通过改进的蚁群优化算法对其求解。仿真结果表明,相对于传统的感应式控制,交通延误率降低15%。
     本文的创新性可概括为:
     (1)通过关联矩阵表达CPS部件功能划分的CPS网络拓扑模型。
     (2)基于资源与情景的极值原理的情景防冲突算法的设计。
     (3)面向非确定条件,遗传算法优化粒子滤波的重采样过程,保持了粒子的多样性和降低粒子退化现象。
     (4)提出一种基于遗传优化的动态空间蚁群优化算法,该算法将各阶段许可策略值反映为层状构造图中的有限节点集,其中不同层节点对应一个阶段的许可策略集合的子集,该子集可通过遗传优化算法进行动态筛选,以减小蚂蚁的搜索空间,提高了蚁群算法的效率。
     CPS是近年国内外学术界和科学界的研究热点,本文以CPS的环境可靠感知与资源优化调度为主要研究内容,实现物理世界的复杂系统服务优化、资源最优配置。重点研究了CPS体系结构、CPS情景感知模型与防冲突算法、CPS优化调度算法三方面的内容,取得了良好的研究成果和创新性成果。
In the physical world, exists a class of complex systems, their feature includes massive scale, massive information dynamically heterogeneous, changes in environmental uncertainty, individual autonomy and independence, such as urban transport systems, electricity transmission and distribution systems, assembly line production system. But for a long time, the physical world and the world of information with each other fragmented, separate development, the prevalence of such a class of complex systems real-time physical environmental information collection difficult, poor coordination between the various aspects of the system's internal information management level is low, serious waste of resources. In order to achieve the integration of the interaction of the physical world and the world of information, the information about the physical integration of the system (Cyber-Physical System, CPS) emerged, CPS is calculated and physical processes are closely integrated with the collaboration of networked systems, CPS is based on environmental perceptiondepth integration of computing, communications and control capabilities. CPS its seen, credible, and controllable properties collaborative optimization scheduling an unparalleled advantage in a complex system of intelligent services and resources.CPS architecture, the CPS resource optimization scheduling upper layer application, is built on the basis of reliable physical environment perceived resource optimization scheduling can be summarized by the mathematical description of the optimization algorithm, at the appropriate time, in an uncertain environment factorsunder reasonably efficient real-time scheduling the CPS system resources (ie, physical components, such as sensors, controllers, actuators) to accomplish the task, to better serve the physical world. The optimal scheduling of resources is the main means of control of the CPS complex system, the the fusion main purpose of the world and the physical world. In summary, this paper based on the complex systems of the physical world, oriented resource optimization scheduling, to CPS for technical support, and focuses on the CPS architecture, situational awareness, and scene of anti-collision model, optimal scheduling algorithm content, complex system of physicalthe seamless integration of the world with the information world, achieve service optimization, optimal allocation of resources, and the purpose of improving the quality of physical environment and human society.
     The research results achieved in this paper are as follows:
     (1) For the complex system of massive autonomous individual's when degeneration and autonomous nature, the CPS system of high heterogeneous nature, the strong correlation with the dynamic nature and design of features divided the CPS network topology model, a detailed analysis of the perceived components, information componentsthe intrinsic link between the decision-making components, execution units, and their respective functions. Clear the CPS system design thinking, design multiple levels by CPS heterogeneous interconnect architecture, including:access layer perception layer, network layer, data processing layer, application layer. Reliable scenario for CPS perception laid the infrastructure and resource optimization scheduling.
     (2) analysis of related research of context-aware model, a of CPS-rCAF the situational awareness model, the model effectively combines the underlying information acquisition and development of the upper application:up application services to provide a unified scenariothe application interface down to access various types of heterogeneous sensor, effectively shielding the differences of heterogeneous original information, semantic interpretation and scene information to provide a unified specification for the upper system. A scene anti-collision algorithm to resolve the problem of the conflict of the scene of the scenario process and simulation reasonable efficiency of resource arrangements.
     (3) CPS system-aware real-time, dynamic control and information service requires reliable, efficient scheduling algorithm for real-time collaboration. Constructed an optimization model for a complex system based on improved particle swarm optimization algorithm resampling improve the weights of the particles, and to have gradually increased relatively large particle data to improve particle operator method, so as to meet the non-deterministic complexity scheduling optimization system. After regional transportation scheduling simulation results show that the good accuracy the algorithm on the overall regional traffic flow forecasting.
     (4) To further enhance the operation speed of the above-described optimization scheduling algorithm, in order to ensure the small and medium-sized particles of the operation process is repositioned, thereby increasing the operation precision of the particles, by the genetic algorithm to optimize the resampling process of the particles, and applied to solving complexsystem in the area of traffic lights, rolling optimization scheduling problem, the simulation results show:the particle swarm algorithm and genetic algorithm combination has obvious advantages in the control of regional coordination in complex systems, improve traffic efficiency.
     The innovation of this paper can be summarized as follows:
     (1) Expression through the associated matrix the CPS components function by the CPS network topology model.
     (2) Anti-collision algorithm based on the the extremum principle scene of resources and scenarios design.
     (3) Oriented non-deterministic conditions, design the optimal scheduling algorithm based on resampling particle swarm optimization particle weights.
     (4) Through genetic algorithm optimization particle resampling process, as local heuristic information to guide a particle swarm generated higher quality solution at each stage of the optimization phase in the phase delay caused by an alternative signal.
     CPS is a research focus at home and abroad in recent years, the academic and scientific community, the environment of this article to CPS reliable perception and the optimal resource as the main research ideas, service optimization of complex systems of the physical world, the optimal allocation of resources. Focus on the CPS architecture of the CPS context-aware model with anti-collision algorithm, optimal scheduling algorithm three good research and innovative achievements.
引文
[1]温景容,武穆清,宿景芳.信息物理融合系统[J].自动化学报,2012,38(4):507-517.
    [2]陈丽娜,黄宏斌,邓苏.计算物理系统网络拓扑模型研究[J].计算机研究与发展,2010,47:293-298.
    [3]Parolini L,Tolia N,Sinopoli B,et al. A cyber-physical systems approach to energy management in data centers[C].Proc of ICCPS.New York:ACM,2010:168-177.
    [4]Talcott C. Cyber-physical systems and events[J]. Software Intensive Systems and New Computing Paradigms,2008,5380:101-115.
    [5]L. Sha,S. Gopalakrishnan,X. Liu, and Q. Wang. Cyber-physical systems:A new frontier[C]. Machine Learning in Cyber Trust:Security,Privacy, and Reliability,2009:3-13.
    [6]Lee E A. Cyber-physical systems-are computing Foundations adequate[C]. NSF Workshop on Cyber-Physical Systems:Research Motivation, Techniques and Roadmap. National Science Foundation,2006:212-218.
    [7]Lee E A.Cyber physical systems:Design challenges[C]. Proc of the 11th IEEE Conf. on Object Oriented Real-Time Distributed Computing (ISORC). Los Alamitos, CA:IEEE Computer Society, 2008:363-369.
    [8]黎作鹏,张天驰,张菁.信息物理融合系统(CPS)研究综述[J].计算机科学,2011,38(9):25-31.
    [9]Platzer A. Verification of cyber-physical transportation systems[J]. IEEE Intelligent Systems,2009, 24(4):10-13.
    [10]张侃,张广泉,张茗泰.一种可信的信息物理融合系统设计框架初探[J].计算机研究与发展,2011,48(suppl.):242-246.
    [11]刘波,刘卫宁,孙棣华.自适应制造资源动态服务组合与优化框架[J].中国机械工程,2012,23(]0),1187-1193.
    [12]Liu W N,Zheng L J,Sun D H,et al.RFID enabled Real-time Production M anagement System for Loncin Motorcycle Assembly Lines[J].International Journal of Computer Integrated Manufacturing,2012,25(1):86-99.
    [13]赵俊华,文福拴,薛禹胜.电力信息物理融合系统的建模分析与控制研究框架[J].电力系统自动化,2011,35(16):1-8.
    [14]Tan Y,Goddard S,Perez L C. A prototype architecture for cyber-physical systems[J]. ACM SIGBED Review,2008,5(1):1-2.
    [15]Tan Y, Vuran M C, Goddard S. Spatio-temporal event Model for cyber-physical systems[C].Proc of the 29th IEEE Int Conf on Distributed Computing Systems Workshops Piscataway, NJ 1 IEEE, 2009:44-50.
    [16]Kang Kyoung Don, Son S H. Real-time data services for cyber physical systems[C].Proc of the 28th Int Conf on Distributed Computing Systems Workshops. Piscataway,:IEEE,2008:483-488.
    [17]刘汉宇,牟龙华.微电网CPS体系架构及其物理端研究[J].电力自动化设备,2012,32(5):34-37.
    [18]Ying Tan,Goddard S,Perez L C.A Prototype Architecture for Cyber-Physical System[J].ACM SIGBED Review,2008,5(1):26-29.
    [19]Wang Yun-bo, Vuran Mehmet C,Goddard S. Cyber-Physical System in Industrial Process Control[J]. ACM SIGBED Review,2008,5(1):12-16.
    [20]Koubaa A,Andersson B. A Vision of Cyber-Physical Internet[C], Proceedings of the 8th International Workshop on Real-Time Networks,2009:156-162.
    [21]何积丰Cyber Physical Systems[J]中国计算机学会通讯,2010,6(1):25-29.
    [22]Bujorianu M C, Barfinger H. An integrated specification logic for eyber-physieal systems[C]. Proc of the 14th IEEE Int Conf on Engineering of Complex Computer Systems. Piseataway, NJ:IEEE, 2009:291-300.
    [23]Anis K, Andersson B.A vision of cyber-physical internet[C]. Proc of the 8th Int Workshop on Real-Time Networks (RTN'09).Porto, Portugal:CISTER,2009:88-92.
    [24]Longhua Ma, Jun Yao, Ming Xu, et al. Net-in-Net:Interaction Modeling for Smart Community Cyber-Physical System[C].2010 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing,2010:250-255.
    [25]Jing Lin, Sahra Sedigh, and Ann Miller. Modeling Cyber-Physical Systems with Semantic Agents[C]. The 34th Annual IEEE Computer Software and Applications Conference Workshops,2010:13-18.
    [26]陈丽娜,王小乐,邓苏.CPS体系结构设计[J].计算机科学,2011,38(5):295-300.
    [27]Bestavros A, Kfoury A, Lapets A, Ocean M. Safe compositional network sketches:formal framework[C]. In:Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control. New York, USA:ACM,2010,231-241.
    [28]Kang K, Son S H. Real-time data services for cyber physical systems[C]. In:Proceedings of the 28th International Conference on Distributed Computing Systems Workshops. Washington D. C., USA: IEEE,2008.483-488.
    [29]Amorim M D, Ziviani A, Viniotis Y, Tassiulas L. Practical aspects of mobility in wireless self-organizing networks[J].IEEE Wireless Communications,2008,15(6):6-7.
    [30]Corman D, Paunicka J. Industrial challenges in the composition of embedded systems[C]. In: Proceedings of the 13th Monterey Conference on Composition of Embedded Systems:Scientific and Industrial Issues. Berlin, Germany:Springer,2007.97-110.
    [31]李仁发,谢勇,李蕊,等.信息—物理融合系统若干关键问题综述[J].计算机研究与发展,2012,49(6):1149-1161.
    [32]王小乐,陈丽娜,黄宏斌,等.一种面向服务的CPS体系框架[J].计算机研究与发展,2010,47(32):299-303.
    [33]谭朋柳,舒坚,吴振华.一种信息物理融合系统体系结构[J].计算机研究与发展,2010,47(32):312-316.
    [34]王小乐,黄宏斌,邓苏,等.信息物理系统资源能力建模[J].计算机科学,2012,39(2):227-231.
    [35]王中杰,谢璐璐.信息物理融合系统研究综述[J].自动化学报,2011,37(10):1158-1166.
    [36]Ilic M, Xie L, Khan U, Moura J. Modeling of future cyber-physical energy systems for distributed sensing and control[J].IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans,2010,40(4):825-838.
    [37]Zhao Jun-Hua, Wen Fu-Shuan, Xue Yu-Sheng. Cyber physical power systems:architecture, implementation techniques and challenges[J].Automation of Electric Power Systems,2010,34(16): 1-7.
    [38]Jing Lin, Sahra Sedigh, and Ann Miller. A Game-Theoretic Approach to Decision Support for Intelligent Water Distribution[C]. Proceedings of the 44th Hawaii International Conference on System Sciences,2011:1-10.
    [39]Work Daniel, Alexandre Bayen, Quinn Jaeobson. Automotive cyber physical systems in the context of human mobility[C]. Proc of National Workshop on High-confidence Automotive Cyber-Physical Systems. Troy, USA,2008:210-214.
    [40]Yunbo Wang, Mehmet C Vuran, Goddard S. Cyber-physical systems in industrial process control[C]. ACM SIGBED Review,2008,5(1):24-30.
    [41]Marija D. Ili′c, Le Xie, Usman A. Khan, and Jos′e M.F. Moura. Modeling of Future Cyber-Physical Energy Systems for Distributed Sensing and Control[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART A:SYSTEMS AND HUMANS, JULY 2010,40(4):825-838.
    [42]Yong Bai, Yonghui Zhang, Chong Shen. Remote Container Monitoring with Wireless Networking and Cyber-Physical System[C].2010 Global Mobile Congress (GMC),2010:1-5.
    [43]Yang Yang, Xu Li, Wei Shu and Min-You Wu. Quality Evaluation of Vehicle Navigation with Cyber Physical Systems[C]. IEEE Globecom, Miami, USA, December 2010:10-15.
    [44]Erol Yeniaras, Johann Lamaury, Zhigang Deng, and Nikolaos V. Tsekos. Towards A New Cyber-Pbysical System for MRI-Guided and Robot-Assisted Cardiac Procedures[C].10th IEEE International Conference on Information Technology and Applications in Biomedicine,2010:1-5.
    [45]黄海平,王汝传,孙力娟,等.基于Agent和无线传感器网络的普适计算情景感知模型[J].南京邮电大学学报(自然科学版),2007,28(2):75-79.
    [46]Ye N, Wang R C, Ma S M, et al. Fuzzy logic based middleware approach for context processing [J].International Journal of Digital Content Technology and its Applications,2009,3(3):36-41.
    [47]Hu P, Indulska J, Robinson R. An autonomic context management system for pervasive Computing[C]. In:Proc. of the 6th International Conference on Pervasive Computing and Communications,2008:213-223.
    [48]Henricksen K, Indulska J. Developing context-aware pervasive computing applications:models and approach [J]. Journal of Pervasive and Mobile Computing,2006,2(1):1-32.
    [49]Ou S, Yang K. An effective offloading middleware for pervasive services on mobile devices [J].Pervasive and Mobile Computing,2007,3(4):362-385.
    [50]Bellavista P, Corradi A, Foschini L. Context-aware handoff middleware for transparent service continuity in wireless networks [J]. Pervasive and Mobile Computing,2007,13(4):439-466.
    [51]Li Y P, Feng L. A quality-aware context middleware specification for context-aware Computing [C].In:Proc. of the 33rd Annual IEEE International Computer Software and Applications Conference,2009, Vol.2:206-211.
    [52]Wibisono W, Ling S, Zaslavsky A. A context middleware framework for managing context in mobile ad hoc network environment [C]. In:Proc. of the 10th International Conference on Mobile Data Management:Systems, Services and Middleware,2009:299-304.
    [53]Anagnostopoulos C, Tsounis A, Hadjiefthymiades S. Context awareness in mobile computing environments:a survey [J]. Wireless Personal Communications,2007,42(3):445-464.
    [54]顾君忠.情景感知计算[J].华东师范大学学报(自然科学版).2009,5:1-20.
    [55]BALDAUF M. A survey on context-aware systems[J].Int J Ad Hoc and Ubiquitous Computing.2007.2(4):263-277.
    [56]ANAGNOSTOPOULOS C, TSOUNIS A, HADJ1EFTHYMIADES S. Context awareness in mobile computing environments:a survey[J]. Wireless Personal Communications.2007,42(3):445-464.
    [57]Chouyin Hsul, Minfeng Lee. Towards Context-oriented Project Management for Virtual Organizations[C]. Pervasive Computing (JCPC),2009 Joint Conferences on Taiwan.2009:761-764.
    [58]张芸.智能空间中情景感知的系统模型和预测研究[D].北京:北京邮电大学.2010.
    [59]乔哲峰.自适应情景感知中间件的情景数据预处理模型研究与实现[D].上海:华东师范大学,2010.
    [60]Gaurav Tewari, Jim Youll, Pattie Maes. Personalize location-based brokering using an agent-based intermediary architecture[J].Decision support systems,34,2002:127-137.
    [61]Oh Byung Kwon, Norman Sadeh. Applying case-based reasoning and multi-agent intelligent system to context-aware comparative shopping decision support system[J].2004,37:199-213.
    [62]Haryr Chen,Tim Finin,Anupam Joshi. An ontology for context aware pervasive computing environments[J]. The knowledge Engineering Review,2004,18:197-207.
    [63]童恩栋,沈强,雷君,等.物联网情景感知技术研究[J],计算机科学,2011,38(4):9-14.
    [64]莫同,李伟平,吴中海,等.一种情境感知服务系统框架[J].计算机学报,2010,33(11):2084-2092.
    [65]龚涛,林慧苹,孙亚红,等.一种基于事件的情境感知框架[J].计算机工程,2012,38(7):37-40.
    [66]潘旭伟,李娜,周莉,等.情境感知的自适应个性化信息服务体系框架研究[J].情报学报,2011,30(5):514-521.
    [67]回春立,刘巍,张豫鹤,等.无线传感器网络中的数据融合及其效能评估[J].计算机应用研究,2008,25(2):546-550.
    [68]Lin Chuang, Tian Liqin, Wang Yuanzhuo. Research on behavior trust in trustworthy network [J].Journal of Computer Research and Development,2008,45(12):2033-2043.
    [69]Luo Wei, Hu Xiangdong. Efficient and secure data aggregation protocol for wireless sensor networks[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2009,21(1):110-114.
    [70]阎毓杰,王殊.传感器网络中基于帕累托最优效用的包转发研究[J].计算机科学,2007,34(5):32-35.
    [71]马守明.基于WSN的普适计算情景感知关键技术研究[D].南京:南京邮电大学.2011.
    [72]Li M, Liu Y. Iso-map:energy-efficient contour mapping in wireless sensor networks[J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(5):699-710.
    [73]Li M, Liu Y, Chen L. Non-threshold based event detection for 3D environment monitoring in sensor networks [J]. IEEE Transactions on Knowledge and Data Engineering,2008,20(12):1699-1711.
    [74]Liu K B, Li M, Liu Y H, et al. Passive diagnosis for wireless sensor networks[C]. In:Proc. of the ACM SenSys, Raleigh, NC, USA, Nov.,2008:113-126.
    [75]X. Zhu, R. Sarkar, J. Gao, J. Mitchell, Light-weight contour tracking in wireless sensor networks[C]. In:IEEE 27th Conference on Computer Communications (INFOCOM), Pheonix, AZ, USA, 2008:102-105.
    [76]Ferrari G., Martalo M, Sarti M. Sensor networks as data acquisition devices-reduced-complexity decentralized detection of spatially non-constant phenomena[J]. Grid Enabled Instrumentation and Measurement, Davoli F, Meyer N, Pugliese R, et al. Eds., Signals and Communication Technology,2008:33-54.
    [77]Martalo M, Ferrari G. Low-complexity one-dimensional edge detection in wireless sensor networks [J]. EURASIP Journal on Wireless Communications and Networking, Special Issue on Signal Processing-assisted Protocols and Algorithms for Cooperating Objects and Wireless Sensor Networks,2010:146-150.
    [78]Liu J, Gao C, Zhong N. An autonomy-oriented paradigm for self-organized computing[C]. In:Proc. Of the 2009 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Milan, Italy,September,2009:100-103.
    [79]Liu J, Chen Y, Yang G, Lu Y. Self-organized combinatorial optimization[J]. Expert Systems with Applications, January,2011,38(8):10532-10540.
    [80]曹怀虎,朱建明,潘耘,等.情景感知的P2P移动社交网络构造及发现算法[J].计算机学报,2012,35(6):1223-1234.
    [81]郑誉煌,李迪,叶峰.智能空间的情景感知冲突研究[J].计算机工程与应用,2010,46(33):25-27.
    [82]侯文君,李铁萌,杨福兴.虚拟装配情境的商空间粒度模型及感知方法[J].北京邮电大学学报,2011,34(6):117-120.
    [83]徐步刊,周兴社,梁韵基,等.一种场景驱动的情境感知计算框架[J].计算机科学,2012,39(3):216-221.
    [84]NEEDHAM J, WATKINS D, LUND J, et al. Linear programming for flood control in the Iowa and Des Moines rivers[J]. Journal of Water Resources Planning and Management.2000,126(3):118-127.
    [85]SHIM K C, FONTANE D, LABADIE J. Spatial decision support system for integrated river basin flood control[J]. Journal of water Resources Planning and Management,2002,128(3):190-121.
    [86]BARROS M,TSAI F,YANG S L, et al. Optimization of large scale hydropower system operations[J]. Journal of Water Resources Planning and Management,2003,129(3):178-188.
    [87]WU Jiekang, GUO Zhuang zhi, QIN Li-han, et al.Successive linear programming based optimal scheduling of cascade hydropower station [J].Power System Technology,2009,33(8):24-29.
    [88]ShresthaGB,PokharelBK,LieTT,et al. Medium term power planning with bilateral contracts[J]. IEEE Transactions on Power Systems,2005,20(2):627-633.
    [89]Liu Hongling, Jiang Chuanwen,Zhang Yan. Optimal determination of long--term and mid--term contracts for a hydropower producer based on stochastic programming[J].Proceedings of the CSEE,2010,30(13):101-108.
    [90]Anon. On BFC-MSMIP strategies for scenario cluster partitioning, an d twin node family bran ching selection and bounding for multistage stochastic mixed integer programming[J]. Computers& Operations Research,2010,37(4):738-753.
    [91]葛晓琳,舒隽,张粒子.考虑检修计划的中长期水火电联合优化调度方法[J].中国电机工程学报,2012,32(13):36-43.
    [92]Chen Xueqing,Chen Gang,Zhan g Wei,et al. Long, medium and short-term energy management systems of large power systems[J]. Proceedings of the CSEE,1994,14(6):41-48.
    [93]王世进,周炳海,奚立峰.基于过滤定向搜索的柔性制造系统动态调度优化[J].上海交通大学学报,2007,41(1):94-99.
    [94]Wang Yun, Feng Yixiong, Tan Jianrong, et al. Optimization method of flexible job. shop scheduling based on multiobjective particle swarm optimization algorithm [J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(2):190-196.(in Chinese)
    [95]Laguna M, Barnes J W, Glover F. Intelligent scheduling with tabu search an application to jobs with linear delay penalties and sequence-dependent setup coats and times[J]. Journal of Applied Intelligence,1993,3(2):159-172.
    [96]HSU N S, CHENG K W. Network flow optimization model for basin scale water supply planning[J]. Journal of Water Resources Planning and Management,2002,128(2):102-112.
    [97]Hu Guoqiang, He Renmu. Optimal daily active power load dispatching of hydrothermal power system based on interactive multi-objective decision-making method[J]. Power System Technology,2007,31 (181):37-42.
    [98]喻洁,李萍,王蓓蓓,等.市场机制下考虑节能环保的日计划新方式[J].电力系统及其自动化学报,2008,20(6).64-69.
    [99]Cai Jiejin,MaXiaoqian,LiQiong,et al A multi-objective chaotic particle SW21Tn optimization for environmental economic dispatch[J].Energy Conversion and Management,2009,(50):1318-1325.
    [100]韦韫,李东波,童一飞.面向服务的网络化协同制造资源多目标重组优化调度[J].农业机械学报,2012,43(3):193-199.
    [101]田峰巍,解建仓.用大系统分析方法解决梯级水电站群调度问题的新途径[J].系统工程理论与实践,1998,18(5):112-117.
    [102]王沛,谭跃进.多星联合对地观测调度问题的列生成算法[J].系统工程理论与实践,2011,31(10):1932-1939.
    [103]程春田,郜晓亚,武新宇,等.梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J].中国电机工程学报,2011,31(10):26-32.
    [104]张鹏.一种多维连续型动态规划的新算法[J].控制与决策,2011,26(8):122-126.
    [105]李建江,崔健,严林,等.一种基于动态规划的并行构件资源选择算法[J].电子学报,2011,39(4):887-893.
    [106]王少波,解建仓,孔珂.白适应遗传算法在水库优化调度中的应用[J].水利学报,2006,37(4):480-485.
    [107]LI Xun-ui,WEI Xia.An improved genetic algorithm-simulated annealing hybrid algorithm for the optimization of multiple reservoirs[J]. Water Resources Management,2008,22(8):1031-1049.
    [108]LIU P,GUO S L,XIONG L H,et al.Deriving reservoir refill operating rules by using the proposed DPNS model[J].Water Resources Management,2006,20(3):337-357.
    [109]ALEXANDRE M B, DARRELL G F.Use of multi-objective particle swarm optimization in water resources management[J] Journal of Water Resources Planning and Management,2008,134(3):257-265.
    [110]WANG Shao-bo.XIE Jian-tang,WANG Ni.Modified particle swarm optimization algorithm and its application in optimal operation of hydropower station reservoir[J].Journal of Hydroelectric Engineering,2008,27(3):12-15.
    [111]原文林,黄强,万芳.基于免疫进化的蚁群算法在梯级水库优化调度中的应用研究[J].西安理工大学学报,2008,24(4):395-400.
    [112]Kennedy J,Eberhart R.Particle swarm optimization[C].Proceedings of IEEE Conference on Neural Networks.1995,4:1942-1948.
    [113]HUANG Qiang,ZHANG Hong-bo,CHEN Xiao-nall,et al.Application of particle swarm optimization algorithm to reservoir operation[C].Third International Conference on Natural Computation.Haikou,China:IEEE,2007:595-600.
    [114]WU Yue-qiu,JI Chang-ming,WANG Li-ping,et al.Optimal operation of hydroelectric station based on chaotic particle swarm optimization[J].Yellow River,2008,30(11):96-98.
    [115]张炯,刘天琪,苏鹏,等.基于遗传粒子群混合算法的机组组合优化[J].电力系统保护与控制,2009,37(9):25-29.
    [116]HUANG Ruo-iin,WANG Kuan,ZHAN Kai.chi.State estimation based on optimization algorithm of adaptive immune particle swarm for distribution system[J].Power System Protection and Control,2009,37(11):54-57.
    [117]LIU Wei,LIANG Xin-lan,AN Xiao-long.Power system reactive power optimization based on BEMPSO[J].Power System Protection and Control,2010,38(7):16-21.
    [118]纪昌明,刘方,喻杉,等.基于鲶鱼效应粒子群算法的梯级水库群优化调度[J].电力系统保护与控制,2011,39(19):63-67.
    [119]刘小华,林杰.基于遗传粒子群混合算法的供应链调度优化[J].控制与决策,2011,26(4):501-506.
    [120]徐进,费少梅,张树有,等.自适应粒子群求解资源动态分配项目调度问题[J].计算机集成制造系统,201],17(8):1790-1797.
    [121]田野,刘大有.求解流水车间调度问题的混合粒子群算法[J].电子学报,2011,39(5):1087-1093.
    [122]Liao C J, Tseng C T, Luarn P. A discrete version of particle swarm optimization for flowshop scheduling problems [J].Computers & Operations Research,2007,34(10):3099-3111.
    [123]Lian Z G, Gu X S, Jiao B. A novel particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan[J].Chaos, So litons and Fractals,2008,35(5):851-861.
    [124]张长胜,孙吉贵,欧阳丹彤.一种自适应离散粒子群算法及其应用研究[J].电子学报,2009,37(2):299-304.
    [125]陈云星ScudContext信息-物理空间融合的大规模环境上下文服务[D].杭州:2010.浙江大学.
    [126]Chen P. The Entity-Relationship Model Towards a Unified View of Data[J]. Data & Knowledge Engineering,2008,67(2).
    [127]任淑云.基于粒子滤波算法的交通状态估计研究[D].北京:北京交通大学.2010.
    [128]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365.
    [129]Chib S, Nardari F, Shephard N. Markov chain Monte Carlo methods for stochastic volatility models[J]. Journal of ECONOMETRICS,2002,8(1):281-316.
    [130]王玉祥,蝴徐翰,马廷淮.基于上下文和粒子滤波的辅助切换机制[J].电子与信息学报,2012,34(1):224-226.
    [131]Kleynhans W, Olivier J C,Wessels K J,et al. Detecting land cover change using an extended Kalman filter on MODIS NDVI time-series data[J]. Geoscience and Remote Sensing Letters,2011,8(3):507-511.
    [132]Won S P, Melek W W, Golnaraghi F. A Kalman/particle filter-based position and orientation estimation method using fl position sensor/inertial measurement unit hybrid system industrial electronics[J]. IEEE Trans. on Industrial Electronics,2010,57(5):1787-1798.
    [133]韩格.基于博弈论和强化学习的交通系统最优调度方法及其应用[D].昆明:云南大学.2011.
    [134]Bi Jun, Wang Lu, Qi Long-tao. Design and Implementation of the Remote Management System for Electric Public Vehicles' Batteries Data[C].2010 International Conference on Optoelectronics and Image Processing,2010:394-396.
    [135]李红伟,王俊,王海涛.一种基于差分演化的粒子滤波算法[J].电子与信息学报,2011,33(7):1639-1643.
    [136]Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning[M].USA: Addison-Wesley,1989.
    [137]Xuan G N,Cheng R W. Genetic Algorithms and Engineering Optimization[M]. Tsinghua University Press,2004.
    [138]Socha K,Dorigo M.Ant colony optimization for continuous domains[J].European Journal of Operational Research,2008,185(3):1155-1173.
    [139]夏亚梅,程渤,陈俊亮,等.基于改进蚁群算法的服务组合优化[J].计算机学报,2012.35(2):270-281.
    [140]闻育,吴铁军.求解复杂多阶段决策问题的动态窗口蚁群优化算法[J].自动化学报,2004,30(6):872-879.
    [141]李盼池,李十勇.求解连续空间优化问题的量子蚁群算法[J].控制理论与应用,2008,25(2): 237-241.
    [142]NikoIakopoulou G,Kortesis S,Synefaki A,et al.Solving a vehicle routing problem by balancing the vehiclestime utilization[J].European Journal of Operational Research,2004,152(22):520-527.
    [143]宗欣露,熊盛武,方志祥.基于蚁群算法的人车混合疏散优化及混合比例分析[J].系统工程理论与实践,2012,32(7):1610-1617.
    [144]Stutzle T,Hoos H H.MAX-MIN ant system[J].Future Generation Computer System,2000,16(8):889-914.
    [145]闻育.复杂多阶段动态决策的蚁群优化方法及其在交通系统控制中的应用[D].杭州:浙江大学.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700