用户名: 密码: 验证码:
铝纤维复合炸药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炸药与其他能源(除核能)相比的优点是能量密度高,反应时间极短(μs量级),作功功率巨大。炸药是武器杀伤力的直接能量来源,正是由于炸药的问世,战争从冷兵器时代进入热兵器时代。炸药在国民经济建设中也起着重要的作用,它能减轻劳动量,加快生产速度,提高工作效率,被广泛地应用于矿山开采,隧道、沟渠、路基、暗礁开挖,爆破拆除,油气井开采等领域。长期以来,炸药研究者总是希望研究出具有高能量密度的炸药。随着现代军事和民用科技的发展,炸药的生存环境越来越差,如高温、高压、高速等,迫使人们在选择炸药时,不但要要考虑炸药的能量密度,而且不得不考虑炸药的安全性、稳定性、力学性能等综合性能。目前如何提高炸药的综合性能已经成为军民两用炸药发展急需解决的问题。
     从目前研究情况看,对于炸药的研究多是关注炸药的单一性能:只研究如何提高炸药的能量密度,或者只研究怎样降低炸药的感度,或者研究怎样提高炸药的力学性能。而对于如何提高炸药的能量密度、安全性和力学强度等综合性能的研究较少。
     为了满足现代军事和民用工程对炸药综合性能的高要求,在爆炸化学和纤维增强的基础上,本文提出一种新理念炸药——含铝纤维复合炸药(Explosives containing Aluminum Fiber),简称铝纤维炸药(EAF)。铝纤维炸药是以铝纤维(AF)和单质炸药或者混合炸药作为原料,经过一定工艺加工而成的新型复合炸药,其具有高能量密度、高安全和高力学强度的特点。
     根据爆炸化学理论,炸药中添加高热值金属粉能提高炸药的能量输出,目前应用最多的是铝粉。但是铝粉加入炸药后存在两个负面影响:一是铝粉在炸药中容易形成热点,导致炸药的感度升高,减低了炸药安全性能;二是铝粉比表面积大,容易被氧化,失去部分活性,造成铝粉能量利用率低。本文提出的铝纤维在提高炸药能量密度的同时,可以克服铝粉带来的两个问题,铝纤维炸药具有以下三个主要优点:一是铝纤维和铝粉一样具有高热值,能提高炸药的能量输出:二是铝纤维良好的热传导性,在炸药内部起到良好的热扩散作用,将局部积累的热量扩散到周围炸药,抑制局部升温过快导致炸药快速反应,从而提高了炸药的安全性;三是铝纤维比表面积小于铝粉的比表面积,使得铝纤维的活性铝含量高于铝粉,因此铝纤维能量利用率高于铝粉。
     根据纤维增强理论,在基体材料中添加纤维材料能有效的提高基体材料的力学强度。铝纤维在炸药中能起到很好的桥连作用,提高炸药的成型效果和力学强度。良好的力学强度,是炸药在运输、使用过程中安全、稳定的一个重要指标。
     铝纤维炸药是充分利用铝纤维的物理、化学性质,改善炸药的综合性能。在铝纤维炸药爆炸前,利用铝纤维的力学性能和热传导性能,提高炸药力学强度和炸药安全性;铝纤维炸药爆炸时,利用铝纤维高热值,提高炸药的能量密度。
     铝纤维炸药是一种综合性能优良的新型复合炸药,具有高能量密度、高安全和高力学强度的特点,为提高炸药的综合性能提供了一条新路线。为了研究铝纤维炸药的综合性能,首先研究了铝纤维炸药的制备方法,并在实验室制备了一系列铝纤维炸药。然后研究了铝纤维炸药的综合性能,包括能量输出特性、能量影响因素,力学强度、感度,具体研究内容如下:
     铝纤维炸药的制备方法提出了铝纤维炸药的几种制备技术路线,采用几种简单、安全、有效的工艺,并在实验室制备出了一系列铝纤维炸药,分析了各种制备方法的特点。
     铝纤维炸药能量输出特性研究从理论上提出铝纤维的“破碎—氧化”反应机理:铝纤维炸药起爆时,炸药组份先反应,并生成高温,高压,高速的气体产物,铝纤维先被气体产物破碎成铝颗粒,然后铝颗粒与爆轰产物发生氧化反应释放热量,从而提高炸药的能量输出。铝纤维炸药的总能量为炸药组份的爆热加上铝纤维反应放热,再减去铝纤维破碎吸收的能量,只要铝纤维反应放热大于破碎吸能,铝纤维就能提高炸药的能量输出。通过铝纤维炸药空中爆炸和水下爆炸测压实验,研究了铝纤维炸药的能量输出特性。实验结果表明:铝纤维能有效提高炸药能量输出:在TNT中加入20%铝纤维后,超压峰值是纯TNT的1.19倍,爆热是纯TNT的1.29倍。RDX中加入20%铝纤维后,超压峰值是纯RDX的1.2倍,爆热是RDX的1.31倍,是TNT的1.64倍。
     铝纤维炸药能量输出的影响因素通过实验研究了影响铝纤维炸药能量的几个主要因素:铝纤维含量,纤维的尺寸,主基炸药性能、装药密度和约束条件。研究结果表明:铝纤维含量对铝纤维炸药能量输出的影响较显著,铝纤维含量小于20%时能量随铝含量增加而提高,大于20%时,能量着随铝纤维含量增加而降低;铝纤维的直径越小,铝纤维炸药能量输出越高;相同厚度的铝箔,铝箔面积越大,含铝炸药能量输出提高越显著;主体炸药的爆热,爆压越大,越有利于铝纤维快速粉碎和反应,从而铝纤维炸药能量越高;铝纤维炸药的密度越大,能量是输出越高;增加药包的约束,可提高炸药爆炸压力,从而增加铝纤维的能量输出。
     铝纤维炸药的力学性能研究根据纤维增强理论,铝纤维加入炸药后,可以在炸药内部起到桥连作用,使炸药形成一个复合整体,提高炸药的成型效果和力学性能。TNT中加入铝纤维后炸药的极限应力从2MPa提高到6.8MPa。随着炸药中铝纤维含量的增加,炸药的极限应力和应变都随之提高,炸药表现出更好的力学强度和韧性。铝纤维含量为14%的复合炸药的极限应力和应变分别为4.7MPa和0.013;铝纤维含量为23%的复合炸药,极限应力和应变提高到6.8MPa和0.039。
     铝纤维炸药感度的研究从理论上分析了铝纤维对炸药感度的影响:首先铝纤维堆炸药的力增强强度作用,可以降低炸药之间碰撞和摩擦产生热点的概率,起到降低感度的作用;其次是铝纤维的热扩散机理可以降低炸药的感度:当炸药内部出现局部热积累时,铝纤维良好的导热性,可以将该处的热量扩散到周围的纤维和炸药,将炸药热积累处的“升温—反应—升温”过程转变为“升温—扩散—降温”过程,从而降低炸药感度,提高炸药的安全性。实验研究了铝纤维炸药的感度,包括起爆可靠性和安全性。用雷管起爆实验研究铝纤维炸药的可靠性表明:铝纤维含量为30%以下的绿先去炸药炸药能用1gRDX药量的雷管起爆;铝纤维含量为30%到60%的铝纤维炸药用1gRDX药量的雷管无法起爆,但增加1.2gPETN传爆药,可用雷管成功起爆。研究铝纤维炸药的撞击感度结果表明:铝纤维炸药的撞击感度低于TNT和RDX。说明和铝粉相比,铝纤维加入炸药不但不会降低炸药的安全性,反而能提高炸药的安全性。
The advantage of explosive, compare to other energy, is high energy density quick response and high power. The power of the weapon is from Explosive, so the war was form the age of cold weapon to the age of hot weapon. Otherwise explosive is widely used in national economic, such as ore mining, tunnel excavation, blasting demolition and oil gas mining. All the researcher of explosive always want to get explosive which has high power with for a long time. With the development of science and technology of military and civil engineering, explosive not only should has high power, but also should has high sEAFty and high mechanical strength. Now the properties of explosive become the barrier of development of science and technology of military and civil engineering. but most the researchers focus on the single performance, such as energy density or seafty.
     In order to satisfy the need of new science and technology of military and civil engineering, this paper proposes a new concept explosive, which is the explosive containing aluminum fiber named EAF, to improve the explosive's multiple-performance. the characteristics of EAF is high energy density high sEAFty and high mechanical strength.
     On the basis of explosion theory, the aluminum power is a common ingredient in energetic materials, the aluminum is used increase the energy and the flame temperature in energetic. at the same time the explosive containing aluminum power has two problem:first the aluminum power will be the heat pot which will increase the sensitivity of explosive; second the surface area of aluminum power is so large so that the activity is low. so we want EAF can also increase the energy as aluminum power, at the same time solve that problems of aluminized explosive. EAF have three major advantage:first aluminum fiber mixed to explosive can also increase the energy as aluminum power; second the good thermal conductivity of aluminum fiber can transfer the heat of heat pot to peripheral region, so that it can decrease the sensitivity of explosive; third the surface area of aluminum fiber than that of aluminum power, therefore activity of aluminum fiber is large than that of aluminum power.
     According to the theory of fiber reinforcement, fiber can reinforce the mechanical strength of matrix material. so aluminum fiber can reinforce the mechanical strength of explosive.
     EAF use physics and chemistry property of aluminum fire to improve the performance of explosive. Before explosion the physics property of mechanical property and diathermancy can reinforce the mechanical strength and improve security; when explosion the reaction heat of aluminum can increase the energy of explosive.
     Therefore explosive containing aluminum fiber (EAF) has good properties, such as high energy density, high security and good mechanical strength. So EAF is a new method solved problem of properties of explosive. we have researched the properties of EAF, this paper will introduce it as blow:
     1、preparation method of EAF
     same preparation method of EAF is proposed and a series of EAF is prepared by same sEAFty method in laboratory.
     2、Study on energy of EAF
     "Break-oxidation" reaction model is proposed:first of all the CHNO mixture (explosive which chemical composition is the form CaHbNcOd) react and product detonation production which is hot, high speed and high press. And then the aluminum fiber is break up and react with detonation production. So the reaction of fire can increase the energy of explosive. The experimental results can prove the model:the energy of the TNT explosive containing aluminum fiber is 1.29 times more than that of TNT, at the same time RDX containing aluminum fiber is 1.31 times more than that of RDX and 1.64 times more than that of TNT.
     3、Influence factor of energy of EAF
     Same major factor which influence the energy of EAF has been researched. The experimental results show that:content of aluminum fiber can obviously influence the energy of EAF, and the EAF containing 20% aluminum fiber has the highest energy. The diameter is more small, the energy of EAF is more high. The detonation heat and pressure of CHNO is more high. the energy of EAF is more high. Increase the sanction of EAF can increase the energy of EAF.
     4、Mechanical strength of EAF
     According to the theory of fiber reinforced material, aluminum fiber can also reinforce explosive charge, and the experiment of mechanical strength of EAF has been done. The experimental results show that Aluminum fibre can obviously increase the mechanical strength. the compressive strength of explosive containing aluminum fiber is 2.4 times more than that of TNT. the results also show that the EAF has more aluminum fiber the strength is more high, for example the strength is 4.7MPa when the EAF contain 14% and strength is 6.8MPa when the EAF contain 23%.
     5、Sensitivity of EAF
     First of all the sensitivity of EAF is analyzed, the results can prove that aluminum fiber can decrease the sensitivity of EAF. First Because aluminum can reinforced the explosive,so the scalar of heat pot will be less, so the EAF will be more sEAF. Second because of he good thermal conductivity of aluminum fiber, the heat of can be transferred by aluminum fiber.so the "temperature rising-reaction-temperature rising" is change to "temperature-transfer-temperature reduce". Experiment has done to research the sensitivity of EAF, The experimental results show that aluminum fiber can decrease the sensitivity of EAF. Because the sensitivity of TNT containing aluminum fiber sand the sensitivity of TNT containing aluminum fiber are both low than TNT and RDX.
引文
[1]Hill ME.Explosives program development study.UCRL - 21042,1988.
    [2]Rothstein L T. plastic bonded explosive-past, Present and Future. Proceeding, of the 13th intional Annual Conference of ICT,1982,245-256.
    [3]Zimmer M F.U.5. Efforts in Munitions Survivability. Proceedings of 13 th international annual Conference of ICT,1982,527 - 537.
    [4]徐松林.高氮含能化合物的合成放大及其炸药性能研究[D].长沙:国防科技大学,2005.
    [5]RossW M, Simon P P, RobertP C, etal. Studies ofnovelheterocy-clic insensitive high explosive. Compounds:pyridines, pyrimidines,pyrazines and their bicyclic. analogues [J].Propellant, Explosives,Pyrotechnics,2004,29(2):81-92
    [6]曾贵玉,聂福德,刘晓东,等.六硝基六氮杂异伍兹烷(CL-20)的研究进展[J].含能材料,2000,8(3):130-134.[7]史彦山,李战雄,欧育湘,等.3,3′-二硝基氧化偶氮呋咱的合成与性能[J].火炸药学报,2002,25(2):14-16.
    [8]HyunhM, HiskeyM, ErnestL, etal. Polyazido high-nitrogen com-pounds:hydrazo-and azo-1,3, 5-trizine [J].J Angew. Chem IntEd,2004,43(37):4924-4928.
    [9]Huynh, Hang V, Hiskey M, etal. Synthesis, characterization, and energetic properties ofdiazido heteroaromatic high-nitrogen C-N com-pound [J].JAm Chem Soc,2005,127(36): 12537-12543.
    [10]陈郎,张寿齐,赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J]..爆炸与冲击,1999,19(3):250~255
    [11]陈郎,冯长根,赵玉华等.含铝炸药爆轰数值模拟研究.北京理工大学学报,2001,21(4):415~419
    [12]胡栋,孙珠妹.5种含铝炸药粉快速反应特性的比较.兵工学报,1996,17(4):316~319
    [13]胡栋,孙珠妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究.爆炸与冲击,1995,15(2):122~128
    [14]M.N.Makhov. TheHeat and Products ofExplosion of Aluminized High Explosives. Internation Annual Confer-ence of ICT,2000(42):1-11.
    [15]Jing Ping Lu, Mark D.Franson and Matthew D.Clif.f Evaluation the Effect of Ultrafine Aluminium in Metallised Explosive Using Plate Dent Tests. Internation Annual Conference of ICT,2003(128):1-14.
    [16]黄辉,黄勇,李尚斌.含纳米级铝粉的复合炸药研究[J].火炸药学报,2002,(02):1-3.
    [17]夏先贵,柏劲松,林其文,章冠人.含铝炸药起爆机理的研究[J].含能材料,1999,(03)1-3.
    [18]Heavans S N and Field J E. The ignition of a thin layer of explosive by impact [C]. Proc. R. socLind,A,1974,338:77-93.
    [19]Hytti H, Strandberg R, Kariniemi A, et al. EIDS-properties for an underwater explosive based on insensitive RDX [C].33thInt Ann Conf ICT. Karlsruhe:ICT,2002:67.
    [20]李常青.炸药发展的现状和趋势[J]..爆炸与冲击.1999,19(3):250~255.
    [21]黄辉,董海山.一类对撞击不敏感的新型炸药[J].含能材料,2002,10(2):74-77.
    [22]SNPE. Improvements in NTO based PBXS, A new powerful and insensitive class of PBX [C] 。 Insensitive Munitions & Energetic Material Tech-nology Symposium. San Diego:NDIA,1997.
    [23]Braithwaite P C, Edwards W W, Hajik R M, etal.TEX:a promising new insensitive high explosive[C]. Int Ann Conf ICT. Karlsruhe:ICT,1998.
    [24]Herric O(?)stmark, Helena Bergman, Ulf Bemn, etal.2,2-Dinitro-ethene-1,1-diamine(FOX-7) properties,analysis and scale-up[C].32thInt Ann Conf of ICT.Karlsruhe:ICT,2001
    [25]Philip, Alexander, Robert, et al. Synthesis, scale-up and experimental testing of LLM-105 (2,6-diamino-3,5-dinitropyrazine-l-oxide)[C]. Insensitive Munitions & Energetic Material Technology Symposium.San Diego:NDIA,1998.
    [26]Hiskey M, Chavez D,et al. Progress in high-nitrogenchemistry in explosives,propellant and pyrotechnics[C]. Proc 27th International Pryotechnics Seminar.Colorado:DSTO,2000:3-14.
    [27]Biswajit Banerjee,DanielO Adams. Micromechanics-based determination of effective elastic properties of polymer bonded explosives[J].Physica B,2003,338:8-15.
    [28]Biswajit Banerjee,DanielO Adams. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell methods[J].Solid and structure,2004,41:481-509.
    [29]Biswajit Banerjee. Micromechanics-based prediction of themoelastic properties of high energy materials[D]. Utah:The University of Utah,2002.
    [30]Chavez D, HiskeyM.1,2,4,5-Tetrazine based energetic materials [J]. JEnergeticMater,1999, 17(4):357-377.
    [31]H.J.Marcus, WestCovina. TheReaction ofHydrazinewith 3,6-Dia-mino-s-tetrazine[P]. US 3244702,1966.
    [32]刘艳秋,马忠亮,萧忠良.碳纤维对无壳弹药柱力学性能影响的研究[J].火炸药学报,1999(3) 29-31.
    [1]《炸药理论》编写组.炸药理论[M].北京:国防工业出版社.
    [2]Baudin, G., Bergues, D.:A reaction model for aluminized PBX applied to underwater explosion calculations. In:The 10th Symposium on Detonation, Boston, USA (1993).
    [3]苗勤书,徐更光,王廷增.铝粉粒度和形状对含铝炸药性能的影响[J]火炸药学报2002,(02):4-5.
    [4]王玉玲,肖秀友,王效廉.含铝炸药爆轰特性研究现状[J]飞航导弹,2006,(01):52-54.
    [5]A. Lefran Aois,C. Le Gallic. Expertise of Nanometric Aluminum Powder on the Detonation Efficiency of Explosives[D]32nd Int. Annual Conference of ICT, Karlsruhe,Germany, July 3-6,2001,36:1-14.
    [6]Partrick Brousseau,C.John Anderson. Nanometric aluminum in exosives[J]. Propellants, Explosives, Pyrotechnics.2002,27:300-304.
    [7]M. Mench, K. K. Kuo, C. L. Yeh, et al. Comparison of Thermal Behavior of Regular and Ultra-Fine Aluminum Powders (Alex) Made from Plasma ExplosionProcess[J].Comb. Sci. and Tech.1998,135:269-292.
    [8]Veyssiere B, Khassainov B A. A model for steady,plane, double-front detontiong(DFD) ingaseous explosive mixtures with aluminum particles in suspension. Combusiton and flame.1991,85(112). p241-253.
    [9]陆明.工业炸药配方设计[M].北京:北京理工大学出版社2002.
    [10]夏先贵,柏劲松,林其文等.含铝炸药起爆机理的研究[J].含能材料,1999,7(3):133~136.
    [11]Heavans S N and Field J E. The ignition of a thin layer of explosive by impact [C]. Proc. R. socLind,A,1974,338:77-93.
    [12]郭连贵,宋武林,谢长生等.粒径大小对高频感应加热制备纳米铝粉活性影响[J].含能材料.2006.14(4):276-279
    [13]李常青.炸药发展的现状和趋势[J]..爆炸与冲击.1999,19(3):250~255.
    [14]Merzhanov A G, Averson A E. The present state of the thermal ignition theory:An invited review[J]. Combustion and (?)ame.1971,16(1):89-94.
    [15]Phillips B, De wittKJ. Resonance · tube ignition of aluminum. Combustion and flame.1979.35(3). P249-258.
    [16]Markstein G H. Heterogeneous reaction process in metal combustion.110 Intel Symp oncombustion[C]Pittsburgh:the Combustion Isstitute,1996:219-234.
    [17]Merzhanov A G. On critical conditions for thermal explosion of a hot spot[J].Combustion and (?)ame.1966,10(2):340-345.
    [18]Rideal E R, Robertson A J B. Proceeding of royal society[R]. London,1948.
    [19]Yo(?)e A D Bowden F P. Initiation and growth of explosion in liquids and solids[J].Cambridge:Cambridge university press.1952.
    [20]Friedman M H. Trans [R]. Faraday society,1963.
    [21]Jouguet E, J.Math,1905,347-425
    [22]Jouguet E, Mecanique des Explosifs, Paris:O, Doinet Fils,1917.
    [23]Zeldovich Ya B, Zh, Experim, Teor, Fiz,1940,10:542-568.
    [24]Von Neumann J, OSRD Report,1942,549.
    [25]Doering W, Ann, Phys,1943,43(5):421-436.
    [26]Wood WW, Kirkwood J G, Diameter Effect in Condensed Explosives:The Relation Between Velocity and Radius Curvature of the Detonation Wave, J, Chem, Phys, 1954,22(11):1920-1924.
    [27]Henrych J,爆炸动力学及其应用[M].北京:科学出版社,1987.Henrych J. Dynamics of explosion and its application[M]. Beijing:Science Press,1987(in Chinese).
    [28]Eyring H, Powell R E, Duffey G H and Parlin R B, The Stability of Detonation, Chem, Rev, 1949,45:69-181.
    [29]吴钊贤.玄武岩纤维混凝土基本力学性能与应用研究[D].武汉理工大学,硕士学位论文.
    [30]J. P. Romualdi, G. B. Batson. Mechanics of Crack Arrest in Concrete, Proc ASCE, 1963,89(3):147-168.
    [31]J. P. Romualdi, Proe. Int. eonf. The Structure, Brooks A. E. and K. Newman(eds), London,1968:190-250.
    [32]J. p. Romualdi, A. Mandel. Tensile strength of Concrete Affected b Uniformly. Distributed and Closely Spaced Short Length of Wire Reinforcement, ACI Journal, Proceedings.1964, 6:567-670.
    [1]李小东,刘庆明,白春华,王晶禹.铝粉-空气混合物的燃烧转爆轰过程[J].火炸药学报2009,(06):58-61.
    [2]洪滔,秦承森.爆轰波管中铝粉尘爆轰的数值模拟[J].爆炸与冲击,2004,24(3):193-200.
    [3]刘庆明,范宝春,陈志华,等.铝粉湍硫火焰诱导激波现象的实验研究[J].实验力学1997,12(3):376-382.
    [4]Chen Zhi-hua, Fan Bao-chun. Flame propagation th-rough aluminum particle cloud in a combustion tube[J]. Journal of Loss Prevention in the ProcessIndustries,2005,18:13-19.
    [5]Zhang F, Murray S B, Gerrard K B. Aluminum particles-air detonation at elevated pressures[J]. ShockWaves,2006,15:313-324.
    [6]刘晓利,李鸿志,郭建国,等.铝粉-空气混和物燃烧转爆轰(DDT)过程的实验研究[J].爆炸与冲击,1995,15(3):217-228.
    [7]LIU Qing-ming, LI Xiao-dong, BAI Chun-hua. Deflagration to detonation transition in aluminum dust-air mixture under weak ignition condition [J].Combustion and Flame,2009,156:914-921.
    [8]Philips J M.A reaction folw model with coupled reaction kinetics for detonation and combustion in no-ideal explosives[J]. Materials research society,1996,413-420.
    [9]胡栋,孙珠妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究[J].爆炸与冲击,1995,15(2):122~128.
    [10]陈郎,张寿齐,赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击,1999,19(3):250~255.
    [11]张元冲;韩小平;沈亚鹏等.TNT模拟炸药动态压缩力学性能的实验测定及本构关系研究[J].西安交通大学学报,1996,30(2):87·93
    [1]Veyssiere B, Khassainov B A. A model for steady, plane, double-front detonation (DFD) ingaseous explosive mixtures with aluminum particles in suspension. Combusiton and flame.1991,85(112).241-253.
    [2]夏先贵,柏劲松,林其文等.含铝炸药起爆机理的研究[J].含能材料,1999,7(3):133~136.
    [3]Partrick Brousseau,C.John Anderson. Nanometric aluminum in exosives[J]. Propellants, Explosives, Pyrotechnics.2002,27:300-304.
    [4]Lefran Aois,C. Le Gallic. Expertise of Nanometric Aluminum Powder on the Detonation Efficiency of Explosives[D]32nd Int. Annual Conference of ICT, Karlsruhe,Germany, July 3-6,2001,36:1-14.
    [5]M. Mench, K. K. Kuo, C. L. Yeh, et al. Comparison of Thermal Behavior of Regular and Ultra-Fine Aluminum Powders (Alex) Made from Plasma ExplosionProcess[J].Comb. Sci. and Tech.1998,135:269-292.
    [6]郭连贵,宋武林,谢长生等.粒径大小对高频感应加热制备纳米铝粉活性影响[J].含能材料.2006.14(4):276-279.
    [7]刘艳秋,马忠亮,萧忠良等.碳纤维对无壳弹药柱力学性能影响的研究[J].火炸药学报,1999,3:29-31.
    [8]Philips J M.A reaction folw model with coupled reaction kinetics for detonation and combustion in no-ideal explosives[J]. Materials research society,1996,413-420.
    [9]胡栋,孙珠妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究[J].爆炸与冲击,1995,15(2):122~128.
    [10]陈郎,张寿齐,赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击,1999,19(3):250~255.
    [11]Baudin, G., Bergues, D.:A reaction model for aluminized PBX applied to underwater explosion calculations.In:ThelOth Symposium on Detonation, Boston, USA (1993).
    [12]Henrych J,爆炸动力学及其应用[M].北京:科学出版社,1987.
    [13]张元冲;韩小平;沈亚鹏等.TNT模拟炸药动态压缩力学性能的实验测定及本构关系研究[J].西安交通大学学报,1996,30(2):87-93
    [14]黄辉,王泽山,黄亨建,等.新型含能材料的研究进展[J].火炸药学报,2005,28(4):9-13.
    [15]张德雄,张衍,王伟平,等.高能量密度材料(HEDM)研究开发现状及展望[J].固体火箭技术,2005,28(40):284-288. [16] HerricStmark,HelenaBergman,Bemn,etal.2,2-Dini-tro-ethene-1,1-diamine(FOX-7)-properties ,analysis and scale-up [A]. Int Annu Conf of ICT[C],2001,24.1-26[17]黄辉,董海山.一类对撞击不敏感的新型炸药[J].含能材料,2002,10(2):74-77.[18] LIU Yan-qiu, MA Zhong-liang, XIAO Zhong-liang, et al. Study on Effect of Carbon Fiber on Mechanical Property of Caseless Ammunition[J]. Chinese Journal of Explosives & Propellants,1999,3:29-31.[19]赵琳,李兵,闫吉杰,等.炸药能量测试的水下爆炸方法[J].声学技术,2003,2:72-75.
    [1]Henrych J,爆炸动力学及其应用[M].北京:科学出版社,1987.
    [2]欧育湘.炸药学[M].北京,2006.
    [3]项传林,吕荣华.高威力炸药的发展与应用技术.火炸药.1997,(1):30.33
    [4]Partrick Brousseau,C.John Anderson. Nanometric aluminum in exposives[J]. Propellants, Explosives, Pyrotechnics.2002,27:300-306.
    [5]A. Lefran Aois,C. Le Gallic. Expertise of Nanometric Aluminum Powder on the Detonation Efficiency of Explosives[D]32nd Int. Annual Conference of ICT, Karlsruhe,Germany, July 3-6,2001,36:1-14.
    [6]M. Mench, K. K. Kuo, C. L. Yeh, et al. Comparison of Thermal Behavior of Regular and Ultra-Fine Aluminum Powders (Alex) Made from Plasma ExplosionProcess[J].Comb. Sci. and Tech.1998,135:269-292.
    [7]郭连贵,宋武林,谢长生等.粒径大小对高频感应加热制备纳米铝粉活性影响[J].含能材料.2006.14(4):276-279.
    [1]刘艳秋,马忠亮,萧忠良,等.碳纤维对无壳弹药柱力学性能影响的研究[J].火炸药学报,1999,3:29-31.
    [2]张元冲;韩小平;沈亚鹏等.TNT模拟炸药动态压缩力学性能的实验测定及本构关系研究[J].西安交通大学学报,1996,30(2):87-93
    [3]王礼立,余同希,李永池.冲击动力学进展[M].合肥:中国科技大学出社,1992:882116.
    [4]李英雷.TATB顿感炸药本够关系的实验研究[J].爆炸与冲击.
    [5]周风华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击,1992,(4):333-342.
    [6]吴会民,卢芳云,卢力,宋先邨.三种含能材料力学行为应变率效应的实验研究[J].含能材料,2004,(04):227-230.
    [1]章冠人,陈大年.凝聚炸药起爆动力学[M].北京:国防工业出版社,1990
    [2]Merzhanov A G. On critical conditions for thermal explosion of a hot spot[J].Combustion and ame.1966,10(2):340-349
    [3]Rideal E R, Robertson A J B. Proceeding of royal society [R]. London,1948
    [4]Yore A D Bowden F P. Initiation and growth of explosion in liquids and solids[J].Cambridge: Cambridge university press.1952
    [5]Bowden F P, Yo(?)e A D. Fast reaction in solids[J]. London:Butterworth scientic publishing cooperation.1958
    [6]Zinn J. Initiation of explosion by hot spots[J]. Journal of chemical physics.1962,36(10)
    [7]Boddington T. The growth and decag of hot spots and the relation between structure and stability[C].9th symposium (international) on combustion. New York:Academic Press. New York:Academic Press,1963,287-293
    [8]Friedman M H. Trans [R]. Faraday society,1963
    [9]Thomas P H. A Comparison of some hot spot theories[J]. Combustion and ame.1965,9(4):369
    [10]FriedmanM H. A generalized thermal explosion criterion-exposition and illustrative application[J]. Combustion and (?)ame.1967,11(3):239
    [11]Friedman M H. A generalized thermal explosion criterion[J]. Combustion and ame.1968, 12(3):281
    [12]Gray P, Lee P R. Oxidation and combustion review[C]. New York:American Elsevier,1967, vol.2
    [13]Merzhanov A G, Averson A E. The present state of the thermal ignition theory:An invited review[J]. Combustion and ame.1971,16(1):89
    [14]Thomas P H. An approximate theory of
    [15]章冠人.瞬时加热热点的近似临界理论[J].爆炸与冲击.1982,2(3):51
    [16]夏先贵,柏劲松,林其文,章冠人.含铝炸药起爆机理的研究[J].含能材料,1999,(03)
    [17]Heavans S N and Field J E. The ignition of a thin layer of explosive by impact [C]. Proc. R. socLind, A,1974,338:77-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700