用户名: 密码: 验证码:
基于环形球栅的扭矩测量原理与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭矩是反映机械传动系统性能的最典型的机械量之一。利用合适的扭矩传感器及测量方法,对机械传动系统的扭矩进行实时监测,对于保障整个传动系统稳定安全的运行具有十分重要的意义。研究适合于高温、强冲击、多灰尘等极端环境下的数字式扭矩测量原理与方法,可将输入的机械量转换成相应的数字量,与计算机连接构成测量、控制系统,易于实现扭矩的自动测量与控制。由于其研究的重大意义及广阔的应用前景,正日益受到国内外的高度重视,是目前国内外关注的热点之一。
     论文首先简述了扭矩测量及系统的发展历史,在此基础上对扭矩测量的国内外研究现状、应用及发展动向进行了综述性的分析与评论。从而引出了论文的主要研究内容,即“基于环形球栅的扭矩测量原理与方法研究”。
     论文对扭矩的定义进行了简要介绍;对转角式扭矩测量原理进行了概述;重点对环形球栅扭矩系统的核心部件,即环形球栅的结构和数学模型进行了讨论,建立了相应的直流激励模型和交流激励模型;在此基础上设计了基于环形球栅的扭矩测量系统模型,并对其扭矩测量原理进行了较为深入的分析与研究;针对传感器调制信号幅度较小的问题,对传感器结构的优化方案进行了分析和讨论。
     论文的一项重要工作是对环形球栅传感器输出信号的解调方法进行了深入的分析研究,利用小波分析和自适应神经网络的原理,构建用于解调的小波神经网络模型,在LabVIEW中编程实现,并利用该模型对环形球栅传感器的输出信号进行解调实验,结果表明构建的小波神经网络对环形球栅传感器输出信号的解调效果明显;为提高小波网络的收敛性能,采用遗传算法对小波网络的初始权值进行优化。
     论文的另一项重要工作是对扭矩传感器输出信号的相位差测量原理,即过零点法、相关法以及频谱法进行了分析研究,并提出了基于多元线性回归模型的相位差测量方法。通过对相关法、频谱分析法和基于回归模型的方法进行测量实验,得到相关法在频率较高时,测量结果与频率呈非线性,而频谱法和回归方法的测量结果和频率大小呈线性关系的重要结论,从而可以通过线性函数来模拟测量结果和频率之间的关系,达到消除系统误差的目的。此外,为降低测量结果的随机波动,利用S-G滤波器和零相位滤波器对相位差的测量结果进行平滑处理,其效果明显。
     论文还对基于环形球栅的扭矩测量原理和方法进行了实验分析研究。论文提出的环形球栅扭矩测量原理,通过测量环形球栅扭矩测量系统中的两个传感器输出信号之间的相位差,获得扭转角,从而实现对扭矩的测量。利用研制的环形球栅传感器,和LabVIEW软件平台及计算机,构建了基于环形球栅的扭矩测量系统。为确保扭转角的测量准确度,对相位差的测量进行了大量的实验和深入的分析。为降低测量误差,建立了多元线性回归方程,并利用该多元线性回归方程对相位差测量系统进行标定。通过对系统原理与方法的研究及对实验结果进行的分析与讨论,得出了一些很有意义的结论,并初步证实了系统测量原理与方法的可行性。
     论文希望通过对基于环形球栅的扭矩测量原理与方法的研究,能引起同行们的兴趣,达到抛砖引玉的目的。
Torque is one of the most typical mechanical parameters to reflect the performanceof mechanical drive system.In order to ensure the stable and safe operation of the wholesystem,using appropriate torque sensor and measuring method to realize the real-timetorque monitor of mechanical drive system is very important.So the research on digitaltorque measuring principles and methods is suitable for high temperature, strong shock,much dust and other extreme environments, by converting the input mechanicalparameters into the corresponding digital signal connected with computer is to establishmeasuring and control systems, then the automatic measurement and control of torquecan be implemented easily. It is increasingly attached great importance because of thegreat significance and the broad application prospects of the study, and it is also one ofthe great focuses both at home and abroad.
     Firstly in paper, the development history of torque measuring system is describedbriefly, on this base, the present status of research on torque measuring both at homeand abroad, the application of torque measurement, and the development trend areanalyzed and reviewed. Accordingly, the main research content of paper is fetched outthat is research on the principle and methods of torque measuring based on ring ballgratings.
     In paper, the definition of torque is briefly introduced, and the principle of torquemeasurement is summarized then. Mainly, the structure and mathematical model for thecore components, named ring ball gratings, of torque measuring system based on thering ball gratings are discussed, and the corresponding direct current excitation modeland the alternating current excitation model are constructed. On this base, the torquemeasuring system model based on ring ball gratings is designed, and its torquemeasuring principle is analyzed and studied in-depth. And the optimization project isanalyzed and discussed for sensor structure aiming at the problem that the amplitude ofmodulated signal is very small.
     In paper, an important task is analyzing and studying the demodulation method forthe output signal of ring ball gratings sensor. With the wavelet analysis and theself-adaptive neural networks principles, the wavelet neural networks (WNN) model isconstructed and implemented in laboratory virtual instrument engineering workbench(LabVIEW). The demodulation experiments are carried out for the output signal of ring ball gratings sensor using WNN model, and the results indicate that the demodulationeffect is obvious. For improving the convergence performance of WNN, the initialweight parameters are optimized with genetic algorithm.
     In paper, an another important task is analyzing and studying the phase differencemeasuring principle for the output signals of torque sensor, the phase differencemeasuring principles include zero-crossing method, correlation method and spectrummethod. And the phase difference measuring method based on multivariate linearregression model is put forward. Through the phase difference measuring experimentswith correlation method, spectrum method and multivariate linear regression modelmethod, the important conclusion is gained that the measuring result with correlationmethod is nonlinear with frequency but spectrum method and regression method asfrequency is high. Therefore, the relation between measuring results with regressionmethod and frequency can be simulated with linear function in order to eliminatesystem error. In addition, for reducing the random fluctuation of measuring results, theresults are smoothed with Savitzky-Golay filter and zero phase filter whose effect isobvious.
     In paper, the experiments are also analyzed and studied for torque measuringprinciple and method based on ring ball gratings sensor. According the principle andmethod put forward in paper, through measuring the phase difference between the twosensors in ring ball gratings torque measuring system, the torsion angle can be gained,and therefore the torque measurement can be realized. The torque measuring systembased on ring ball gratings is constructed with sensors manufactured, LabVIEWsoftware platform and computer. In order to ensure the accuracy of measurements, alarge number of experiments and analyses are carried out on phase difference measuring.In order to reduce measuring error, the multivariate linear regression equation isconstructed and the phase difference measuring system is calibrated by the equation.Through the research on the system principle and method, and the analyses anddiscusses about the experiments results, some very significant conclusion is educed, andthe feasibility of the system principle and method is preliminarily validated.
     It is hoped that through the research on the torque measuring principle andmethods based on ring ball gratings in paper, can cause the interest of colleagues andachieve the purpose of attracting valuable opinions.
引文
[1]梁丰廷,张家锁.千米钻机卡钻事故分析及预防措施[J].能源技术与管理,2011,2:111-113.
    [2]韦孝忠,李欣.长庆气井水平井斜井段断钻具事故剖析[J].石油钻采工艺,2002,(24):37-38.
    [3]余明,潘紫微,袁晓敏等.中板四辊轧万向接轴断裂原因分析[J].重型机械,2002,1:60-62.
    [4] Kanatsu, Masayuk, Ohta. Running torque of ball bearings with polymer lubricant[J]. NihonKikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of MechanicalEngineers,2005, Part C:272-279.
    [5] Elias C N, Figueira DC, Rios P R. Influence of the coating material on the loosing of dentalimplant abutment screw joints [J]. Materials Science and Engineering C,2006,26(8):1361-1366.
    [6] Clancy, Edward A, Bida Oljeta. Influence of advanced electromyogram (EMG) amplitudeprocessors on EMG-to-torque estimation during constant-posture, force-varyingcontractions[J]. Journal of Biomechanics,2006,39(14):2690-2698.
    [7] A.Sackfield, J.R.Barber, D.A.Hills. A Shrink-fit Shaft Subject to Totsion[J]. EuropeanJournal of Mechanics A/Solids,2002,21(10):73-84.
    [8]黄豪彩,黄宜坚,吴亚楠.虚拟转矩、转速仪的研制[J].仪表技术与传感器,2004,(7):8-9.
    [9]王辉.光电式动态扭矩测量系统的设计与实验[D].河北:燕山大学电气工程学院,2007:2-3.
    [10]陈培玉,阙沛文.单片机控制的扭矩测试仪[J].机电工程,2003,20(4):15-17.
    [11]孙永冀,林元辈,施夫和.扭矩测试方法研究[J].录井工程,2005,12:10-14.
    [12]王登泉,杨明,叶林等.非接触式旋转轴扭矩测量现状[J].电子测量技术,2010,33(6):8-12.
    [13]王岩,储江伟.扭矩测量方法现状及发展趋势[J].林业机械与木工设备,2010(11):38-11.
    [14] Ivan J. Garshelis, Ryan J.Kari, Stijn P.L.Tollens. A Rate of Change of Torque Sensor[J].IEEE TRANSACTIONS ON MAGNETICS,2007,43(6):2388-2390.
    [15] Sasada,Y.Etoh, K.Kato. A Figure-of-Eight Flexible Pickup Coil for a MagnetostrictiveTorque Sensor[J].IEEE TRANSACTIONS ON MAGNETICS,2006,42(10):3309-3311.
    [16] Jacek Salach, Adam Bienkowski, Roman Szewczyk. New possibilities of utilizing metallicglasses as torque sensors[J]. IEEE TRANSACTIONS ON SENSORS,2004,1(10):505-507.
    [17] Jacek Salach, Adam Bienkowski, Roman Szewczyk. The ring-shaped magnetoelastic torquesensors utilizing soft amorphous magnetic materials[J].Journal of Magnetism and MagneticMaterials,2007,316:607-609.
    [18] J.J.Smith. Torque Monitoring for Failure Prevention on Mill Spindles and Coupling[J]. Ironand Steel Engineer Novelber,1976,(5):170-178.
    [19] Mitchell P, Naylor Phillips, David G. Torque in worsted wool yarns[J]. Textile ResearchJournal,2006,76(2):169-180.
    [20] Tan K P, Stanway R, Bullough W A. Validation of dynamic torque response of anelectrorheological(ER) clu[J]. Mechanical Systems and Signal Processing,2006,20(2):463-492.
    [21] Sasada, S.Uramoto, K.Harad. Non-contact Torque Sensor Using Magnetic Heads and aMagnetostrictive Layer on the Shaft.IEEE Trans on Magn.MAG-22,1986,(5):406~411.
    [22] Dzmitry Tsetserukou, Riichiro Tadakuma,Hiroyuki Kajimoto. Optical Torque Sensors forImplementation of Local Impedance Control of the Arm of Humanoid Robot[C].IEEEInternational Conference on Robotics and Automation,5,2006.
    [23] R.J.Hazelden. Optical Torque Sensor for Automotive Steering Systems[J].Sensors andActuators A,1993,37/38:193-197.
    [24]季学武,马小平,周寒露等.电动助力转向系统光电式转矩传感器的研究[J].传感技术与传感器,2004,10:4-6.
    [25] Asad M.Madni, Robert K.Hansen, Jim B.Vuong, et al. A Differential Capacitive TorqueSensor(DCTS)[J]. IEEE TRANSACTIONS ON SENSORS,10,2005:1286-1289.
    [26] Asad M.Madni,Jim B.Vuong,Daniel C.H.Yang,et al. A Differential Capacitive TorqueSensor With Optimal Kinematic Linearity[J].IEEE SENSORS JOURNAL,2007,7(5):800-807.
    [27]吴国安.磁致伸缩型非晶磁性传感器.磁性材料与器件,1994,(9):15-17.
    [28] J.D.Turner. Development of a Rotating-shaft Torque Sensor for Automotive Application.IEEE Proceeding,1988,(5):334-340.
    [29] Rudd R E,Kline B R.Fiber optic torquemeter design and development[J].ISA Trans,1989,(2):19-25.
    [30]谢平,刘彬,王霄,林洪彬.新型光纤扭矩测量方法[J].光电工程.2006,33(2):111-114.
    [31]欧扬,张纪龙.扭矩测试的发展动态和发展方向[J].华北工学院学报,1996(1):42-47.
    [32] D.Son,S.J.Lim,C.Kim.Non-contact Torque Sensor Using the Difference of MaximumInduction of Amorphous Cores[J]. IEEE Trans on Magn.MAG-28,1992,(5):2205-2211.
    [33] Watkins, Jeffery. Clutches, brakes, and inertia[J]. Motion System Design,2006,48(10):24-28.
    [34] Dooner D B,Zambranam N.Use of non-circular gears for crankshaft torque balancing in I[J]C.Engines.2005,1904(I):197-212.
    [35] Ortega, Carlos, Arias Antoni, et al. Novel direct torque control for induction motors usingshort voltage vectors of matrix converters[J].IECON2005:31stAnnual Conference of IEEEIndustrial Electronics Society,2005,1353-1358.
    [36]董全林,刘彬,张春熹等.一种利用激光多普勒技术测量扭矩的原理研究[J].计量学报,2004,25(1):47-49.
    [37]恩霞,田仁,纪鑫.非接触式在线动态扭矩测量装置的设计[J].应用科技,2006,33(10):60-62.
    [38]孟臣,李敏.JN338智能数字式转矩转速传感器及其应用[J].国外电子元器件,2003,11:56-58.
    [39]北京三晶现代科技集团传感器事业部.JN338数字转矩传感器使用说明书[EB/01].2007.
    [40]湖湘测控仪器有限公司.TI-2扭矩转速功率测试仪使用说明书[EB/01].2007.
    [41]四川诚邦测控技术有限公司.CB2000卡式扭矩仪使用说明书[EB/01].2007.
    [42]董全林,刘彬,张春熹等.利用平面编码器测量巨型转轴转矩的原理研究[J].机械工程学报,2004,4(4):188-190.
    [43]韩向东,周林泉,邵逸先.智能电动执行器可变电感式扭矩测量系统的设计[J].轻工机械,2006,24(4):108-110.
    [44]金贺荣,郑德忠,何群.基于虚拟仪器的翻车机传动系统扭矩测试算法研究[J].传感技术学报,2007,20(3):694-697.
    [45]吴伯农,孟荣光.转轴扭矩红外遥测系统[J].仪表技术与传感器,2006,7:44-46.
    [46]文西芹,刘成文,杜玉玲等.磁头型磁弹性扭矩传感器补偿问题研究[J].传感技术学报,2004,9(3):508-511.
    [47]李纪明,文西芹.切削过程监测用磁弹性扭矩传感器试验研究[J].机床与液压,2008,36(6):101-103.
    [48]文西芹,张永忠,刘成文.具有补偿功能的瞬时扭矩监测用磁弹性传感器的研制[J].机床与液压,2004,2:27-28.
    [49]石延平,刘成文,张永忠.一种差动压磁式扭矩传感器的研究与设计[J].仪器仪表学报,2006,27(5):508-511.
    [50]程卫东,董永贵,李源等.无线无源声表面波扭矩传感器的研究[J].压电与声光,2000,22(1):1-3.
    [51]万德安,鲍凌霞,钟献春.一种新型扭矩传感器的设计与刚度分析[J].现代制造工程,2005,9:78-79.
    [52]孟宗,刘彬.轧机传动轴扭矩动态监测系统的研究[J].仪器仪表学报,2005,26(8):29-30.
    [53]喻洪麟,朱传新,杨张利.光栅扭矩动态测量系统设计及实现[J].应用光学,2006,27(5):442-445.
    [54]喻洪麟,刘旭飞,吴永烽.光栅扭矩传感器的信号电路设计[J].光电工程,2005,32(8):93-96.
    [55]高长银,孙宝元,钱敏.基于压电石英晶片扭转效应的扭矩传感器原理与研制[J].大连理工大学学报,2005,45(4):557-561.
    [56]诺霸精密机械有限公司.诺霸协助航空领域检测扭矩工具[EB/01].http://www. norbar.com. cn/web/binn/default.asp?news=366,2008.
    [57]徐迟.航空发动机扭矩特性适航规章分析[J].燃气轮机技术,2010,24(3):18-24
    [58]柴继新,王恩峰,范小燕等.几种常见的电阻应变式旋转扭矩传感器[J].计测技术,2010,30(2):34-36.
    [59]万德安,章阳宁.航天微型扭杆高精度扭矩传感器的设计[J].仪表技术与传感器,2004,2:1-2.
    [60]维普资讯.测量船舶轴系扭矩和功率的新系统[J].船舶物资与市场,2004,5:43-44.
    [61]严康平,林静,胡巍等.船舶主机轴系交变扭矩与扭振测试装置[J].船舶工程,2009,31:36-38.
    [62]孙铁,吴群,周长茂等.油泵扭矩在线测量方法的分析与应用[J].石油化工设备技术,2008,29(2):28-33.
    [63]王欢,魏显峰,李云飞等.螺杆泵井电功法扭矩监测技术研究[J].油气田地面工程,2008,27(1):29-30.
    [64]杨得湖,鄢长颉,许敏.GNY-Ⅰ型套管螺纹扭矩测量仪的研制与应用[J].石油矿场机械,2004,33(3):56-58.
    [65]梁岚珍.风力发电机组轴系扭矩测试与分析[J].电力系统,2009,28(9):20-23.
    [66]苏志刚.铁路专用数显扭矩扳手的研制[J].铁道技术监督,2002,4:27-28.
    [67]范钦珊,王波,殷雅俊.材料力学[M].北京:高等教育出版社,2000.
    [68]张宝珠,张峰,刘先航等.一种新型的动态位移传感器——球栅尺[J].测控技术,2000,19(1):22-23.
    [69]英国NEWALL公司网站[EB/01].www.newall.com,2008.
    [70]李庆祥,王东生,李玉和等.现代精密仪器设计[M].北京:清华大学出版社,2004.
    [71]喻洪麟,何安国,吴永烽,康治平.一种环型空间阵列扭矩传感器的读数头[P].中国专利,201010192215.X.
    [72]吴永烽,喻洪麟,何安国.环形球栅扭矩测量原理研究[J].仪器仪表学报,2010,31(11):2580-2585.
    [73]杨儒贵.电磁场与电磁波[M].北京:高等教育出版社,2004.
    [74]何安国,喻洪麟,吴永烽,康治平.基于环型空间阵列的扭矩测量方法[P].中国专利,201010192211.1.
    [75]赵博,张红亮.Ansoft12在工程电磁场中的应用[M].北京:中国水利水电出版社,2009:217-221.
    [76]吴莉,马玲.基于System View的单边带调制与解调的仿真研究[J].信息化研究,2010,36(7):22-24.
    [77]童诗白,华成英.模拟电子技术基础(第三版)[M].北京:清华大学出版社,2001.
    [78]秦毅.信号小波理论与一体化小波分析的研究[D].重庆:重庆大学机械工程学院,2008:11-34.
    [79]李翔.基于小波分析的测量信号处理技术研究[D].哈尔滨:哈尔滨工业大学自动化测试与控制系,2009:1-41.
    [80]代少玉.小波与时域多分辨率分析在电磁散射中的应用[D].中国西安:西安电子科技大学,2007:12-15.
    [81]张弦,王宏力.进化小波消噪方法及其在滚动轴承故障诊断中的应用[J].机械工程学报,2010,46(15):76-81.
    [82]赵志刚,管聪慧,吕慧显.基于非抽样小波和边缘保持的自适应图像降噪[J].光电子·激光,2007,18(11):1374-1377.
    [83] N.Saravanan, K.I.Ramachandran. Incipient gear box fault diagnosis using discrete wavelettransform for feature extraction and classification using artificial neural network[J]. ExpertSystems with Applications,2010,37:4168-4181.
    [84]武志勇,刘东升.小波神经网络在液压装置压力测试中的应用[J].电子测量技术,2010,33(12):91-94.
    [85]孙守宇.盲信号处理基础及其应用[M].国防工业出版社,2010.7:23-28.
    [86]李银军,张彦斌.基于小波神经网络的可更换电路单元故障诊断[J].国外电子测量技术,2010,29(8):29-32.
    [87]王维,张英堂,任国全.小波阈值降噪算法中最优分解层数的自适应确定及仿真[J].仪器仪表学报,2009,30(3):526-530.
    [88]奚立峰,黄润青,李兴林等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143.
    [89] M. Emin Tagluk, Mehmet Akin, Necmettin Sezgin. Classification of sleep apnea by usingwavelet transform and artificial neural networks[J]. Expert Systems with Applications,2010,37:1600-1607.
    [90] J.Rafiee, P.W.Tse, A.Harifi, et al. A novel technique for selecting mother wavelet functionusing an intelligent fault diagnosis system[J]. Expert Systems with Applications,2009,36:4862-4875.
    [91]吴永烽,喻洪麟,何安国.基于WNN的环形球栅扭矩传感器的信号解调[J].仪器仪表学报,2011(已录用待发表).
    [92]边海龙.基于小波和神经网络的时变谐波信号的检测[J].电子测量与仪器学报,2008,22(1):1-4.
    [93]王家林,吴正国,杨宣访.基于蚁群神经网络的线性直流电源故障诊断[J].仪器仪表学报,2009,30(3):515-520.
    [94]钱华明,王雯升.遗传小波神经网络及在电机故障诊断中的应用[J].电子测量与仪器学报,2009,23(3):81-86.
    [95]伭伟.基于人工神经网络的混合智能系统研究及用[D].哈尔滨:哈尔滨工程大学水声工程学院,2008:72-76.
    [96]梁艳春,吴春国,时小虎等.群智能优化算法理论与应用[M].北京:科学出版社,2009:10-16.
    [97] Choi I C, Kim S I, Kim H S. A genetic algorithm with a mixed region search for theasymmetric traveling salesman problem[J]. Comuters&Operations Research,2003,30(5):773-786.
    [98] Yoon H S, Moon B R. An empirical study on the synergy of multiple crossoveroperators[J].IEEE Transactions on Evolutionary Computation,2002,6(2):212-223.
    [99] Tang L X, Liu J Y, Rong A Y et al. Modeling and a genetic algorithm solution for the slabstack shuffling problem when implementing steel rolling schedules[J]. International Journalof Production Research,2002,40(7):1583-1595.
    [100] Liang Y C, Ge H W, Zhou C G. Solving traveling salesman problems by geneticalgorithms[J]. Progress in Natural Science,2003,13(2):135-141.
    [101]钱华明,王雯升.遗传小波神经网络及在电机故障诊断中的应用[J].电子测量与仪器学报,2009,23(3):81-86.
    [102]宋清昆,王建双,王慕坤.基于遗传算法的小波神经网络控制器设计[J].电机与控制学报,2010,14(4):102-106.
    [103] Brezocnik M, Kovacic M, Gusel L. Comparison between genetic algorithm and geneticprogramming approach for modeling the stress distribution [J]. Materials and ManufacturingProcesses,2005,20(3):497–508.
    [104]任海东,尹文庆,胡飞.基于LabVIEW的三种相位差测量法的对比分析[J].科学技术与工程,2010,10(1):263-267.
    [105]张克,张威,王潇洒等.基于时间法的虚拟相位差计的设计[J].北京石油化工学院学报,2008,(3):36-39.
    [106]鲁华祥,马晓燕,李宁.利用固定相移来测量同频信号相位差的方法及电路[P].中国,CN101059542,2007.10.24.
    [107]龚国良,鲁华祥.一种利用固定相移测量同频正弦信号相位差的方法[J].仪器仪表学报,2010,31(4):873-877.
    [108]张海涛,涂亚庆.基于FFT的一种计及负频率影响的相位差测量新方法[J].计量学报,2008,29(2):168-171.
    [109]张海涛,涂亚庆.基于DTFT的一种低频振动信号相位差测量新方法[J],振动工程学报,2007,20(2):180-184.
    [110]张海涛,涂亚庆,牛鹏辉.相位差测量的FFT法和DTFT法误差分析[J].电子测量与仪器学报,2007,21(3):61-65.
    [111]陈佩青.数字信号处理教程[M].北京:清华大学出版社,2001:212-213.
    [112] THORNLEY D J. Anisotropic multidimensional Savitzky-Golay kernels for smoothingdifferentiation and reconstruction [J]. Departmental Technical Reports,2006,7:1123-1127.
    [113]邢园丁,邹虹,杨德猛,等.零相位滤波器在基于激光多普勒效应的动态位移信号处理中的应用[J].电子测量技术,2009,32(6):48-50.
    [114]吴国乔,王兆华.基于全相位的零相位数字滤波器的设计方法[J].电子与信息学报,2007,29(3):574-577.
    [115]王毅.基于虚拟仪器的电机电枢智能测试系统开发[D].浙江:浙江工业大学机电工程学院,2007,4:24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700