用户名: 密码: 验证码:
碳纳米管与聚酰亚胺界面优化、分子动力学模拟及其复合材料的结构性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管的独特结构赋予了它特殊的力学、电学、热学性能,作为下一代多功能性复合材料的主体材料而备受关注。为了能够最大限度的利用碳纳米管的高强高韧的特性,成功解决碳纳米管分散、取向和界面问题因而成为重要的研究课题。同时,聚酰亚胺作为一种耐高温型树脂,在航空航天领域应用前景广阔,将这两者性能优异的材料组合制备复合材料,将会在多功能复合材料领域具有极大发展前景。但从目前已有的文献报道中可以看出,关于碳纳米管与聚酰亚胺复合材料的界面研究还相当有限,制备复合材料的方法也局限于将碳纳米管短纤分散于聚酰亚胺树脂中,获得纤维体积含量较低的复合材料。由于在复合材料中,增强体的形态、含量,以及增强体与基体间的界面对复合材料性能起到至关重要的影响,因此,本论文从改变碳纳米管结构和改善碳纳米管与聚酰亚胺界面的角度入手,旨在解决存在于传统碳纳米管复合材料中的分散、取向和界面问题。采用分子动力学模拟从微观角度深入探讨碳纳米管与聚酰亚胺树脂间的界面结合,以及利用等离子处理方法改善界面作用,提升复合材料的机械性能,并采用一种新型复合材料成型方法(喷覆卷绕法)制备单向碳纳米管增强聚酰亚胺复合材料,解决碳纳米管分散、取向和低纤维体积含量的问题,提高碳纳米管复合材料的力学、电学、热学性能。基于此,本文对于碳纳米管增强聚酰亚胺复合材料的研究从解决影响性能的本质入手,采用实验与分子动力学模拟两种手段,揭示改善复合材料界面与结构的方法,具有极为重要的指导意义。围绕该主题,课题开展的研究工作具体如下:
     (1)为了改善碳纳米管与聚酰亚胺树脂的界面性能,采用常压射流等离子体处理碳纳米管集合体(碳纳米管纸)。碳纳米管经过分散、抽滤、烘干后得到厚度为70gm的碳纳米管纸,然后经由含氧等离子体处理后制备聚酰亚胺复合材料。处理前后的碳纳米管纸样品采用SEM、 XPS、静态接触角测试表征其表面形态及亲水性变化,结果表明,等离子体在不影响碳纳米管纸整体结构的同时有效“切断”碳纳米管头端,增加碳纳米管与树脂基体的纳米机械锁结。含氧等离子处理可增加碳纳米管纸表面亲水基团数量,静态接触角从123.2°到35.2°,由拒水性转变为亲水性。基于如上机械锁结和亲水性提高两方面的协同作用,复合材料在拉伸强力和模量方面体现出明显的提升,拉伸断裂界面也比未处理样品显示出更少的抽拔状态,体现出含氧等离子体处理可有效的改善碳纳米管与聚酰亚胺树脂的界面,使碳纳米管作为增强体更有效的承力。与此同时,复合材料的耐高温性质在等离子处理前后并未发生改变,在500℃前复合材料并未发生明显质量损失。
     (2)为了研究碳纳米管结构对复合材料的性能影响,我们采用超取向碳纳米管阵列制备单向碳纳米管复合材料预浸料,并对预浸料进行拉伸预处理,已达到改善复合材料性能的目的。由于超取向碳纳米管阵列间很强的范德华力存在,可以抽出连续如长丝束般的碳纳米管片层,其间所有碳纳米管的取向一致,均沿长度方向有序排列,这一结构特性大大增强了电子和光子在碳纳米管中的传播。与以往传统碳纳米管短纤增强复合材料不同,这种连续结构不仅可以解决碳纳米管分散和取向问题,而且可以制备高纤维体积含量的复合材料,这对于提升碳纳米管各方面性能均有重要意义。预拉伸处理进一步改善了碳纳米管内部的取向和整体紧实度,将复合材料性能进一步提升。当碳纳米管的取向度和紧实度提高时,复合材料在杨氏模量、导电率、面内热传导系数方面,分别有262.0%,45.1%,69.0%的提高。导电率和面内热传导系数更达到了以往碳纳米管短纤复合材料无法达到的数值,分别为265.9S/cm和31.1W/mK。
     (3)为了更为深入的探明碳纳米管与聚酰亚胺间的作用机理,尤其是分子级别的相互作用,并为复合材料设计提供理论依据,我们采用分子动力学模拟技术开展研究。分子动力学模拟技术是一种新兴的研究纳米级别相互作用的技术。本研究中,采用这种模拟技术模拟单根碳纳米管与聚酰亚胺间的抽拔,并根据体系能量变化分析碳纳米管与聚酰亚胺的作用机理,以及碳纳米管管壁数量对抽拔过程的影响,最终计算得到界面剪切强力数值。在模拟单根碳纳米管与单根聚酰亚胺长链的过程中,发现两者具有强烈的相互作用力,这种相互作用力直接对抽拔过程产生影响。此外,当施加不同大小的力试图抽拔碳纳米管时,我们发现临界拉力值的存在,即只有当拉力值大于临界拉力值时,抽拔过程才能够完成。影响这种临界拉力值的主要因素是碳纳米管管壁数量,单壁与双壁碳纳米管具有相同的临界拉力值,但三壁碳纳米管所需的临界拉力值要大于前两者。同时,类似的趋势也在抽拔位移中得到体现,这主要是由于碳纳米管管壁间的范德华力造成了碳纳米管与聚酰亚胺基体间的相互作用能差异,这种差异在单壁和双壁碳纳米管间较小,而对于三壁碳纳米管则较明显。最终经模拟计算所得的在不同拉力值作用下的界面剪切强力处于2~19MPa这个范围,符合碳纳米管增强复合材料在以往实验和模拟中数值的合理范围。
     (4)碳纳米管体积含量对于碳纳米管复合材料的力学性能影响众所周知,即随着碳纳米管含量的增加,复合材料的拉伸强力和初始模量相应增加。但碳纳米管体积含量的增加是否会影响聚合物结构及链段取向及怎样影响,则是一个需要从微观作用机理进行研究的问题,但在以往的研究中未得到充分的研究。因此,我们采用分子动力学模拟这一手段,拟在分子级别对这一问题进行探讨和分析。首先我们建立不同碳纳米管体积含量和纯聚酰亚胺的模型,在单轴向拉伸状态下观察体系的模量变化,并在传统计算纤维体积含量的公式基础上进行修正,将碳纳米管与聚酰亚胺的界面作为孔隙讨论,精确纤维体积含量的计算。同时利用结晶态和非晶态聚酰亚胺两种模型模拟真实聚酰亚胺半晶态结构,利用“混合定律”计算随碳纳米管体积含量的变化和聚酰亚胺结晶度的变化。模拟最终得到的趋势能够很好验证实验中关于碳纳米管在聚合物基体中充当成核点的假设。
     综上所述,本文以碳纳米管增强聚酰亚胺复合材料为研究对象,从改善界面和改变碳纳米管结构的角度,探讨了提高复合材料宏观性能的有效途径;并采用分子动力学模拟的分析方法从微观角度深入分析了碳纳米管与聚酰亚胺在分子级别上的作用机理,为碳纳米管增强复合材料的设计提供了可参考的实验方法和理论依据,并为深入分析纳米增强聚合物基复合材料的性能及其影响机理提供了有效的研究思路。
Carbon nanotubes (CNTs) with unique structure and properties are in the vanguard of technological development of the time, and are predicted to be the best candidate as the multifunctional component of the next generation of composite materials.To fully utilize the unique mechanical and physical properties of carbon nanotubes, it is essential to assemble them into macroscopic structures. Polyimide, as the most well-known high temperature resistance polymer, is widely utilized in aerospace applications. Therefore, the combination of these two materials will be promising for multifunctional application. However, previous studies have confined to mix staple carbon nanotube with polymer solutions and fabricate composites with comparatively low volume fraction.In composite design, the morphology and content of reinforcement, and the interface between carbon nanotube and polymer are the main factors to determine the composite property. Thus, this dissertation aims to solve the CNTs dispersion, alignment and interface problems in carbon nanotube reinforced composite by demonstrating the interfacial property using molecular dynamics simulation and plasma treatment method, fabricating CNT composites with ideal structural features and excellent mechanical,thermal and electrical performances, and increasing the understanding of the structure-property relationship in these materials. The detailed studies are described below:
     (1)Atmospheric plasma treatment is applied on carbon nanotube, in the form of bucky paper, to improve the interfacial interaction between carbon nanotube and polyimdie. The fabrication of bucky paper is consisted of dissolve, filtration and drying processes, following the plasma treatment and fabrication of composite. The SEM, XPS and static contact angle analysis are conducted to discover the morphology and hydrophilicty change before and after plasma treatment. It is shown that the plasma treatment can effectively "cut off' the heads of CNTs without altering the bulk properties of composite, which increase the nano-mechanical interlocking between CNTs and polymer. Besides, the number of oxygen-containing groups increases and contact angle transfers from hydrophobicity to hydrophilicity. Based on the two mechanisms, the mechanical property of composite is improved distinctly. The tensile fracture surface also shows that less pull-out happens after plasma treatment. And high temperature resistance is retained even after the plasma treatment.
     (2) In order to reveal the structure-related property, we adopt a new fabrication method named spray-winding to make carbon nanotube reinforced polyimide composite. Due to the strong Van der Waals between CNTs, the CNT can be pulled out in the form of continuous ribbons, in which CNTs keep oriented and aligned along the longitudinal direction. The unique structure helps the electron and phonon transmission, thus improving the electrical and thermal properties. Compared with the traditional carbon nanotube reinforced composite, this continuous structure not only solves the dispersion and alignment problems, but improve volume fraction to a high level.We further use pre-stretch treatment to improve the alignment and compactness of CNT prepregs, thus obtaining better mechanical, electrical and thermal properties.
     (3) To discover the interaction mechanism between carbon nanotube and polyimide, especially in the molecular scale, we need a special tool—molecular dynamics simulation to achieve this goal. Compared with experimental techniques, this computational method is more effective and time-saving. Single chain simulation is firstly to employ to find that the interaction energy between carbon nanotube and polyimide is very high, and this phenomon is also verified in pull-out simulation where co-movement occurs. Limiting pulling force is found in pull-out simualtions, above which the pull-out process can not be achieved. For SWNT and DWNT, the limiting pulling forces are the same value, but for TWNT, it is higher than the SWNT and DWNT. This is due to the inter-tube interactions during pull-out. The interfacial shear strength is calculated to be around5~30MPa which are in the reasonable value among previous experimental and simulation values.
     (4) The volume fraction of carbon nanotube is an important factor influencing the properties of composite. How the volume faction affects the polymer chain structure configuration is meaningful in composite design, but no previous study has been done. Therefore, we use molecular dynamics simulation to build composite and polyimide structures separately and invesitigate the polymer configuration change with the increasing of volume fraction. We modify the traditional volume fraction formula and regard the interface as the voids in calculation. Meanwhile, we make "fully crystallized" and "fully amorphous" polyimide structure in simulation and calculate the crystallinity using the rule of mixture. The simulation results are in the agreement with assumption that carbon nanotubes act as the nucleation site in composite.
     To sum up, this paper discusses the effective methods to improve the propertyies of carbon nanotube based composite by improving the interface and changing carbon nanotube structure. The molecular dynamics simulation is applied to investigate the micro-scale mechanism of carbon nanotube and polyimide interactions, thus providing valid methods and evidence for composite design and opening up a new vision for nano-reinforced composite studies.
引文
[1]陈丹.聚酰亚胺取向纳米复合膜的制备、结构与性能研究[D].复旦大学,2012.
    [2]Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article:Polymer-matrix nanocomposites, processing, manufacturing, and application:An overview [J]. Journal of composite materials,2006,40(17):1511-1575.
    [3]Paul D, Robeson L. Polymer nanotechnology:Nanocomposites [J]. Polymer, 2008,49(15):3187-3204.
    [4]Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition [J]. Journal of Crystal Growth,1976,32(3):335-349.
    [5]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348): 56-58.
    [6]Ding J, Yan X, Cao J. Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes [J]. PHYSICAL REVIEW-SERIES B-, 2002,66(7):073401-073401.
    [7]Buitelaar MR. Electron transport in multiwall carbon nanotubes[D]. Dissertation, University of Basel,2002.
    [8]Lau AK-T, Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites [J]. Composites Part B:Engineering,2002,33(4):263-277.
    [9]Treacy M, Ebbesen T, Gibson J. Exceptionally high young's modulus observed for individual carbon nanotubes [J].1996.
    [10]Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science,1997,277(5334):1971-1975.
    [11]Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science,2000,287(5453):637-640.
    [12]Falvo M, Clary G, Taylor R, Chi V, Brooks F, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain [J]. Nature,1997,389(6651): 582-584.
    [13]Dresselhaus S. Graphite fibers and filaments [M]. Springer-Verlag GmbH,1988.
    [14]Yu M-F, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Physical Review Letters, 2000,84(24):5552-5555.
    [15]Wei L, Kuo P, Thomas R, Anthony T, Banholzer W. Thermal conductivity of isotopically modified single crystal diamond [J]. Physical Review Letters,1993, 70(24):3764-3767.
    [16]Berber S, Kwon Y-K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Physical Review Letters,2000,84(20):4613-4616.
    [17]Kim P, Shi L, Majumdar A, McEuen P. Thermal transport measurements of individual multiwalled nanotubes [J]. Physical Review Letters,2001,87(21): 215502.
    [18]Aliev AE, Lima MH, Silverman EM, Baughman RH. Thermal conductivity of multi-walled carbon nanotube sheets:Radiation losses and quenching of phonon modes [J]. Nanotechnology,2010,21(3):035709.
    [19J Appenzeller J, Mattel R, Avouris P, Stahl H, Lengeler B. Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes [J]. Applied Physics Letters,2001,78(21):3313-3315.
    [20]Frank S, Poncharal P, Wang Z, de Heer WA. Carbon nanotube quantum resistors [J]. Science,1998,280(5370):1744-1746.
    [21]Sanvito S, Kwon Y-K, Tomanek D, Lambert CJ. Fractional quantum conductance in carbon nanotubes [J]. Physical Review Letters,2000,84(9):1974-1977.
    [22]Evans CC. Whiskers [M]. Harlequin Mills & Boon, Limited,1972.
    [23]Staab GH. Laminar composites [M]. Butterworth-Heinemann [Imprint],1999.
    [24]谢剑飞.三维机织物增强pmr型聚酰亚胺复合材料的制备、表征及粘结性能研究[D].东华大学,2011.
    [25]Watson A, Smith R. An examination of statistical theories for fibrous materials in the light of experimental data [J]. Journal of Materials Science,1985,20(9): 3260-3270.
    [26]Kelly A, Tyson aW. Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum [J]. Journal of the Mechanics and Physics of Solids,1965,13(6):329-350.
    [27]Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties [J]. Polymer,1999,40(21):5967-5971.
    [28]Winey KI, Kashiwagi T, Mu MF. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers [J]. MRS Bulletin,2007,32(04):348-353.
    [29]Khan MU, Gomes VG, Altarawneh IS. Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization [J]. Carbon,2010,48(10):2925-2933.
    [30]Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites [J]. ACS nano,2009, 3(4):865-870.
    [31]Olek M, Ostrander J, Jurga S, Mohwald H, Kotov N, Kempa K, Giersig M. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies [J]. Nano letters,2004,4(10):1889-1895.
    [32]Andrews R, Jacques D, Qian D, Rantell T. Multiwall carbon nanotubes:Synthesis and application [J]. Accounts of Chemical Research,2002,35(12):1008-1017.
    [33]Wang D, Song PC, Liu CH, Wu W, Fan SS. Highly oriented carbon nanotube papers made of aligned carbon nanotubes [J]. Nanotechnology,2008,19(7): 075609.
    [34]Bradford PD, Wang X, Zhao HB, Maria J-P, Jia QX, Zhu YT. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes [J]. Composites Science and Technology,2010,70(13):1980-1985.
    [35]Garcia EJ, Wardle BL, John Hart A. Joining prepreg composite interfaces with aligned carbon nanotubes [J]. Composites Part A:Applied Science and Manufacturing,2008,39(6):1065-1070.
    [36]Cheng QF, Bao JW, Park J, Liang ZY, Zhang C, Wang B. High mechanical performance composite conductor:Multi-walled carbon nanotube sheet/bismaleimide nanocomposites [J]. Advanced Functional Materials,2009, 19(20):3219-3225.
    [37]Cheng QF, Wang B, Zhang C, Liang ZY. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites:Mechanical and electrical performance beyond carbon-fiber composites [J]. Small,2010,6(6):763-767.
    [38]Pham GT, Park Y-B, Wang S, Liang Z, Wang B, Zhang C, Funchess P, Kramer L. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets [J]. Nanotechnology,2008,19(32):325705.
    [39]Jiang KL, Li QQ, Fan SS. Nanotechnology:Spinning continuous carbon nanotube yarns [J]. Nature,2002,419(6909):801-801.
    [40]Zhang XF, Li QW, Tu Y, Li Y, Coulter JY, Zheng LX, Zhao YH, Jia QX, Peterson DE, Zhu YT. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays [J]. Small,2007,3(2):244-248.
    [41]Tran C-D, Lucas S, Phillips D, Randeniya L, Baughman R, Tran-Cong T. Manufacturing polymer/carbon nanotube composite using a novel direct process [J]. Nanotechnology,2011,22(14):145302.
    [42]Fang C, Zhao JN, Jia JJ, Zhang ZG, Zhang XH, Li QW. Enhanced carbon nanotube fibers by polyimide [J]. Applied Physics Letters,2010,97(18):181906-181906-3.
    [43]Zhao Y, Wei JQ, Vajtai R, Ajayan PM, Barrera EV. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals [J]. Scientific reports,2011,1.
    [44]Bogdanovich AE, Bradford PD. Carbon nanotube yarn and 3-d braid composites. Part i:Tensile testing and mechanical properties analysis [J]. Composites Part A: Applied Science and Manufacturing,2010,41(2):230-237.
    [45]Bradford PD, Bogdanovich AE. Carbon nanotube yarn and 3-d braid composites. Part ii:Dynamic mechanical analysis [J]. Composites Part A:Applied Science and Manufacturing,2010,41(2):238-246.
    [46]Bogdanovich A, Bradford P, Mungalov D, Fang S, Zhang M, Baughman RH, Hudson S. Fabrication and mechanical characterization of carbon nanotube yarns, 3-d braids, and their composites [C].2006:
    [47]Cheng Q, Wang J, Jiang K, Li Q, Fan S. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites [J]. Journal of Materials Research,2008,23(11):2975-2983.
    [48]Cheng Q, Wang J, Wen J, Liu C, Jiang K, Li Q, Fan S. Carbon nanotube/epoxy composites fabricated by resin transfer molding [J]. Carbon,2010,48(1):260-266.
    [49]Liu W, Zhang XH, Xu G, Bradford PD, Wang X, Zhao HB, Zhang YY, Jia QX, Yuan F-G, Li QW. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly (vinyl alcohol) spray [J]. Carbon,2011,49(14): 4786-4791.
    [50]Wang X, Bradford PD, Liu W, Zhao HB, Inoue Y, Maria J-P, Li QW, Yuan F-G, Zhu YT. Mechanical and electrical property improvement in cnt/nylon composites through drawing and stretching [J]. Composites Science and Technology,2011, 71(14):1677-1683.
    [51]段春燕.聚酰亚胺/无机纳米复合材料的制备及表征[D].天津大学,2005.
    [52]许蕾.无机纳米—聚酰亚胺薄膜制备及在高压力下松驰特性研究[D].哈尔滨理工大学,2003.
    [53]贺国文.聚酰亚胺基介电复合材料的制备及性能研究[[)].中南大学,2012.
    [54]丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料[M].北京:科学出版社,2006.
    [55]张维国.高压力下无机纳米杂化聚酰亚胺薄膜的热激电流谱特性[D].哈尔滨理工大学,2004.
    [56]丁孟贤,何先门.聚酰亚胺新型材料[M].北京:科学出版社,1998.
    [57]黄孝华.新型功能性聚酰亚胺的合成与性能研究[D].上海交通大学,2011.
    [58]Yakobson BI, Smalley RE. Fullerene nanotubes:C 1,000,000 and beyond [J]. American Scientist,1997,85(4):324-337.
    [59]Salvetat-Delmotte J-P, Rubio A. Mechanical properties of carbon nanotubes:A fiber digest for beginners [J]. Carbon,2002,40(10):1729-1734.
    [60]Poncharal P, Wang Z, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of carbon nanotubes [J]. Science,1999,283(5407): 1513-1516.
    [61]Qian D, Wagner GJ, Liu WK, Yu M-F, Ruoff RS. Mechanics of carbon nanotubes [J]. Applied Mechanics Reviews,2002,55(6):495-533.
    [62]Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes [J]. Carbon,1995,33(7):925-930.
    [63]Yu M-F. Fundamental mechanical properties of carbon nanotubes:Current understanding and the related experimental studies [J]. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY,2004,126:271-278.
    [64]Gou J, Minaie B, Wang B, Liang Z, Zhang C. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites [J]. Computational Materials Science,2004,31(3):225-236.
    [65]Frankland S, Harik V. Analysis of carbon nanotube pull-out from a polymer matrix [J]. Surface Science,2003,525(1):L103-L108.
    [66]Natarajan U, Misra S, Mattice WL. Atomistic simulation of a polymer-polymer interface:Interfacial energy and work of adhesion [J]. Computational and Theoretical Polymer Science,1998,8(3):323-329.
    [67]Lordi V, Yao N. Molecular mechanics of binding in carbon-nanotube-polymer composites [J]. Journal of Materials Research,2000,15(12):2770-2779.
    [68]Wong M, Paramsothy M, Xu X, Ren Y, Li S, Liao K. Physical interactions at carbon nanotube-polymer interface [J]. Polymer,2003,44(25):7757-7764.
    [69]Qian D, Liu WK, Ruoff RS. Load transfer mechanism in carbon nanotube ropes [J]. Composites Science and Technology,2003,63(11):1561-1569.
    [70]Liu Y, Chen X. Continuum models of carbon nanotube-based composites using the boundary element method [J]. Electronic Journal of Boundary Elements,2007, 1(2).
    [71]Chen X, Liu Y. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites [J]. Computational Materials Science,2004,29(1):1-11.
    [72]Liu Y, Chen X. Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element [J]. Mechanics of materials,2003,35(1):69-81.
    [73]Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Applied Physics Letters,2000,76:2868.
    [74]Lau K.-T, Chipara M, Ling H-Y, Hui D. On the effective elastic moduli of carbon nanotubes for nanocomposite structures [J]. Composites Part B:Engineering, 2004,35(2):95-101.
    [75]Qian D, Dickey E. In-situ transmission electron microscopy studies of polymer-carbon nanotube composite deformation [J]. Journal of Microscopy, 2001,204(1):39-45.
    [76]Watts P, Hsu W. Behaviours of embedded carbon nanotubes during film cracking [J]. Nanotechnology,2003,14(5).
    [77]Odegard G, Gates T, Wise K, Park C, Siochi E. Constitutive modeling of nanotube-reinforced polymer composites [J]. Composites Science and Technology,2003,63(11):1671-1687.
    [78]Li C, Chou T-W. A structural mechanics approach for the analysis of carbon nanotubes [J]. International Journal of Solids and Structures,2003,40(10):2487-2499.
    [79]Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites [J]. Chemistry of Materials,2000,12(4): 1049-1052.
    [80]Xu X, Thwe MM, Shearwood C, Liao K. Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films [J]. Applied Physics Letters,2002,81(15):2833-2835.
    [81]Thostenson ET, Chou T-W. On the elastic properties of carbon nanotube-based composites:Modelling and characterization [J]. Journal of physics D:Applied physics,2003,36(5):573.
    [82]Lau K-t, Shi S-Q, Cheng H-m. Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures [J]. Composites Science and Technology,2003,63(8): 1161-1164.
    [83]Wagner H, Lourie O, Zhou X. Macrofragmentation and microfragmentation phenomena in composite materials [J]. Composites Part A:Applied Science and Manufacturing,1999,30(1):59-66.
    [84]Cooper CA, Cohen SR, Barber AH, Wagner HD. Detachment of nanotubes from a polymer matrix [J]. Applied Physics Letters,2002,81(20):3873-3875.
    [85]Thostenson ET, Chou T-W. Aligned multi-walled carbon nanotube-reinforced composites:Processing and mechanical characterization [J]. Journal of physics D: Applied physics,2002,35(16):L77.
    [86]Bower C, Rosen R, Jin L, Han J, Zhou O. Deformation of carbon nanotubes in nanotube-polymer composites [J]. Applied Physics Letters,1999,74:3317.
    [87]Schadler L, Giannaris S, Ajayan P. Load transfer in carbon nanotube epoxy composites [J]. Applied Physics Letters,1998,73:3842.
    [88]Daniel Wagner H. Nanotubc-polymer adhesion:A mechanics approach [J]. Chemical Physics Letters,2002,361(1):57-61.
    [89]Hadjiev V, Iliev M, Arepalli S, Nikolaev P, Files B. Raman scattering test of single-wall carbon nanotubc composites [J]. Applied Physics Letters,2001, 78(21):3193-3195.
    [90]Paipetis A, Galiotis C, Liu YC, Nairn JA. Stress transfer from the matrix to the fibre in a fragmentation test:Raman experiments and analytical modeling [J]. Journal of composite materials,1999,33(4):377-399.
    [91]Valentini L, Biagiotti J, Kenny J, Manchado L. Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites [J]. Journal of Applied Polymer Science,2003,89(10): 2657-2663.
    [92]Cooper C, Young R, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of raman spectroscopy [J]. Composites Part A:Applied Science and Manufacturing,2001,32(3):401-411.
    [93]Zhu J, Yudasaka M, Zhang M, Iijima S. Dispersing carbon nanotubes in water:□ A noncovalent and nonorganic way [J]. The Journal of Physical Chemistry B, 2004,108(31):11317-11320.
    [94]Zhao Y-L, Stoddart JF. Noncovalent functionalization of single-walled carbon nanotubes [J]. Accounts of Chemical Research,2009,42(8):1161-1171.
    [95]Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. JOURNAL-AMERICAN CHEMICAL SOCIETY,2001,123(16):3838-3839.
    [96]Hu L, Zhao YL, Ryu K, Zhou C, Stoddart JF, Gruner G. Light-induced charge transfer in pyrene/cdse-swnt hybrids [J]. Advanced Materials,2008,20(5):939-946.
    [97]Hecht DS, Ramirez RJ, Briman M, Artukovic E, Chichak KS, Stoddart JF, Gruner G. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor [J]. Nano letters,2006,6(9):2031-2036.
    [98]Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angewandte Chemie International Edition, 2001,40(9):1721-1725.
    [99]Steuerman DW, Star A, Narizzano R, Choi H, Ries RS, Nicolini C, Stoddart JF, Heath JR. Interactions between conjugated polymers and single-walled carbon nanotubes [J]. The Journal of Physical Chemistry B,2002,106(12):3124-3130.
    [100]Star A, Liu Y, Grant K, Ridvan L, Stoddart JF, Steuerman DW, Diehl MR, Boukai A, Heath JR. Noncovalent side-wall functionalization of single-walled carbon nanotubes [J]. Macromolecules,2003,36(3):553-560.
    [101]Cheng F, Adronov A. Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated zn-porphyrin polymer [J]. Chemistry-A European Journal,2006,12(19):5053-5059.
    [102]Yi W, Malkovskiy A, Chu Q, Sokolov AP, Colon ML, Meador M, Pang Y. Wrapping of single-walled carbon nanotubes by a π-conjugated polymer:The role of polymer conformation-controlled size selectivity [J]. The Journal of Physical Chemistry B,2008,112(39):12263-12269.
    [103]Vaisman L, Marom G, Wagner HD. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers [J]. Advanced Functional Materials,2006,16(3):357-363.
    [104]Islam M, Rojas E, Bergey D, Johnson A, Yodh A. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water [J]. Nano letters,2003, 3(2):269-273.
    [105]Yu J, Grossiord N, Koning CE, Loos J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution [J]. Carbon,2007,45(3):618-623.
    [106]Whitsitt EA, Barron AR. Silica coated single walled carbon nanotubes [J]. Nano letters,2003,3(6):775-778.
    [107]Kim TH, Doe C, Kline SR, Choi SM. Water-redispersible isolated single-walled carbon nanotubes fabricated by in□situ polymerization of micelles [J]. Advanced Materials,2007,19(7):929-933.
    [108]Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2006,1758(3):404-412.
    [109]Hirsch A. Functionalization of single-walled carbon nanotubes [J]. Angewandte Chemie International Edition,2002,41(11):1853-1859.
    [110]Sinnott SB. Chemical functionalization of carbon nanotubes [J]. Journal of Nanoscience and Nanotechnology,2002,2(2):113-123.
    [111]Prato M, Kostarelos K, Bianco A. Functional ized carbon nanotubes in drug design and discovery [J]. Accounts of Chemical Research,2007,41(1):60-68.
    [112]Mickelson E, Huffman C, Rinzler A, Smalley R, Hauge R, Margrave J. Fluorination of single-wall carbon nanotubes [J]. Chemical Physics Letters,1998, 296(1):188-194.
    [113]Kelly K, Chiang I, Mickelson E, Hauge R, Margrave J, Wang X, Scuseria G, Radloff C, Halas N. Insight into the mechanism of sidewall functionalization of single-walled nanotubes:An stm study [J]. Chemical Physics Letters,1999, 313(3):445-450.
    [114]Touhara H, Yonemoto A, Yamamoto K, Komiyama S, Kawasaki S, Okino F, Yanagisawa T, Endo M. Fluorination of cup-stacked carbon nanotubes, structures and properties [J]. Fluorine Chem,2002,114:181-188.
    [115]Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines [J]. Nano letters, 2003,3(3):331-336.
    [116]Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene [J]. Journal of the American Chemical Society,2003,125(48): 14893-14900.
    [117]Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification [J]. Current Applied Physics,2002,2(2):107-111.
    [118]Kim KS, Bae DJ, Kim JR, Park KA, Lim SC, Kim JJ, Choi WB, Park CY, Lee YH. Modification of electronic structures of a carbon nanotube by hydrogen functionalization [J]. Advanced Materials,2002,14(24):1818-1821.
    [119]Tagmatarchis N, Prato M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions [J]. Journal of materials chemistry,2004,14(4):437-439.
    [120]Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC. Solution properties of single-walled carbon nanotubes [J]. Science,1998,282(5386):95-98.
    [121]Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H. Chemical treatment of carbon nanotubes [J]. Carbon,1996,34(2):279-281.
    [122]Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB. Fullerene pipes [J]. Science,1998,280(5367):1253-1256.
    [123]Yu R, Chen L, Liu Q, Lin J, Tan K-L, Ng SC, Chan HS, Xu G-Q, Hor TA. Platinum deposition on carbon nanotubes via chemical modification [J]. Chemistry of Materials,1998,10(3):718-722.
    [124]Sham M-L, Kim J-K. Surface functionalities of multi-wall carbon nanotubes after uv/ozone and teta treatments [J]. Carbon,2006,44(4):768-777.
    [125]Wang S, Chang K, Yuan C. Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment [J]. Electrochimica Acta, 2009,54(21):4937-4943.
    [126]Ma PC, Kim J-K, Tang BZ. Functionalization of carbon nanotubes using a silane coupling agent [J]. Carbon,2006,44(15):3232-3238.
    [127]Sano M, Kamino A, Okamura J, Shinkai S. Self-organization of peo-g raft-single-walled carbon nanotubes in solutions and langmuir-blodgett films [J]. Langmuir, 2001,17(17):5125-5128.
    [128]Kong H, Gao C, Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization [J]. Journal of the American Chemical Society,2004,126(2):412-413.
    [129]Hamon M, Hui H, Bhowmik P, Itkis H, Haddon R. Ester-functionalized soluble single-walled carbon nanotubes [J]. Applied Physics A,2002,74(3):333-338.
    [130]Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of polymers using carbon nanotubes [J]. Advanced Materials,2006,18(6):689-706.
    [131]Monthioux M, Smith B, Burteaux B, Claye A, Fischer J, Luzzi D. Sensitivity of single-wall carbon nanotubes to chemical processing:An electron microscopy investigation [J]. Carbon,2001,39(8):1251-1272.
    [132]Chapman B. Glow discharge processes:Sputtering and plasma etching [J].1980.
    [133]Bogaerts A, Neyts E, Gijbels R, van der Mullen J. Gas discharge plasmas and their applications [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2002, 57(4):609-658.
    [134]Grill A. Cold plasma in materials fabrication [J].1994.
    [135]Hammer T. Application of plasma technology in environmental techniques [J]. Contributions to Plasma Physics,1999,39(5):441-462.
    [136]Frauchiger V, Schlottig F, Gasser B, Textor M. Anodic plasma-chemical treatment of cp titanium surfaces for biomedical applications [J]. Biomaterials, 2004,25(4):593-606.
    [137]Boskovic B, Golovko V, Cantoro M, Kleinsorge B, Chuang A, Ducati C, Hofmann S, Robertson J, Johnson B. Low temperature synthesis of carbon nanofibres on carbon fibre matrices [J]. Carbon,2005,43(13):2643-2648.
    [138]McOmber JI, Nair RS. Development of a process to achieve residue-free photoresist removal after high-dose ion implantation [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1991,55(1):281-286.
    [139]Hino T, Akiba M. Japanese developments of fusion reactor plasma facing components [J]. Fusion Engineering and Design,2000,49-50(0):97-105.
    [140]Inoue S-i, Kajikawa K. Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides [J]. Materials Science and Engineering:B,2003,103(2):170-176.
    [141]Chu PK, Chen J, Wang L, Huang N. Plasma-surface modification of biomaterials [J]. Materials Science and Engineering:R:Reports,2002,36(5):143-206.
    [142]Ahn KS, Kim JS, Kim CO, Hong JP. Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced field emission [J]. Carbon, 2003,41(13):2481-2485.
    [143]Yan B, Qian K, Zhang Y, Xu D. Effects of argon plasma treating on surface morphology and gas ionization property of carbon nanotubes [J]. Physica E:Low-dimensional Systems and Nanostructures,2005,28(1):88-92.
    [144]Yan Y, Cui J, Chan-Park M, Wang X, Wu Q. Systematic studies of covalent functionalization of carbon nanotubes via argon plasma-assisted uv grafting [J]. Nanotechnology,2007,18(11):115712.
    [145]Tseng C-H, Wang C-C, Chen C-Y. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites [J]. Chemistry of Materials,2007,19(2):308-315.
    [146]Yu K, Zhu Z, Zhang Y, Li Q, Wang W, Luo L, Yu X, Ma H, Li Z, Feng T. Change of surface morphology and field emission property of carbon nanotube films treated using a hydrogen plasma [J]. Applied surface science,2004,225(1): 380-388.
    [147]Feng T, Zhang J, Li Q, Wang X, Yu K, Zou S. Effects of plasma treatment on microstructure and electron field emission properties of screen-printed carbon nanotube films [J]. Physica E:Low-dimensional Systems and Nanostructures, 2007,36(1):28-33.
    [148]Zhang J, Feng T, Yu W, Liu X, Wang X, Li Q. Enhancement of field emission from hydrogen plasma processed carbon nanotubes [J]. Diamond and related materials,2004,13(1):54-59.
    [149]Plank NOV, Jiang L, Cheung R. Fluorination of carbon nanotubes in cf4 plasma [J]. Applied Physics Letters,2003,83(12):2426-2428.
    [150]Lee YS, Cho TH, Lee BK, Rho JS, An KH, Lee YH. Surface properties of fluorinated single-walled carbon nanotubes [J]. Journal of fluorine chemistry, 2003,120(2):99-104.
    [151]Zhu Y, Cheong F, Yu T, Xu X, Lim C, Thong J, Shen Z, Ong C, Liu Y, Wee A. Effects of cf4 plasma on the field emission properties of aligned multi-wall carbon nanotube films [J]. Carbon,2005,43(2):395-400.
    [152]Kalita G, Adhikari S, Aryal HR, Ghimrc DC, Afre R, Soga T, Sharon M, Umeno M. Fluorination of multi-walled carbon nanotubes (mwnts) via surface wave microwave (sw-mw) plasma treatment [J]. Physica E:Low-dimensional Systems and Nanostructures,2008,41(2):299-303.
    [153]Hong YC, Shin DH, Cho SC, Uhm HS. Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability [J]. Chemical Physics Letters,2006,427(4):390-393.
    [154]Bubert H, Haiber S, Brandl W, Marginean G, Heintze M, Bruser V. Characterization of the uppermost layer of plasma-treated carbon nanotubes [J]. Diamond and related materials,2003,12(3):811-815.
    [155]Chirila V, Marginean G, Brandl W. Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties [J]. Surface and Coatings Technology,2005,200(1):548-551.
    [156]Okpalugo T, Papakonstantinou P, Murphy H, Mclaughlin J, Brown N. Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (apdbd) [J]. Carbon,2005,43(14):2951-2959.
    [157]Hojati-Talemi P, Cervini R, Simon GP. Effect of different microwave-based treatments on multi-walled carbon nanotubes [J]. Journal of Nanoparticle Research,2010,12(2):393-403.
    [1]An KH, Jeon KK, Heo JK, Lim SC, Rae DJ, Lee YH. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotubc and polypyrrole [J]. Journal of The Electrochemical Society,2002,149(8): A1058-A1062.
    [2]An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH. Supercapacitors using single-walled carbon nanotube electrodes [J]. Advanced Materials,2001,13(7):497-500.
    [3]Li J, Cassell A, Delzeit L, Han J, Meyyappan M. Novel three-dimensional electrodes:□ Electrochemical properties of carbon nanotube ensembles [J]. The Journal of Physical Chemistry B,2002,106(36):9299-9305.
    [4]Inpil K, et al. A carbon nanotube strain sensor for structural health monitoring [J]. Smart Materials and Structures,2006,15(3):737.
    [5]Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN. Multifunctional composites using reinforced laminae with carbon-nanotube forests [J]. Nat Mater,2006,5(6):457-462.
    [6]Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE. Large-scale purification of single-wall carbon nanotubes:Process, product, and characterization [J]. Applied Physics A:Materials Science & Processing,1998,67(1):29-37.
    [7]Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE. Fullerene pipes [J]. Science,1998,280(5367):1253-1256.
    [8]Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (swnt) buckypaper/epoxy resin matrix nanocomposites [J]. Composites Part A:Applied Science and Manufacturing,2004,35(10):1225-1232.
    [9]Breuer O, Sundararaj U. Big returns from small fibers:A review of polymer/carbon nanotube composites [J]. Polymer composites,2004,25(6):630-645.
    [10]Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS. Surface modification of multiwalled carbon nanotubes:□ Toward the tailoring of the interface in polymer composites [J]. Chemistry of Materials,2003,15(16):3198-3201.
    [11]Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization [J]. Chemistry of Materials,2003, 15(23):4470-4475.
    [12]Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization [J]. Nano Letters,2003,3(8):1107-1113.
    [13]Osorio AG, Silveira ICL, Bueno VL, Bergmann CP. H2so4/hno3/hcl-functionalization and its effect on dispersion of carbon nanotubes in aqueous media [J]. Applied surface science,2008,255(5 PART 1):2485-2489.
    [14]Guruvenket S, Rao GM, Komath M, Raichur AM. Plasma surface modification of polystyrene and polyethylene [J]. Applied Surface Science,2004,236(1-4):278-284.
    [15]Oh KW, Kim SH, Kim EA. Improved surface characteristics and the conductivity of polyaniline-nylon 6 fabrics by plasma treatment [J]. Journal of Applied Polymer Science,2001,81(3):684-694.
    [16]Ionescu R, Espinosa E, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Lier GV, Charlier J-C. Oxygen functionalisation of mwnt and their use as gas sensitive thick-film layers [J]. Sensors and Actuators B:Chemical, 2006,113(1):36-46.
    [17]Ryan ME, Badyal JPS. Surface texturing of ptfe film using nonequilibrium plasmas [J]. Macromolecules,1995,28(5):1377-1382.
    [18]Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC Radio-frequency plasma functionalization of carbon nanotubes surface o[sub 2], nh[sub 3], and cf[sub 4] treatments [J]. Journal of Applied Physics,2005,98(7):074308-074308.
    [19]Chen C, Liang B, Ogino A, Wang X, Nagatsu M. Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment [J]. The Journal of Physical Chemistry C,2009,113(18):7659-7665.
    [20]Vohrer U, Zschoerper NP, Koehne Y, Langowski S, Oehr C. Plasma modification of carbon nanotubes and bucky papers [J]. Plasma Processes and Polymers,2007, 4(S1):S871-S877.
    [21]Harris F, Pamidimukkala A, Gupta R, Das S, Wu T, Mock G. Synthesis and characterization of reactive end-capped poiymide oligomers [J]. Journal of Macromolecular Science-Chemistry,1984,21(8-9):1117-1135.
    [22]Research NRCCoHS. U.S. Supersonic commercial aircraft:Assessing nasa's high speed research program [M]. National Academies Press,1997.
    [23]Hergenrother PM, Smith Jr JG. Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides [J]. Polymer,1994,35(22):4857-4864.
    [24]Connell JW, Smith JG, Hergenrother PM, Criss JM. High temperature transfer molding resins:Laminate properties of peti-298 and peti-330 [J]. High Performance Polymers,2003,15(4):375-394.
    [25]Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites [J]. Composites Part A:Applied Science and Manufacturing,2004,35(1):67-74.
    [26]Gonnet P, Liang Z, Choi ES, Kadambala RS, Zhang C, Brooks JS, Wang B, Kramer L. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites [J]. Current Applied Physics,2006,6(1):119-122.
    [27]Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites [J]. Carbon,2006, 44(9):1624-1652.
    [28]Fu X, Zhang C, Liu T, Liang R, Wang B. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites [J]. Nanotechnology,2010,21(23):235701-235701.
    [29]Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:A bucky paper electrode [J]. Journal of the American Chemical Society,2001,123(27):6536-6542.
    [30]Gou J. Single-walled nanotube bucky paper and nanocomposite [J]. Polymer international,2006,55(11):1283-1288.
    [31]Rinzler A, Liu J, Dai H, Nikolaev P, Huffman C, Rodriguez-Macias F, Boul P, Lu AH, Heymann D, Colbert D. Large-scale purification of single-wall carbon nanotubes:Process, product, and characterization [J]. Applied Physics A: Materials Science & Processing,1998,67(1):29-37.
    [32]李佚霜.碳纳米纸增强的pmr型聚酰亚胺复合材料的制备与性能研究[D].东华大学,2010.
    [33]陈建升,左红军,高群峰,何冠君,范琳,杨士勇.苯乙炔基封端pmr型聚酰亚胺树脂的制备与性能研究[J].航空材料学报,2007,27(5):66-70.
    [34]Pater R. Thermosetting polymides:A review [J]. SAMPE J.,1994,30(5):29-38.
    [35]Wang CX, Ren Y, Qiu YP. Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics [J]. Surface and Coatings Technology,2007,202(1):77-83.
    [36]Masuoka T, Hirasa O, Suda Y, Ohnishi M. Plasma surface graft of n,n-dimethylacrylamide onto porous polypropylene membrane [J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry,1989,33(5):421-427.
    [37]谢剑飞.三维机织物增强pmr型聚酰亚胺复合材料的制备、表征及粘结性能研究[D].东华大学,2011.
    [38]孙洁.常压等离子体处理高分了材料诱导自由基及其引发表面改性反应的研究[D].东华大学,2011.
    [39]Marshall MW, Popa-Nita S, Shapter JG. Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process [J]. Carbon, 2006,44(7):1137-1141.
    [40]Bryant RG, Jensen BJ, Hergenrother PM. Chemistry and properties of a phenylethynyl-terminated polyimide [J]. Journal of Applied Polymer Science, 1996,59(8):1249-1254.
    [41]Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites [J]. Applied Physics Letters,2000,76:2868.
    [42]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta metallurgica,1973,21(5):571-574.
    [43]Polovina M, Babic B, Kaluderovic B, Dekanski A. Surface characterization of oxidized activated carbon cloth [J]. Carbon,1997,35(8):1047-1052.
    [1]Olek M, Ostrander J, Jurga S, Mohwald H, Kotov N, Kempa K, Giersig M. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies [J]. Nano letters,2004,4(10):1889-1895.
    [2]Pham TT, Sridhar V, Kim JK. Fluoroelastomer-mwnt nanocomposites-1: Dispersion, morphology, physico-mechanical, and thermal properties [J]. Polymer composites,2009,30(2):121-130.
    [3]Li Y, Shimizu H. Toward a stretchable, elastic, and electrically conductive nanocomposite:Morphology and properties of poly [styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing [J]. Macromolecules,2009,42(7):2587-2593.
    [4]Pham GT, Park Y-B, Wang S, Liang Z, Wang B, Zhang C, Funchess P, Kramer L. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets [J]. Nanotechnology,2008,19(32):325705.
    [5]Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (swnt) buckypaper/epoxy resin matrix nanocomposites [J]. Composites Part A:Applied Science and Manufacturing,2004,35(10):1225-1232.
    [6]Bogdanovich AE, Bradford PD. Carbon nanotube yarn and 3-d braid composites. Part i:Tensile testing and mechanical properties analysis [J]. Composites Part A: Applied Science and Manufacturing,2010,41(2):230-237.
    [7]Bradford PD, Bogdanovich AE. Carbon nanotube yarn and 3-d braid composites. Part ii:Dynamic mechanical analysis [J]. Composites Part A:Applied Science and Manufacturing,2010,41(2):238-246.
    [8]Mora R, Vilatela J, Windle A. Properties of composites of carbon nanotube fibres [J]. Composites Science and Technology,2009,69(10):1558-1563.
    [9]Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S. Study on poly (methyl methacrylate)/carbon nanotube composites [J]. Materials Science and Engineering: A,1999,271(1):395-400.
    [10]Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites [J]. Chemistry of Materials,2000,12(4): 1049-1052.
    [11]Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes [J]. Macromolecules,2006,39(16):5194-5205.
    [12]Simmons TJ, Bult J, Hashim DP, Linhardt RJ, Ajayan PM. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites [J]. ACS nano,2009, 3(4):865-870.
    [13]Rosca ID, Watari F, Uo M, Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid [J]. Carbon,2005,43(15):3124-3131.
    [14]Frizzell C, Coutinho D, Balkus Jr K, Minett A, Blau W, Coleman J. Reinforcement of macroscopic carbon nanotube structures by polymer intercalation:The role of polymer molecular weight and chain conformation [J|. Physical Review B,2005,72(24):245420.
    [15]Vigolo B, Poulin P, Lucas M, Launois P, Bcrnier P. Improved structure and properties of single-wall carbon nanotube spun fibers [J]. Applied Physics Letters, 2002,81(7):1210-1212.
    [16J Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C. Macroscopic, neat, single-walled carbon nanotube fibers [J]. Science,2004,305(5689):1447-1450.
    [17]Zhang X, Li Q, Holesinger TG, Arendt PN, Huang J, Kirven PD, Clapp TG, DePaula RF, Liao X, Zhao Y. Ultrastrong, stiff, and lightweight carbon nanotube fibers [J]. Advanced Materials,2007,19(23):4198-4201.
    [18]Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan P. Continuous carbon nanotube reinforced composites [J]. Nano letters,2008,8(9):2762-2766.
    [19]Jiang K, Li Q, Fan S. Nanotechnology:Spinning continuous carbon nanotube yarns [J]. Nature,2002,419(6909):801-801.
    [20]Li Q, Zhang X, DePaula RF, Zheng L, Zhao Y, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT. Sustained growth of ultralong carbon nanotube arrays for fiber spinning [J]. Advanced Materials,2006,18(23):3160-3163.
    [21]Zhang M, Atkinson KR, Baughman RH. Multifunctional carbon nanotube yarns by downsizing an ancient technology [J]. Science,2004,306(5700):1358-1361.
    [22]Kumar S, Dang TD, Arnold FE, Bhattacharyya AR, Min BG, Zhang X, Vaia RA, Park C, Adams WW, Hauge RH. Synthesis, structure, and properties of pbo/swnt composites& [J]. Macromolecules,2002,35(24):9039-9043.
    [23]Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S. Spinning and processing continuous yarns from 4-inch wafer scale super aligned carbon nanotube arrays [J]. Advanced Materials,2006,18(12):1505-1510.
    [24]Cheng Q, Wang J, Wen J, Liu C, Jiang K, Li Q, Fan S. Carbon nanotube/epoxy composites fabricated by resin transfer molding [J]. Carbon,2010,48(1):260-266.
    [25]Wang X, Jiang Q, Xu W, Cai W, Inoue Y, Zhu Y. Effect of carbon nanotube length on thermal, electrical and mechanical properties of cnt/bismaleimide composites [J]. Carbon,2012.
    [26]Global B. http://www2.basf.us/diols/bcdiolsnmp_properties.html.
    [27]Bradford PD, Wang X, Zhao HB, Maria J-P, Jia QX, Zhu YT. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes [J]. Composites Science and Technology,2010,70(13):1980-1985.
    [28]Wang X, Bradford PD, Liu W, Zhao H, Inoue Y, Maria J-P, Li Q, Yuan F-G, Zhu Y. Mechanical and electrical property improvement in cnt/nylon composites through drawing and stretching [J]. Composites Science and Technology,2011, 71(14):1677-1683.
    [29]Naebe M, Wang J, Xue Y, Wang X, Lin T. Carbon nanotube reinforced rigid-rod polyimide [J]. Journal of Applied Polymer Science,2010,118(1):359-365.
    [30]Yuen S-M, Ma C-CM, Lin Y-Y, Kuan H-C. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite [J]. Composites Science and Technology,2007,67(11-12):2564-2573.
    [31]Zhu B-K, Xie S-H, Xu Z-K, Xu Y-Y. Preparation and properties of the polyimide/multi-walled carbon nanotubes (mwnts) nanocomposites [J]. Composites Science and Technology,2006,66(3-4):548-554.
    [32]So HH, Cho JW, Sahoo NG. Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites [J]. European Polymer Journal,2007,43(9):3750-3756.
    [33]Chou W-J, Wang C-C, Chen C-Y. Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes [J]. Composites Science and Technology,2008,68(10-11):2208-2213.
    [34]Cui S, Kinloch IA, Young RJ, No6 L, Monthioux M. The effect of stress transfer within double-walled carbon nanotubes upon their ability to reinforce composites [J]. Advanced Materials,2009,21(35):3591-3595.
    [35]Diaham S, Locatelli ML, Lebey T, Malec D. Thermal imidization optimization of polyimide thin films using fourier transform infrared spectroscopy and electrical measurements [J]. Thin Solid Films,2011,519(6):1851-1856.
    [36]Inc. UA. http://northamerica.ube.com/content.php?pageid=83.
    [37]Itoh E, Tamura S, Ishiyama K, Kurata T, Miyairi K. Patterning of polyimide/single-walled carbon nanotube composite and its electrical properties [J]. Japanese Journal of Applied Physics,2010,49(1).
    [38]Yuan W, Che J, Chan-Park MB. A novel polyimide dispersing matrix for highly electrically conductive solution-cast carbon nanotube-based composite [J]. Chemistry of Materials,2011,23(18):4149-4157.
    [39]Mallick PK, Takeda N. Proceedings of the twelfth U.S.-japan conference on composite materials:September 21-22,2006, the university of michigan-dearborn, dearborn, michigan [M]. DEStech Publications, Inc,2006,826.
    [40]Wikipedia. http://en.wikipedia.org/wiki/Polyimide.
    [41]Xie H, Cai A, Wang X. Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays [J]. Physics Letters A,2007,369(1):120-123.
    [42]Kato R, Maesono A, Tye R, Hatta I. Thermal diffusivity by modified ac calorimetry using a modulated laser beam energy source [J]. International journal of thermophysics,1999,20(3):977-986.
    [43]Yang K, Gu M, Guo Y, Pan X, Mu G. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites [J]. Carbon,2009,47(7):1723-1737.
    [44]Pan C, Hocheng H. Evaluation of anisotropic thermal conductivity for unidirectional frp in laser machining [J]. Composites Part A:Applied Science and Manufacturing,2001,32(11):1657-1667.
    [I]Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A. Carbon nanotube-based hierarchical composites:A review [J]. Journal of materials chemistry,2010, 20(23):4751-4762.
    [2]Rahmat M, Hubert P. Carbon nanotube-polymer interactions in nanocomposites: A review [J]. Composites Science and Technology,2011,72(1):72-84.
    [3]Cooper CA, Cohen SR, Barber AH, Wagner HD. Detachment of nanotubes from a polymer matrix [J]. Applied Physics Letters,2002,81(20):3873-3875.
    [4]Barber AH, Cohen SR, Wagner HD. Measurement of carbon nanotube--polymer interfacial strength [J]. Applied Physics Letters,2003,82(23):4140-4142.
    [5]Rahmat M, Das K, Hubert P. Interaction stresses in carbon nanotube-polymer nanocomposites [J]. ACS Applied Materials & Interfaces,2011,3(9):3425-3431.
    [6]Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K. Physical interactions at carbon nanotube-polymer interface [J]. Polymer,2003,44(25):7757-7764.
    [7]Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites [J]. Applied Physics Letters,1998,73(26):3842-3844.
    [8]Wagner HD, Lourie O, Feldman Y, Tenne R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix [J]. Applied Physics Letters, 1998,72(2):188-190.
    [9]Kothari AK, Jian K, Rankin J, Sheldon BW. Comparison between carbon nanotube and carbon nanofiber reinforcements in amorphous silicon nitride coatings [J]. Journal of the American Ceramic Society,2008,91(8):2743-2746.
    [10]Espinosa HD, Filleter T, Naraghi M. Multiscale experimental mechanics of hierarchical carbon-based materials [J]. Advanced Materials,2012,24(21):2805-2823.
    [11]Tallury SS, Pasquinelli MA. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes [J]. The Journal of Physical Chemistry B,2010,114(12):4122-4129.
    [12]Tallury SS, Pasquinelli MA. Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes [J]. The Journal of Physical Chemistry B,2010,114(29):9349-9355.
    [13]Gurevitch I, Srebnik S. Conformational behavior of polymers adsorbed on nanotubes [J]. The Journal of Chemical Physics,2008,128(14):144901.
    [14]Gurevitch I, Srebnik S. Monte carlo simulation of polymer wrapping of nanotubes [J]. Chemical Physics Letters,2007,444(1-3):96-100.
    [15| Karachevtsev MV, Karachevtsev VA. Peculiarities of homooligonuclcotides wrapping around carbon nanotubes:Molecular dynamics modeling [J]. The Journal of Physical Chemistry B,2011,115(29):9271-9279.
    116] Caddeo C, Melis C, Colombo L, Mattoni A. Understanding the helical wrapping of poly(3-hexylthiophene) on carbon nanotubes [J]. The Journal of Physical Chemistry C,2010,114(49):21109-21113.
    [17]Guo R, Tan Z, Xu K, Yan L-T. Length-dependent assembly of a stiff polymer chain at the interface of a carbon nanotube [J]. ACS Macro Letters,2012,1(8): 977-981.
    [18]Karatrantos A, Composto RJ, Winey KI, Clarke N. Structure and conformations of polymer/swcnt nanocomposites [J]. Macromolecules,2011,44(24):9830-9838.
    [19]Foroutan M, Nasrabadi AT. Investigation of the interfacial binding between single-walled carbon nanotubes and heterocyclic conjugated polymers [J]. The Journal of Physical Chemistry B,2010,114(16):5320-5326.
    [20]Nasrabadi AT, Foroutan M. Interactions between polymers and single-walled boron nitride nanotubes:A molecular dynamics simulation approach [J]. The Journal of Physical Chemistry B,2010,114(47):15429-15436.
    [21]Mirjalili V, Hubert P. Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification [J]. Composites Science and Technology,2010,70(10):1537-1543.
    [22]Wei C, Srivastava D, Cho K. Structural ordering in nanotube polymer composites [J]. Nano letters,2004,4(10):1949-1952.
    [23]Song H-Y, Zha X-W. Molecular dynamics study of effects of intertube spacing on sliding behaviors of multi-walled carbon nanotube [J]. Computational Materials Science,2011,50(3):971-974.
    [24]Li Y, Hu N, Yamamoto G, Wang Z, Hashida T, Asanuma H, Dong C, Okabe T, Arai M, Fukunaga H. Molecular mechanics simulation of the sliding behavior between nested walls in a multi-walled carbon nanotube [J]. Carbon,2010,48(10): 2934-2940.
    [25]Lordi V, Yao N. Molecular mechanics of binding in carbon-nanotube-polymer composites [J]. Journal of Materials Research,2000,15(12):2770-2779.
    [26]Li Y, Liu Y, Peng X, Yan C, Liu S, Hu N. Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites [J]. Computational Materials Science,2011,50(6):1854-1860.
    [27]Daniel Wagner H. Nanotube-polymer adhesion:A mechanics approach [J]. Chemical Physics Letters,2002,361(1-2):57-61.
    [28]Chowdhury SC, Okabe T. Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method [J]. Composites Part A:Applied Science and Manufacturing,2007,38(3):747-754.
    [29]Wernik JM, Cornwell-Mott BJ, Meguid SA. Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model [J]. International Journal of Solids and Structures,2012, 49(13):1852-1863.
    [30]Qian D, He P, Shi D. A molecular mechanics study on the effect of surface modification on the interfacial properties in carbon nanotube/polystyrene nanocomposites [J].2010,8(2):151-165.
    [31]Filleter T, Yockel S, Naraghi M, Paci JT, Compton OC, Mayes ML, Nguyen ST, Schatz GC, Espinosa HD. Experimental-computational study of shear interactions within double-walled carbon nanotube bundles [J]. Nano letters,2012,12(2):732-742.
    [32]Qi D, Hinkley J, He G. Molecular dynamics simulation of thermal and mechanical properties of polyimide-carbon-nanotube composites [J]. Modelling and Simulation in Materials Science and Engineering,2005,13(4):493.
    [33]Facinelli JV, Gardner SL, Dong L, Sensenich CL, Davis RM, Riffle JS. Controlled molecular weight polyimides from poly(amic acid) salt precursors [J]. Macromolecules,1996,29(23):7342-7350.
    [34]St6hr J, Samant MG, Cossy-Favre A, Diaz J, Momoi Y, Odahara S, Nagata T. Microscopic origin of liquid crystal alignment on rubbed polymer surfaces [J]. Macromolecules,1998,31(6):1942-1946.
    [35]Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes [J]. Nature materials,2003,2(5):338-342.
    [36]Xiao Y, Chung T-S, Chng ML, Tamai S, Yamaguchi A. Structure and properties relationships for aromatic polyimides and their derived carbon membranes:? Experimental and simulation approaches [J]. The Journal of Physical Chemistry B, 2005,109(40):18741-18748.
    [37]Agata Y, Kobayashi M, Kimura H, Takeishi M. Stereospecific interaction of one-handed helical polycations with chiral anions [J]. Polymer,2002,43(17):4829-4833.
    [38]Frankland SJV, Caglar A, Brenner DW, Griebel M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces [J]. The Journal of Physical Chemistry B,2002, 106(12):3046-3048.
    [39]Frankland SJV, Ilarik VM. Analysis of carbon nanotube pull-out from a polymer matrix [J]. Surface Science,2003,525(1-3):L103-L108.
    [40]Yang L,Tong L, He X. Md simulation of carbon nanotube pullout behavior and its use in determining mode i delamination toughness [J]. Computational Materials Science,2012,55(0):356-364.
    [41]Li C, Chou T-W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces [J]. Composites Science and Technology,2003,63(11): 1517-1524.
    [42]Liao K, Li S. Interfacial characteristics of a carbon nanotube--polystyrene composite system [J]. Applied Physics Letters,2001,79(25):4225-4227.
    [43]Liu S, Hu N, Yamamoto G, Cai Y, Zhang Y, Liu Y, Li Y, Hashida T, Fukunaga H. Investigation on cnt/alumina interface properties using molecular mechanics simulations [J]. Carbon,2011,49(11):3701-3704.
    [44]Zheng Q, Xia D, Xue Q, Yan K, Gao X, Li Q. Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system [J]. Applied surface science,2009,255(6):3534-3543.
    [1]Hergenrother PM. The use, design, synthesis, and properties of high performance/high temperature polymers:An overview [J]. High Performance Polymers,2003,15(1):3-45.
    [2]Kricheldorf HR. Progress in polyimide chemistry.2 [M]. Springer Verlag,1999.
    [3]Sroog CE. Polyimides [J]. Journal of Polymer Science:Macromolecular Reviews, 1976,11(1):161-208.
    [4]Sroog CE. Polyimides [J]. Progress in Polymer Science,1991,16(4):561-694.
    [5]Klop E, Lammers M. Xrd study of the new rigid-rod polymer fibre pipd [J]. Polymer,1998,39(24):5987-5998.
    [6]Wellman M, Adams WW, Wolff R, Dudis D, Wiff D, Fratini A. Model compounds for rigid-rod aromatic heterocyclic polymers.1. X-ray structures of 2, 6-diphenylbenzo [1,2-d:4,5-d'] bis (thiazole) and 2,6-diphenylbenzo [1,2-d:5, 4-d'] bis (thiazole) [J]. Macromolecules,1981,14(4):935-939.
    [7]Welsh W, Bhaumik D, Mark J. Phenylene group rotations and nonplanar conformations in some cis-and trans-poly (benzoxazoles) and-poly (benzothiazoles) [J]. Macromolecules,1981,14(4):947-950.
    [8]Ho PS, Poon TW, Leu J. Molecular structure and thermal/mechanical properties of polymer thin films [J]. Journal of Physics and Chemistry of Solids,1994, 55(10):1115-1124.
    [9]Numata S, Kinjo N, Makino D. Chemical structures and properties of low thermal expansion coefficient polyimides [J]. Polymer Engineering & Science,1988, 28(14):906-911.
    [10]Dokmeci M, Najafi K. A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages [J]. Microelectromechanical Systems, Journal of,2001,10(2):197-204.
    [11]Demczyk B, Wang Y, Cumings J, Hetman M, Han W, Zettl A, Ritchie R. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J]. Materials Science and Engineering:A,2002, 334(1):173-178.
    [12]Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L. Elastic and shear moduli of single-walled carbon nanotube ropes [J]. Physical Review Letters,1999,82(5):944-947.
    [13]Zhu B-K, Xie S-H, Xu Z-K, Xu Y-Y. Preparation and properties of the polyimide/multi-walled carbon nanotubes (mwnts) nanocomposites [J]. Composites Science and Technology,2006,66(3):548-554.
    [14]Park C, Ounaies Z, Watson KA, Crooks RE, Smith Jr J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication [J]. Chemical Physics Letters,2002, 364(3):303-308.
    [15]Qu L, Lin Y, Hill DE, Zhou B, Wang W, Sun X, Kitaygorodskiy A, Suarez M, Connell JW, Allard LF. Polyimide-functionalized carbon nanotubes:Synthesis and dispersion in nanocomposite films [J]. Macromolecules,2004,37(16):6055-6060.
    [16]Pei L, Abbott J, Zufclt K, Davis A, Zappe M, Decker K, Liddiard S, Vanflect R, Lin ford MR, Davis R. Processing of thin carbon nanotube-polyimide composite membranes [J]. Nanoscience and Nanotcchnology Letters,2011,3(4):451-457.
    [17]Jiang Q, Li Y, Xie J, Sun J, Hui D, Qiua Y. Plasma functionalization of bucky paper and its composite with phenylethynyl-terminated polyimide [J]. Composites Part B:Engineering,2012.
    [18]Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites [J]. Carbon,2006, 44(9):1624-1652.
    [19]Breuer O, Sundararaj U. Big returns from small fibers:A review of polymer/carbon nanotube composites [J]. Polymer composites,2004,25(6):630-645.
    [20]Wang X, Yong Z, Li Q, Bradford P, Liu W, Tucker D, Cai W, Wang H, Yuan F, Zhu Y. Ultrastrong, stiff and multifunctional carbon nanotube composites [J]. Materials Research Letters,2012, (ahead-of-print):1-7.
    [21]Frankland S, Harik V, Odegard G, Brenner D, Gates T. The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation [J]. Composites Science and Technology,2003,63(11):1655-1661.
    [22]Alkhateb H, Al-Ostaz A, Cheng A. Geometric and simulation parameter effects on elastic moduli of multi-walled carbon nanotubes using molecular dynamics approach [C]. Proc. of the 23rd Technical Conf. of American Society for Composites.2008:
    [23]Li Y, Hu N, Yamamoto G, Wang Z, Hashida T, Asanuma H, Dong C, Okabe T, Arai M, Fukunaga H. Molecular mechanics simulation of the sliding behavior between nested walls in a multi-walled carbon nanotube [J]. Carbon,2010,48(10): 2934-2940.
    [24]Stohr J, Samant MG, Cossy-Favre A, Diaz J, Momoi Y, Odahara S, Nagata T. Microscopic origin of liquid crystal alignment on rubbed polymer surfaces [J]. Macromolecules,1998,31(6):1942-1946.
    [25]Han Y, Elliott J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites [J]. Computational Materials Science,2007, 39(2):315-323.
    [26]Askeland DR, Phule PP. The science and engineering of materials [M]. Thomson Learning,2006.
    [27]Committee E. Test method for youngs modulus, tangent modulus, and chord modulus.2010, ASTM International:Tech. rep.
    [28]Liu W, Zhang XH, Xu G, Bradford PD, Wang X, Zhao HB, Zhang YY, Jia QX, Yuan F-G, Li QW. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly (vinyl alcohol) spray [J]. Carbon,2011,49(14): 4786-4791.
    [29]Kanagaraj S, Varanda FR, Zhil'tsova TV, Oliveira MS, Simoes JA. Mechanical properties of high density polyethylene/carbon nanotube composites [J]. Composites Science and Technology,2007,67(15):3071-3077.
    [30]Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun'ko YK, Blau WJ. High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase [J]. Advanced Functional Materials,2004,14(8):791-798.
    [31]Assouline E, Lustiger A, Barber A, Cooper C, Klein E, Wachtel E, Wagner H. Nucleation ability of multiwall carbon nanotubes in polypropylene composites [J]. Journal of Polymer Science Part B:Polymer Physics,2003,41(5):520-527.
    [32]Tsai SW, Massard T. Composites design[R]. DTIC Document,1984.
    [33]Salvetat J-P, Bonard J-M, Thomson N, Kulik A, Forro L, Benoit W, Zuppiroli L. Mechanical properties of carbon nanotubes [J]. Applied Physics A,1999,69(3): 255-260.
    [34]Li C, Chou T-W. Elastic moduli of multi-walled carbon nanotubes and the effect of van der waals forces [J]. Composites Science and Technology,2003,63(11): 1517-1524.
    [35]Yudin VE, Svetlichnyi VM, Shumakov AN, Letenko DG, Feldman AY, Marom G. The nucleating effect of carbon nanotubes on crystallinity in r-bapb-type thermoplastic polyimide [J]. Macromolecular rapid communications,2005,26(11): 885-888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700