用户名: 密码: 验证码:
非制冷红外焦平面CMOS读出电路设计与实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与制冷红外成像系统相比,非制冷红外成像系统可在室温工作,省掉了昂贵且笨重的制冷设备,从而大大减小了系统的体积、成本和功耗;此外,还可提供更宽的频谱响应和更长的工作时间。国外研制机构已经为军事用户提供了大量成本更低、可靠性更高的高灵敏非制冷红外成像仪。
     但我国的非制冷红外成像研究与生产起步较晚,且受到工业基础制约,技术远滞后于国外,而市场需求却日益增加,因此发展非制冷红外成像技术已刻不容缓。本文基于以上背景,针对非制冷红外成像系统的核心器件——CMOS焦平面读出电路(ROIC)展开了设计与实现研究。
     首先在充分了解国内外最新研究动态后,作者作为主研参与了国家973 XXX项目(编号:51313XXX),自主设计并流片验证了单片式320×240非制冷热释电红外焦平面阵列(IRFPA)读出电路,特别是自主设计并验证了单片式耐高温非制冷红外CMOS读出电路的工艺流程,解决了铁电探测材料高温退火与CMOS工艺不兼容的问题。之后作者作为主研又研制了另外两款具有广阔市场前景的红外CMOS焦平面读出电路,即非制冷微测辐射热计160×120读出电路,以及非制冷短波红外320×256多功能快照式读出电路。
     在以上课题研究中,针对不同类型的非制冷红外探测器,自主设计了相适应的读出电路结构,并全面考虑版图、工艺以及对探测器的接口等问题。本文主要的贡献和创新点如下:
     1、在铁电型非制冷红外读出电路研制中,提出了一种与标准CMOS工艺兼容的耐熔金属硅化物连线结构,并通过320×240大阵列读出电路的设计、流片及测试验证,获得了有良好耐高温特性的低阻互连线结构,解决了铁电型IRFPA的单片集成耐高温问题。经查新验证,此方法国内外未见报道,已申请中国发明专利并获授权,专利号:200610021450.4。
     2、针对热释电探测单元是阻抗极高的容性元件,提出了一种基于有源电阻的电阻反馈跨导放大型(RTIA)红外焦平面读出电路结构,该设计采用亚阈区MOS管实现1011Ω以上的有源大电阻,能与热释电红外探测器的阻抗良好匹配,结合两管共源放大器对热释电微弱信号进行高增益电流放大。相对于采用特殊高阻材料的RTIA,本电路不附加材料和工艺,且所采用的三管前置读出结构适用于大阵列热释电焦平面探测器。
     3、基于前述第2点提到的RTIA,提出采用浅耗尽管(Native MOSFET)作为有源大反馈电阻实现RTIA,因为Native MOS在工艺流程中不增加掩膜版,而且相比工作在亚阈区的增强型MOS,Native MOS的栅极直接接地,省去了偏置电路,且增强了电阻稳定性。
     4、在非制冷短波320×256红外焦平面读出电路研制中,本文采用了应用更广泛的快照工作模式,即要求阵列中的所有探测单元同时积分,并将积分信号保存在单元内部后读出。虽然这种模式可以自由调节积分时间,使信号增强,满足高分辨率、高灵敏度、高速红外探测需求;但是在芯片设计中,要求有限的像元面积内包含积分放大电路和采样保持电路。而作者在缺乏参考资料和设计细节的情况下,完成了该芯片的自主设计和流片验证,采用共源共栅(Cascode)电容反馈跨导放大(CTIA)结构代替传统两级运放CTIA,并同时在30×30μm2像元面积内集成采样保持电路、缓冲器、反饱和功能,实现了快照式读出,通过调节积分电容和积分时间,可将动态范围成倍扩展。同时,基于格雷码原理设计的控制电路,实现了动态窗口读出,图像翻转,1、2、4路输出等多种实用功能。
Compared with cooled infrared imaging systems, uncooled infrared imaging system can work at room temperature and greatly reduces the system size, cost and power consumption because of eliminating the heavy and expensive cooling equipment.
     In addition, it also provides a wider spectral response and longer life time. Foreign infrared imging systems institutions have already developed a large number of lower cost, higher reliability, high sensitivity uncooled infrared imager for military users. However, uncooled infrared imaging research and development started late and also constrained by industrial foundation in China, the technology is far behind of foreign countries. But the market demand is increasing, so the development of uncooled infrared imaging technology has become essential. Based on the above background, research on design and implementation of CMOS focal plane readout circuit (ROIC), which is the core device of uncooled infrared imaging system, had been proceeded in this paper.
     After a thorough understanding of domestic and foreign latest research work, the author proceeded the state 973 XXX project (ID: 51313XXX) as the main researcher. In the project, a monolithic 320×240 uncooled pyroelectric infrared focal plane array (IRFPA) readout circuit was independent designed and verified. Especially, in order to solve thermal budget dilemma encountered in the case of backend processing temperature of monolithic integration, the high-temperature resisted process of ROIC had been designed and implemented independently. Then as the main researcher, the author designed and developed the other two ROICs which have broad market prospects as pyroelectric ROIC, that is uncooled microbolometer 160×120 IRFPA ROIC and uncooled shortwave 320×256 multi-function snapshot IRFPA ROIC.
     In the above research, different detector types mean different ROIC structures, so after full consideration of schematic, layout, process and interface to detector, the main contribution and innovation are as follows:
     First, in the research work on ferroelectric-based uncooled infrared ROIC, a refractory metal and silicide connection structure compatible with standard CMOS process was proposed. By the large array of 320×240 readout circuit design, silicon verification and test, a good high temperature properties of low resistance interconnect structure was obtained, and with this new interconnect process utilized in standard CMOS procedures, thermal budget dilemma encountered in the case of backend processing temperature of monolithic integration can be addressed. This method has not been reported at home and abroad, Chinese patent had been applied and authorized, Patent No.: 200610021450.4.
     Second, for pyroelectric detector is a high impedance capacitive component, a Resistive Trans-impedance Amplifier (RTIA) readout circuit for Uncooled Focal Plane Array (UFPA) using active resistor was proposed in this paper. By using a sub-threshold MOSFET as a 1011? and above feedback resistor, a high gain current amplifier can be realized by common source structure which consisted of two transistors. The simple three transistors can be easily integrated under pixel and it has good impedance matching with pyroelectric infrared detector. Compared with traditional RTIAs which use special high-resistance materials as feedback resistor, the novel RTIA is low cost because no additional materials and processes are needed.
     Third, based on RTIA described before, a RTIA for UFPA using native MOS was proposed. Because no additional mask in native MOS process, and compared to the enhanced MOS working in the subthreshold region, native MOS gate was directly connected to ground, therefore, the large resistance was stable and bias circuit was eliminated.
     Fourth, during the research and development of shortwave 320×256 IRFPA ROIC, snapshot mode was used, and it required that all array elements integrated simultaneously, then all integration signals stored in the unit and read out. Although this mode can freely adjust integration time, enhance the signal to meet the high-resolution, high sensitivity, high-speed infrared detection needs; but in chip design, the integration amplifier and sample and hold circuit will be contained in a limited area of each pixel. It means great difficult will meet in the chip design. And the ROIC was designed and verified in the absence of reference documents and design details. By using Cascode CTIA to replace traditional two stage operational amplifier CTIA, the integration amplifier, buffer, anti-blooming, sample and hold were contained in the 30×30μm2 pixel area and snapshot mode was realized. Through adjustable integration time and capacitors, the dynamic range can be extended efficiently. Based on the Gray code theory, random window access, dynamic image transposition, and 1, 2, 4 selectable channel outputs, can be realized by digital control circuits of the ROIC.
引文
[1]孙志君,刘俊刚,欧代永.红外焦平面陈列技术的新军事装备的应用.传感器世界,2004,10(11):6-12
    [2] Antoni Rogalski. Review Infrared detectors: status and trends. Progress in Quantum Electronics, 2003, 27: 59-210
    [3]袁继俊.红外探测器的研究,生产和应用.激光与红外,1998,28(5):288-291
    [4] Antoni Rogalski. Toward third generation HgCdTe infrared detectors. Journal of Alloys and Compounds, 2004, 371: 53-57
    [5]朱惜辰.红外探测器的进展.红外技术,1999,21(6):12-15
    [6] Yuan Xianghui, Lu Guolin, Huang Youshu. CMOS Readout Integrated Circuit for IRFPA. Semiconductor Optoelectronics, 1999, 20(2): 123-126
    [7]刘成康.红外焦平面阵列CMOS读出电路研究. [博士学位论文],重庆:重庆大学,2001, 12-14
    [8]孙志君.红外焦平面阵列技术的发展现状与趋势.光机电信息,2002,3:8-13
    [9] Eric R. Fossum, Bedabrata Pain. Infrared Readout Electronics for Space Science Sensors: State of the Art and Future Directions. Proceedings of SPIE, 1993, 2020: 262-285
    [10]曹君敏,陈中建,鲁文高,等.非制冷微悬臂梁式红外焦平面探测器读出电路设计.红外与毫米波学报,2010, 29(2): 97-101
    [11] C.A.Cabell. Latest results on HgCdTe 2048×2048 and silicon focal plane array. Proceedings of SPIE, 2000, 4028: 331-342
    [12] A.Goldberg. Dual band QWIP MWIR/LWIR focal plane array test results. Proceeding of SPIE, 2000, 4028: 276-287
    [13]刘莉萍.红外焦平面读出电路技术及发展趋势.激光与红外,2007,37(7): 598-600
    [14]吕宇强,胡明,吴淼,等.热红外探测器的最新进展.压电与声光,2006,28(4) : 407-410
    [15]杨瑞宇,杨培志,刘黎明,等.混成式热释电非制冷红外焦平面探测器研究.红外与激光工程,2008,37(4): 591-593
    [16]胡滨,赵玉江,李平,等.高动态范围多功能快照式红外读出电路设计.固体电子研究与进展,2010,30(3): 425-430
    [17]胡滨,李威,李平,等.基于有源电阻的RTIA红外焦平面读出电路.红外与激光工程,2012,41(9)
    [18] KULAH H, AKIN T. A current mirroring integration based readout circuitfor high performance infrared FPA applications. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 2003, 50(4): 181-186
    [19]邢素霞,张俊举,常本康,钱芸生.非制冷红外热成像技术的发展与现状.红外与激光工程,2004,33(5): 441-444
    [20]胡旭,白丕绩.长波320×240热释电非制冷焦平面探测器.红外与激光工程,2007,36 Supplement: 1-4
    [21]黄江平,杨春丽,黎力,等.128×128混合式热释电非致冷焦平面探测器列阵铟膜及铟柱制备工艺研究.红外技术,2003,25(6): 54-58
    [22] Evans SB, Terrence Hayden. High MTF hybrid ferroeletric IR FPA. Proceedings of SPIE, 1998, 3379: 36-46
    [23]刘海涛.一种新型非致冷红外探测器.红外技术,2005,27(5): 388-392
    [24]刘世建,徐重阳,曾祥斌.非致冷红外焦平面阵列用探测材料.电子元件与材料,2002,21(10): 22-24
    [25]雷亚贵,王戎瑞,陈苗海.国外非制冷红外焦平面阵列探测器进展.激光与红外,2007,37(9): 801-805
    [26]冯飞.微机械法布里一泊罗干涉型光学读出非致冷热成像技术研究: [博士毕业论文].上海:中国科学院上海微系统与信息技术研究所,2004,20-22
    [27]李金华,袁宁一.离子束增强沉积VO2多晶薄膜的温度系数.物理学报,2004,53(8): 2683-2686
    [28] WANG Hong-chen, YI Xin-jian, HUANG Guang. IR microbolometer with self-supporting structure operating at room temperature. Infrared Physics & Technology, 2004, 45(1): 53-57
    [29]何伟,焦斌斌,薛惠琼,等.非制冷红外焦平面阵列进展.电子工业专用设备,2008,(160): 18-23
    [30] Z. BIELECKI. Readout electronics for optical detectors. OPTO-ELETRONICS TEVIEW, 2004, 12(1): 129-137
    [31] Chih-Cheng Hsieh, Chung-Yu Wu, Far-Wen Jih, and Tai-ping Sun. Focal-Plane-Arrays and CMOS Readout Techniques of Infrared Imaging Systems. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1997, 7(4): 594-605
    [32] Yang Biao, Yan Xihong. Design of Infrared Focal Plane Array Readout Circuit. Semiconductor Optoelectronics, 2005, 24: 34-37
    [33] L.J.Kozlowski. Low Noise Capacitive Transimpedance Amplifier Performance vs. Alternative IR Detecor Interface Schemes in Submicron CMOS. Infrared Readout Electronics 3, Proceedings of SPIE, 1996, 2745: 2-11
    [34]倪国强,秦庆旺,肖蔓君,等.中国红外成像技术发展的若干思考.科技导报,2008,26(22): 88-93
    [35]江月松.光电子技术与实验.北京:北京理工大学出版社,2007,153-154
    [36]于冬.非致冷红外焦平面读出电路噪声分析: [硕士学位论文].成都:电子科技大学,2004,4-5
    [37] BATRA A K, AGGARWAL M D, LAL R B. Growth and characterization of doped DTGS crystals for infrared sensing devices. Materials Letters, 2003, 57(24): 3943-3948
    [38]刘海涛.微悬臂梁非致冷红外焦平面的研究: [博士学位论文].上海:中国科学院上海技术物理研究所,2007,3-7
    [39] MCEWEN R K, MANNING P A. European uncooled thermal imaging sensors. Proceedings of SPIE, 1999, 3698: 322-337
    [40] ROGALSKI A. Infrared detectors: an overview, Infrared Physics & Technology. 2002, 43: 187-210
    [41] BEICHER J F, HANSON C M, BERATAN H R. et al. Uncooled monolithic ferroelectric IRFPA technology. Proceedings of SPIE, Infrared Technology and Applications XXIV, 1998, 3436: 611- 622
    [42] HANSON C M, BERATAN H R. Thin film ferroelectrics: breakthrough. Proceedings of SPIE, Infrared Detectors and Focal Plane Arrays VII, 2002, 4721: 91- 98
    [43] TISSOT J L. IR detection with uncooled focal plane arrays: state of the art and trends. OptoElectronics Review, 2004, 12(1): 105- 109
    [44] TOHYAMA S, MIYOSHI M, KURASHINA S, et al. New thermally isolated pixel structure for high resolution 640×480 uncooled infrared focal plane arrays. Optical Engineering. 2006, 45(1): 1-10
    [45] ROGALSKI A. Infrared detectors: status and trends. Progress in Quantum Electronics. 2003, 27: 59-210
    [46] BELCHER J F, HANSON C M, BERATAN H R, et al. Uncooled monolithic ferroelectric IRFPA technology. Proceedings of SPIE, 1998, 3436: 611-622
    [47] TODD M A, MANNING P A, DONOHUE O D, et al. Thin film ferroelectric materials for microbolometer arrays. Proceedings of SPIE, 2000, 4130: 128-139
    [48]何玉青.热释电型非制冷焦平面热像仪调制斩波器的分析—斩波器与信号读出模式.红外与毫米波学报,2003,22(6): 423-427
    [49]付晶晶.医用脉搏数据采集系统芯片的设计: [硕士学位论文].北京:北方工业大学,2008, 30-31
    [50]胡滨,等. 320×240单片式热释电红外焦平面读出电路设计.混合微电子技术, 2005, 16(1): 11-16
    [51]张纯蓓,李世兴.多层金属布线.微电子技术, 1997, 25(6): 30-44
    [52]李红征,谢一强.多层金属化中的钨插塞技术.微电子技术, 2003, 31(1): 13-15
    [53] James D. Plummer, Michael D. Deal, Peter B. Griffin. Silicon VLSI Technology: Fundamental, Practice and Modeling. 2000, 735
    [54]金娜,刘卫国.热释电探测器的前置放大电路研究.西安工业学院学报, 2004, 24(3): 244-248
    [55]胡滨,阮爱武,李平,等.单片集成微传感器中多层耐熔金属硅化物互连.上海电子互连技术及材料国际论坛,上海, 2006, 120-127
    [56] Wen-Yaw Chung, Tai-Ping Sun, Yung-Lung Chin, Yuan-Liang Kao. DESIGN OF PYROELECTRIC IR READOUT CIRCUIT BASED ON LITAO3 DETECTORS. ISCAS, 1996, 4: 225-228
    [57] Charles Hanson, Howard Beratan, Robert Owen, et al. Uncooled thermal imaging at Texas Instruments. Proceedings of SPIE, 1992, 1735: 17-26
    [58] J.S. Shie, P.K. Weng. Design considerations of metal-film bolometer with micromachined floating membrane. Sensors and Actuators, A: Physical, 1992, 33(3): 183-189
    [59] A. Tanaka, S. Matsumoto, N. Tsukamoto. Silicon IC process compatible bolometer infrared focal plane array. International Conference on Solid-State Sensors and Actuators, 1995, 2: 632-635
    [60] L. Brunetti. Thin-film bolometer for high-frequency metrology. Sensors and Actuators A: Physical, 1992, 32(1-3): 423-427
    [61] W. Lang, P. Steiner, U. Schaber, et al. Thin film bolometer using porous silicon technology. Sensors and Actuators, A: Physical, 1994, 43(1-3): 185-87
    [62] H. Jerominek, F. Picard, D. Vincent. Vanadium oxide films for optical switching and detection. Optical Engineering, 1993, 32(9): 2092~2099
    [63]王宏臣.氧化钒薄膜及非致冷红外探测器阵列研究: [博士学位论文].武汉:华中科技大学, 2006, 5-6
    [64] V.G. Malyarov, I.A. Khrebtov, Yu. V. Kulikov, et al. Comparative investigations of bolometric properties of thin-film structures based on vanadium dioxide and amorphous hydrated silicon. Proceedings of SPIE, 1999, 3819: 136-142
    [65] C. Vedel, J.L. Martin, J.L. Ouvrier Buffet. Amorphous silicon based uncooled microbolometer IRFPA. Proceedings of SPIE, 1999, 3698: 276-283
    [66] R.A. Wood. Uncooled thermal imaging with monolithic silicon focal planes. Proceedings of SPIE, 1993, 2020: 322-329
    [67]胡滨,阮爱武,李平,等.单片集成微传感器中多层耐熔金属硅化物互连.上海交通大学学报, 2007, 41: 36-40
    [68] R.A. Wood, C.J. Han, P.W. Kruse. Integrated uncooled infrared detector imaging array. Technical Digest- IEEE Solid-State Sensor and Actuator Workshop, 1992, 132-135
    [69] B. Cole, R. Horning, B. Johnson, et al. High performance infrared detector arrays using thin film microstructures. IEEE International Symposium on Applications of Ferroelectrics. 1994, 653-656
    [70] B. Cole, S. Weeres, R. Higashi, et al. Honeywell resistor array development and future directions. Proceedings of SPIE, 1999, 3697: 188-196
    [71] B.E. Cole, R.E. Higashi, J.A. Ridley, et al. Integrated vacuum packaging for low-cost light-weight uncooled microbolometer arrays. Proceedings of SPIE 2001, 4369: 235-239
    [72] B.E. Cole, R.E. Higashi, R.A. Wood. Monolithic two-dimensional arrays of micromachined microstructures for infrared applications. Proceedings of the IEEE, 1998, 86(8): 1679-1686
    [73] J.L. Tissot, A. Crastes, C. Trouilleau, et al. Multipurpose high performance 160×120 uncooled IRFPA. Proceedings of SPIE, 2004, 5406(2): 550-556
    [74] B. Backer, T. Breen, N. Hartle, et al. Improvements in state of the art uncooled microbolometer system performance based on volume manufacturing experience. Proceedings of SPIE, 2003, 5074: 500-510
    [75] J. Anderson, D. Bradley, R. Chin, et al. Low cost microsensors program. Proceedings of SPIE, 2000, 4040: 31-36
    [76] P.E. Howard, J.E. Clarke, R.D. Costa, et al. Uncooled infrared focal plane producibility improvements at DRS. Proceedings of SPIE, 2002, 4820(1): 175-182
    [77]李祥辉,陈西曲,王双保,等.非致冷红外焦平面阵列读出电路的设计和SPICE模拟.红外技术, 2005, 27(4): 307-310
    [78] B. Fieque, A. Crastes, J.L. Tissot, et al. 320×240 uncooled microbolometer 2D array for radiometric and process control applications. Proceedings of SPIE, 2004, 5251: 114-120
    [79] P. E. Howard, J.E. Clarke, A.C. Ionescu, et al. DRS U6000 640×480 VOX uncooled IR focal plane. Proceedings of SPIE, 2002, 4721: 48-55
    [80] B. Fieque, A. Crastes, J.L. Tissot, et al. 320×240 uncooled microbolometer 2D array for radiometric and process control applications. Proceedings of SPIE, 2004, 5251: 114-120
    [81] B. E. Cole, R. E. Higashi, J.A. Ridley, et al. Integrated vacuum packaging for low-cost light-weight uncooled microbolometer arrays. Proceedings of SPIE 2001, 4369: 235-239
    [82] A. Astier, A. Arnaud, J. Ouvrier-Buffet, et al. Advanced packaging development for very low cost uncooled IRFPA. Proceedings of SPIE, 2005, 5640: 107-116
    [83] P. Topart, S. Leclair, C. Alain, et al. Wafer-Level Vacuum Packaging Technology Based on Selective Electroplating. Proceedings of SPIE, 2004, 5342: 26-34
    [84] R. Gooch, T. Schimert. Low-cost wafer-level vacuum packaging for MEMS. MRS Bulletin, 2003, 28(1): 55-59
    [85] G.L. Francisco. Amorphous silicon bolometer for fire/rescue. Proceedings of SPIE, 2001, 4360: 138-148
    [86] T.D. Pope, H. Jerominek, C. Alain, et al. Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs. Proceedings of SPIE, 2002, 4721: 64-74
    [87] P.E. Howard, J.E. Clarke, C. Li, et al. Recent advances in TEC-less uncooled FPA sensor operation. Proceedings of SPIE, 2003, 5074: 527-536
    [88] P.E. Howard, J.E. Clarke, A.C. Ionescu, et al. Advances in uncooled 1-mil pixel size focal plane products at DRS. Proceedings of SPIE, 2004: 512-520
    [89] J. Brady, T. Schimert, D. Ratcliff, et al. Advances in amorphous silicon uncooled IR systems. Proceedings of SPIE, 1999, 3698: 161-167
    [90]常本康,蔡毅.红外成像阵列与系统.北京:科学出版社, 2006, 35-45
    [91]刘卫国,金娜.集成非制冷热成像探测阵列.北京:国防工业出版社, 2004, 290-293
    [92]汪涛,贾功贤,袁祥辉.非致冷微测辐射热计阵列的设计.半导体光电, 2001, 22(4): 78-81
    [93] B. Le Ruyet, P. Bernardi, A.Semery. Use of ?COTS? Uncooled Microbolometers for The Observation of Solar Eruptions in Far Infrared. The seventh Space Optics Conference, Toulouse, France, 2008
    [94]蔡毅,胡旭.短波红外成像技术及其军事应用.红外与激光工程, 2006, 35(6): 643-647
    [95]白廷柱,金伟其.光电成像原理与技术.北京:理工大学出版社, 2006, 472-475
    [96]麦绿波,金伟其.军用焦平面热像仪的优化发展模式.红外技术, 2007, 29(4): 187-191
    [97] C.A.Cabelli, D.E.Cooper, A.Haas, et al. Latest Results of HgCdTe 2048×2048 and Silicon Focal Plane Arrays. Infrared Detectors and Focal Plane Arrays VI, Proceedings of SPIE, 2000, 4028: 331-342
    [98] Alan Hoffman, Todd Sessler, Joseph Rosbeck, et al. Megapixel InGaAs Arrays for Low Background Applications. Infrared Technology and Applications XXXI, Proceedings of SPIE, 2005, 5783: 32-38
    [99] Takashi Ichikaw, Nobunari Itoh, Ken'shi Yanagisawa, et al. Mosaic Near-Infrared Focal Plane Array. Part of the SPIE Conference on Infrared Astronomical Instrumentation, 1998, 3354: 313-316
    [100] SILVERMAN J. Signal processing algorithms for display andenhancemen of IR images. Proceedings of SPIE, Infrared Technology XIX, 1993, 2020:440-450
    [101] HUDSON R D Jr. Infrared system engineering. New York: John Wiley&Sons Inc, 1969
    [102]曹扬,金伟其,王霞,徐超.短波红外焦平面探测器及其应用进展.红外技术, 2009, 31(2): 63-68
    [103] J. Bajaj. HgCdTe Infrared Detectors and Focal Plane Arrays. Proceedings of IEEE, 1999: 23-31
    [104] Michael. J, Lange, J, Christopher Dries, Wei Huang. Confocal SWIR Imaging and 3D Range Finding using InGaAs P-i-N and APD Detector Arrays, Proceedings of IEEE, 2003: 687-688
    [105] Gérard DESTEFANIS. Advanced MCT Technologies in France, Infrared Technology and Applications XXXIII, Proceedings of SPIE, 2007, 6542: 0D-1-17
    [106] Jonathan Getty, Ellie Hadjiyska, David Acton, et al. VIS/SWIR Focal Plane and Detector Development at Raytheon Instruments Performance Data and Future Developments at Raytheon. Infrared Systems and Photoelectronic Technology II, Proceedings of SPIE, 2007, 6660: 0C-1-12
    [107]吕衍秋,徐运华,韩冰,等. 128×1线列InGaAs短波红外焦平面的研究.红外与毫米波学报, 2006, 5: 333-337
    [108]韩冰,吕衍秋,吴小利,等. 256×1线列InGaAs短波红外焦平面的研究.激光与红外, 2006, 11: 1032-1035
    [109] Takashi Ichikaw, Nobunari Itoh, Ken'shi Yanagisawa, et al. Mosaic Near-Infrared Focal Plane Array. Part of the SPIE Conference on Infrared Astronomical Instrumentation, 1998, 3354: 313-316
    [110]陈勇,皮得富,周士源.红外焦平面阵列CMOS读出集成电路的研制.电子工程师, 2000, 9: 39-41
    [111]祝晓笑,刘昌举,蒋永富.格雷码在焦平面CMOS读出电路中的应用.半导体光电, 2009,30(4): 506-508
    [112]吴大勇,马琪,蒋平. CMOS模拟集成电路匹配技术及其应用.杭州电子科技大学学报, 2007, 27(6): 13-16
    [113]金善子.模拟电路版图设计中的匹配艺术.中国集成电路, 2006, 91: 48-51
    [114]刘少波,刘梅冬,曾亦可,等.非致冷热电型红外焦平面阵列用探测材料的研究进展.材料导报, 2000, 14(10): 39-42
    [115]杨文.非制冷焦平面用热释电材料研究: [博士学位论文].成都:电子科技大学, 2002, 11-14
    [116]任斌.短波红外成像光谱仪电子学关键技术研究: [硕士学位论文].西安:中国科学院西安光学精密机械研究所, 2009, 1-3
    [117]李发明,熊平.焦平面阵列读出电路研究和应用.传感器世界, 2007, 13(1): 27-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700