用户名: 密码: 验证码:
高精数控机床永磁直线进给系统机电耦合法向振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度数控机床的精度已经发展到纳米级阶段,永磁直线伺服进给系统是高精数控机床的核心部件,精密机床直线进给系统振动问题已是不容忽视和不可回避的问题,必须对永磁直线伺服进给系统进行运动学、动力学、机械结构、电气性能等方面综合分析和整体设计,才能全面提高直线伺服进给系统的各项性能指标。本文针对永磁直线伺服进给系统因法向力引起的振动问题,围绕电磁振源、系统动力学、减振优化设计等方面进行了研究。
     针对波动的法向力引起直线电动机振动的问题,利用解析法和有限元法计算总结了不同极、槽数配合的永磁直线伺服电机法向力分布的时空变化规律,进一步分析了法向力分布对动子振动的影响规律。分析结果表明,极、槽数的公约数为1或2的近极槽直线电机,在法向力的作用下易引起法向共振。
     为分析直线进给系统振动特性,建立了磁—结构耦合系统的数学模型,通过对磁—结构耦合场方程的间接耦合求解,获得机电系统耦合动力学微分方程的解。将直线电机动子与工作台作为一体化结构,分析了工作台系统的动力学特性。在法向力作用下,直线电机动子与工作台作为一体化结构的变形比电机动子单一结构的变形增大,固有频率降低。直线进给系统模态分析表明工作台为系统振动的薄弱环节。
     针对高精数控机床振动特性易受机械部件弹性变形的影响,从机电耦合角度出发,将永磁直线进给工作台等效为多自由度的“弹簧—阻尼”系统,用有限元法进行柔性化,应用拉格朗日—麦克斯韦方程建立进给系统多柔性体的机电耦合模型。结合有限元分析软件ANSYS、动力学仿真软件ADAMS建立直线进给系统多柔性体的机电耦合仿真模型。对比分析表明,柔性体、电气控制参数以及谐波扰动对系统振动有显著影响。实验测量的工作台法向加速度与柔性化机电耦合模型的仿真结果相符。
     为提高永磁同步直线电动机直线进给系统的抗振能力,采用磁—结构耦合拓扑优化方法对直线进给系统的结构进行优化设计,用伴随矩阵法对磁—结构耦合方程的灵敏度进行分析。以柔度最小和低阶固有频率最大为优化目标,在法向力的作用下分别对直线电机动子、工作台、底座进行结构拓扑优化。分析重构后系统的振动特性表明,在不影响磁场分布的前提下,磁—结构耦合拓扑优化有效地提高了系统动、静态刚度。
     对永磁直线伺服电机样机的法向力及振动进行测试。通过设计的测量装置,测量样机在一对极距下的法向力。测量了永磁直线伺服电机进给系统工作台在不同速度、不同载荷条件下的加速度,并分析振动频率。实验验证了建立的直线进给系统多柔体机电耦合模型的正确型。
The accuracy of high-precision CNC machine tools has been developed to the stage of nanometer, and the permanent magnet linear feed system is one of the core components of the direct driven high-precision and high-speed CNC machine tools. The vibration of feed system cannot be ignored and avoided. To comprehensively improve the performance of linear feed system, kinematics, dynamics, mechanics, electric and other aspects must be integratedly designed in permanent magnet linear feed system. In this dissertation, normal vibration of permanent magnet linear feed system due to the normal force acting on the motors was studied. Thereinto, the electromagnetic vibration source, system dynamics and damping optimization design were focused on.
     The root cause of vibration of permanent magnet linear servo motor is the normal magnetic forces ripples. The space-time distribution of normal force in PMLSM with different poles/slots number has been calculated with analytical method as well as finite element method (FEM), and the influence regularity of the normal-force distribution on the mover vibration was further analyzed. The results indicate that when the poles and slots have a common divisor equal to one or two, the resonance is liable to produce.
     For analyzing the vibration characteristics of linear feed system, the mathematical model for magnetic-structure coupling system was established. Through the indirect coupling calculation on the equation for magnetic-structure coupling field, the coupling-dynamics differential equation for the electromechanical system can be solved. The dynamic characters of worktable system were analyzed supposing the mover of the linear motor and worktable be an integral structure. Under the action of the normal force, the integral structure of worktable system has larger deformation and lower natural frequency than one single motor mover. The modal analysis of linear feed system showed that the workbench is the weak component of the system.
     Considering the fact that the vibration characteristics of high-precision CNC machine tools is susceptible to the mechanical components of elastic deformation, linear feed table was taken as equivalence to multi-degree-of-freedom spring-damper system based on global coupling view of the electromechanical system. Then the table was flexible by FEM firstly, and dynamics differential equation for the electromechanical coupling system was further deduced and estabished with the Lagrangian-Maxwell equation. Combined with FEM software of ANSYS and dynamic simulation software of ADAMS, the simulation model for the linear feed system was established. The comparative analysis indicates that the flexibility of structure, electrical control parameters and disturbance frequency all have obvious influence on the vibrations of coupling system. The acceleration from the experimental measurements agrees well with the simulation results.
     To improve the stiffness of linear feed system, the structure were designed and reconstructed by magnetic-structure coupling topology optimization method, and the adjoint method was used to calculate the sensitivity of structure response. Aiming to minimize flexibility and maximize the natural frequency, the structural topology optimization on mover, worktable and bed were conducted. Compared with the original structure, the optimized results showed that the static and dynamic stiffness of system were effectively improved under the premise of not influence the magnetic field distribution. Magnetic-structure coupling topology optimization provides an effective method for innovative design of coupled system.
     The normal force and the vibration for the prototype of permanent magnet linear servo motor have been tested. And the normal force of the prototype between two polars was measured through designing special testing apparatus. The accelerations of the worktable in the linear feed system with different speeds, loads, and profiles were measured, and then the modal frequencies were analyzed. The experiment results have proved that the coupling model is reasonable and correct.
引文
[1]Otsuka Jiro, Hayama Sadaji.Special Issue on Precision and Ultra-precision Positioning [J].International Journal of Automation Technology,2009,3(3):223-226.
    [2]徐昌语,刘勇,张建明.直线电机在超精密加工技术中的应用和发展.航空精制造技术,2009,45(4):13—16.
    [3]Min-Seok Kim, Sung-Chong Chung.A systematic approach to design high-performance feed drive systems.International Journal of Machine Tools & Manufacture.2005,45:1421-1435.
    [4]蒋良华.直线电机关键技术问题及其解决办法探讨.装备制造技术,2008,4:37—39.
    [5]王成元,夏加宽,杨俊友,等.电机现代控制技术.机械工业出版社,北京,2006:315-333.
    [6]徐月同.高速精密永磁直线同步电机进给系统及控制技术研究:(博士学位论文),杭州,浙江大学,2004.
    [7]夏加宽,王成元,李埠东,等.高精度数控机床用直线电机端部效应分析及神经网络补偿技术研究.中国电机工程学报.2003.23(8):100-104.
    [8]潘开林,傅建中,陈子辰.永磁直线同步电机的磁阻力分析及其优化.浙江大学学报(工学版),2005.39(10):1627-1632.
    [9]Nyambayar Baatar,Hee Sung Yoon,Minh Trien Pham.Shape optimal design of a 9-pole 10-slot PMLSM for detent force reduction using adaptive response surface method. IEEE Transactions on Magnetics,2009,45(10):4562-4565.
    [10]Zhu Yu-wu,Lee Sang-Gun,Chung Koon-Seok.Investigation of auxiliary poles design criteria on reduction of end effect of detent force for PMLSM. IEEE Transactions on Magnetics,2009, 45(6):2863-2866.
    [11]Lee Moon G,Gweon Dae-Gab.Optimal design of a double-sided linear motor with a multi-segmented trapezoidal magnet array for a high. Journal of Magnetism and Magnetic Materials,2004,281:336-346.
    [12]Nariman Roshandel Tavana, Abbas Shoulaie.Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple, Energy Conversion and Management, 2011,52(1):349-354.
    [13]Chang-Chou Hwang, Ping-Lun Li,,Cheng-Tsung Liu.Optimal design of a permanent magnet linear synchronous motor with low cogging force. IEEE Transactions on Magnetics,2012, 48(2):1039-1042.
    [14]Lee Dong-Yeup,Kim Gyu-Tak.Design of thrust ripple minimization by equivalent magnetizing current considering slot effect. IEEE Transactions on Magnetics,2006,42 (4): 1367-1370.
    [15]Ahn Ho-Jin, Lee Seung-Hoon, Lee Dong-Yeup. A study on the characteristics of PMLSM according to permanent magnet arrangement. Industry Applications Society Annual Meeting, Edmonton,2008:1-6.
    [16]陈幼平,张颖,艾武.永磁直线同步电动机磁场和推力波动分析及实验研究.微电机,2007,40(8):4—8.
    [17]徐月同,傅建中,陈子晨.永磁直线同步直线电动机推力波动优化及试验研究.中国电机工程学报,2005,25(12):122-126.
    [18]Hwang Chang-Chou, Li Ping-Lun, Liu Cheng-Tsung. Optimal design of a permanent magnet linear synchronous motor with low cogging force.IEEE Transactions on Magnetics,2012, 48(2):1039-1042.
    [19]Lee Dong-Yeup, Kim Gyu-Tak, Choi Young-Hyu.A study on the optimal acceleration profile to reduce vibration of PMLSM电氣学会论文誌,2005,54(8):351-357.
    [20]李志强,罗应立,蒙亮.基于有限元的虚位移原理在汽轮发电机局部磁场力计算中的应用.中国电机工程学报,2007,27(15):47—52.
    [21]戴魏,余海涛,胡敏强.基于虚功法的直线同步电机磁场力计算.中国电机工程学报,2006,26(22):110—114.
    [22]Z. Q. Zhu, Z.P. Xia, L. J. Wu, Analytical modelling and finite element computation of radial vibration force in fractional-slot permanent magnet brushless machines. IEEE Industry Applications Society,2010,46(5):1908-1918.
    [23]Z. Q. Zhu, Z.P. Xia, L. J. Wu.Influence of slot and pole number combination on radial force and vibration modes in fractional slot pm brushless machines having single-and doublelayer windings. ECCE, San Jose, CA,2009:3443-3450.
    [24]郭瑶瑶,刘成颖,王先逵,机床进给系统用永磁直线伺服电机法向吸力的研究.中国机械工程,2007,18(10):1174-1177.
    [25]尹宜勇,祝莉平,贾志新.永磁直线同步电动机法向力对机床结构变形的影响.农业机械报学,2011,42(6):219—223.
    [26]R. Neugebauer, B. Denkena, K. Wegener.mechatronic systems for machine tools,Annals of the CIRP,2007,56(2):657-687.
    [27]N. L. Pederson. Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization,2000,20:2-11.
    [28]汪列隆,朱壮瑞.基于相对密度机床立柱结构的动力学拓扑优化.机电工程.2008.25(4):34—38.
    [29]杨德庆,柳拥军,金成定.薄板减振降噪的拓扑优化设计方法.船舶力学,2003,7(5):91—96.
    [30]F. Belblidia,S. Bulman.A hybrid topology optimization algorithm for static and vibrating shell structures,International Journal for Numerical Methods in Engineering,2002,54:835-852.
    [31]Y. Maeda, S. Nishiwaki, K. Izui,et.al.,Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. International Journal for Numerical Methods in Engineering,2006,67:597-628.
    [32]Shintaro Yamasaki,Shinji Nishiwaki,Kazuhiro Izui.Structual optimization of mechanical structures targeting vibration characteristics based on the level set method.Jouranal of Environment and Engineering,2010,5(1):60-71.
    [33]Ma Z. D., N. Kikuchi, I. Hagiwara. Structural topology and shape optimization for a frequency response problem.Computational Mechanics,1994,13:157-174.
    [34]Ma Z. D., N. Kikuchi, H. C. Cheng. Topological design for vibrating structures. Computational Methods in Applied Mechanics and Engineering,1995,121:259-280.
    [35]Seungjae Min,Shinji Nishiwaki,Noboru Kikuchi.Unified topology design of static and vibrating structures using multiobjective optimization, Computers and Structures,2000,75: 93-116.
    [36]C. S. Jog. Topology Design of Structures Subjected to Periodic Loading.Journal of Sound and vibration,2002,253(3):687-709.
    [37]董立立,朱煜,牛小铁.超精密机械结构多目标拓扑优化设计.中国机械工程,2010,21(7):761—765.
    [38]Shen Jian, Lou Yunjiang,Topology optimization of a linear-motor actuated parallel XY stage, International Conference on Information and Automation, IEEE,Zhuhai/Macau,2009: 762-767.
    [39]Jung Do Suh. Dai Gil Lee.Design and manufacture of hybrid polymer concrete bed for high-speed CNC milling machine, Int J Mech Mater Des.2008,4:113-121.
    [40]Wilfredo Montealegre Rubio, Glaucio H Paulino,Emilio Carlos Nelli Silva.Tailoring vibration mode shapes using topology optimization and functionally graded material concepts, Smart Mater. Struct,2011,20:1-9.
    [41]Hyo-Joon Kim, Wan-Suk Yoo, Jin-Kyu Ok.Parameter identification of damping models in multibody dynamic simulation of mechanical systems, Multibody Syst Dyn.2009,22: 383-398.
    [42]Kim Doang Nguyen, I-Ming Chen, Teck-Chew Ng. Planning Algorithms for S-curve Trajectories. IEEE/ASME international conference on advanced intelligent mechatronics, Zurich,2007:1-6.
    [43]Huaizhong Li.Le, M.D. Gong, Z.M. Lin. Motion profile design to reduce residual vibration of high-speed positioning stages.Mechatronics,2009,2:264-269.
    [44]Jang-Hwan Kim, Jong-Woo Choi, Seung-Ki Sul.High precision position control of linear permanent magnet synchronous motor for surface mount device placement system. Power Conversion Conference, Osaka,2002:37—42.
    [45]B. Denkena, P. Hesse,O. Gummer。Energy optimized jerk-decoupling technology for translatory feed axes. CIRP Annals-Manufacturing Technology,2009,58:339-342
    [46]刘松国,朱世强,吴文祥.具有运动时间约束的机械手最优平滑轨迹规划.电机与控制学报,2009,13(6):897—902.
    [47]B Denkena, H-C Mohring, P Hesse.Energy flow in jerk-decoupled translatory feed axes, Journal of Mechanical Engineering Science,2007,221:89—99.
    [48]B. Denkena, P. Hesse, O. Gummer,Energy optimized jerk-decoupling technology for translatory feed axes Manufacturing Technology,2009,58:339-342.
    [49]盖荣丽,林浒.高速加工中速度规划算法的研究与实现.小型微型计算机系统,2009,6:1067-1071.
    [50]于东,胡韶华,盖荣丽.基于滤波技术的数控系统加减速研究.中国机械工程,2008,19(7):804—807.
    [51]于金刚,林浒,盖荣丽.一种新型的Jerk连续加减速控制方法研究.组合机床与自动化加工技术,2009,8:61-67.
    [52]杨东升,李鸥.基于前瞻—滤波的加减速控制方法的研究.组合机床与自动化加工技术,2010,7:35—39.
    [53]Ming-Tzong Lin, Meng-Shiun Tsai, Hong-Tzong Yau.Development of Real-time Look-Ahead Algorithm for NURBS Interpolator with Consideration of Servo Dynamics.46th IEEE Conference on Decision and Control New Orleans, LA, USA,2007:1862-1866.
    [54]Dongju Chena, Marc Bonis, Feihu Zhang.Thermal error of a hydrostatic spindle. Precision Engineering,2011,35:512-520.
    [55]孟德建,张立军,余卓平.初始端面跳动对制动器热—机耦合特性的影响.同济大学学报,2012,40(2):272-280.
    [56]仲作阳,孟光,荆建平.汽车起重机变幅机构的多领域耦合动力学建模仿真.工程机械,2012,43(2):18-21.
    [57]Zhanming Qin. Magneto-thermo-elasticity of an electroconductive circular cylindrical shell featuring nonlinear deformations. International Journal of Engineering Science,2010,48: 1797-1810.
    [58]Xianmin Zhang, Wenfeng Hou.Dynamic analysis of the precision compliant mechanisms considering thermal effect. Precision Engineering,2010,34:592-606.
    [59]Dongju Chen, Marc Bonis, Feihu Zhangc. Thermal error of a hydrostatic spindle. Precision Engineering,2011,35:512-520.
    [60]J.H. Chow, Z.W. Zhong, W. Lin, L.P. Khoo.A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage. Applied Thermal Engineering, 2012,48(15):89-96.
    [61]A. Zahedi, M.R. Movahhedy.Thermo-mechanical modeling of high speed spindles. Scientia Iranica B,201219 (2):282-293.
    [62]Dongju Chena, Jinwei Fan, Feihu Zhang. Dynamic and static characteristics of a hydrostatic spindle for machine tools. Journal of Manufacturing Systems,2012,31:26-33.
    [63]李露.磁力机械多场耦合及多学科优化设计:(博士学位论文).合肥,合肥工业大学,2010.
    [64]余显忠,陈学东,叶焱玺.精密双层气浮直线电动机动力学响应分析.中国机械工程,2008,19(7):761-765.
    [65]张钢,吴国庆,李松生.机床磁悬浮平台系统机电耦合动力学性能分析.振动工程学报,2004,17(z1):37-39.
    [66]Sass L,Mcphee J.A comparison of different methods for modelling electromechanical multibody systems.Multibody System Dynamics,2004,12:209-250.
    [67]Marcus S, John M.Dynamicmodeling of electromechanical multibody systems.Multibody System Dynamics,2003,9:87-15.
    [68]Tomasz SZOLC.Transient and steady-state coupled electromechanical vibration analysis of the micro-drive system. XXIV Symposium Vibrations in Physical Systems, Bedlewo, 2010:12-15.
    [69]邱家俊,胡宇达,卿光辉.磁场力激发下汽轮发电机定子端部绕组的磁固耦合振动.振动工程学报,2002,15(3):267—273.
    [70]邱家俊.电机的机电耦联与磁固耦合非线性振动研究.中国电机工程学报,2002,22(1):23-28.
    [71]邢涛,张庆春,李国栋.电磁轴承耦合特性及磁场力分析.哈尔滨工业大学学报,2005,37(6):748—778.
    [72]胡业发,周祖德,王晓光.磁力轴承转子系统的力耦合和力矩耦合分析.机械工程学报,2002,38(12):25—28.
    [73]K.Delaere, W.Heylen, R.Belmans.Strong magnetomechanical FE coupling using local magnetostriction force. The European Physical Journal Applied Physics,2001,13(2):115-119.
    [74]肖峰,姜月娇,李二鹏.精密冲床肘杆机构多柔性体耦合模型的仿真分析.机械设计与制造,2012,1:167-171.
    [75]罗卫平.基于多柔性体耦合的数控机床动态特性分析.机床与液压,2011,39(5):118-120.
    [76]鲁明,胡聪良,孙伟.基于多柔性体耦合的导轨滑块移动副建模,中国工程机械学报,2010,8(3):279-281.
    [77]穆海华,周云飞,周艳红.洛仑兹电机运动控制耦合机理分析及动力学建模.中国电机工程学报,2009,29(15):95-100.
    [78]LI Qian, WU Jianxin, SUN Yan.Dynamic optimization method on eleetromechanical coupling system by exponential inertia weight particle swarm algorithm. Chinese Journal of Mechanical Engineering,2009,22(4):602-607.
    [79]刘文芝,武建新.数控工作台机电耦合动力学分析与优化.机械设计,2009,26(3):55—58.
    [80]武建新,李强,张辉.永磁同步交流伺服电机机电耦合动力学建模与仿真.机床与液压,2008,36(7):129-132.
    [81]P.Frank, C.Wardle, C.Bond.Dynamic characteristics of a direct-drive air-bearing slide system with squeeze film damping. Int J Adv Manuf Technol,2010,47:911-918.
    [82]关锡友,孙伟.数控机床主轴系统动力学特性分析方法研究,组合机床与自动化加工技术,2010,4:1-5.
    [83]陈立国,张洋,陈涛.多目标拓扑优化设计在纳米定位平台中的应用.压电与声光,2011,33(2):228-231.
    [84]Peter Virtie,Bojan Stumberger.Analytical analysis of magnetic field and force calculation in a slotless-type permant magnet linear synchronous machine:verification with numerical analysis, Electric Machines & Drives Conference, Antalya,2007:963-968.
    [85]潘开林.永磁直线伺服电机的驱动特性理论及推力波动优化设计研究:(博士学位论文).杭州,浙江大学,2003.
    [86]Rafael Becerril Arreola. Nonlinear control design for a magnetic levitation system:(Doctoral Dissertation). Toronto:University of Toronto,2003.26-32.
    [87]张冉,王秀和,乔东伟.基于辅助槽的永磁电机激振力波削弱方法.中国电机工程学报,2010,30(18)103-108.
    [88]王淑红,熊光煜.永磁直线伺服电机气隙磁场及磁阻力分析.煤炭学报,2006,31(6):824-828.
    [89]Jean Le Besnerais, Vincent Lanfranchi. Michel Hecquet. Optimal slot numbers for magnetic noise reduction in variable-speed induction motors. IEEE Transactions on Magnetics,2009, 45(8):3131-3137.
    [90]Mohammad Islam, Rakib Islam, Tomy Sebastian. Noise and vibration characteristics of permanent magnet synchronous motors using electromagnetic and structural analyses. Energy Conversion Congress and Exposition, Phoenix, AZ,2011:3399-3406.
    [91]Rakib Islam, Iqbal Husain.Analytical model for predicting noise and vibration in permanent magnet synchronous motors. IEEE Transactions on Industry Applications,2010, 46(6):2346-2355.
    [92]吴建华.基于物理模型开关磁阻电机定子模态和固有频率的研究.中国电机工程学报,2003,24(8):109-114.
    [93]Long S A, Zhu Z Q.Vibrtation behaviour of stators of switched reluctance motors.IEE Proc. On Electrical Power Application,2001,148(3):257-264.
    [94]Tae-Jong Kim,Sang-Moon Hwang,No-Gill Park.Analysis of vibration for permanent magnet motors considering mechanical and magnetic coupling effects, IEEE Transactions on Magnetics,2000,36(4):1346-1350.
    [95]史安娜,孙伟.BW60HS卧式加中心整机模态测试.组合机床与自动化加工技术.2011,2:46-49
    [96]刘春时,孙伟,李小彭.数控机床整机振动测试方法研究.中国工程机械学报,2009,7(3):330-335.
    [97]陈立平.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005.165-180.
    [98]林利红,陈小安,周伟,永磁交流伺服精密驱动系统机电耦合振动特性分析.冲击与振动,2010,29(4):48—53.
    [99]姚延风,刘强,吴文镜.基于多柔性体机电耦合的机床直线进给系统动态性能仿真研究.振动与冲击,2011,30(1):191-196.
    [100]夏田,马晓钢,张功学.高速立式加工中心滑座的设计与拓扑优化.机床与液压,2011,39(3):104-106.
    [101]Alessandro Gasparetto, Vanni Zanotto.A technique for time-jerk optimal planning of robot trajectories. Robotics and Computer Integrated Manufacturing,2008,24:415-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700