用户名: 密码: 验证码:
置氢钛合金亚稳相变及其室温变形行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、质量轻、耐腐蚀等特点,在航空航天等领域上获得了较为广泛的应用。然而,钛合金室温塑性低、变形抗力大、冷成形容易开裂等缺点大大限制了其冷态工艺性。置氢加工技术是利用氢在钛合金中的可逆合金化、氢致塑性和氢致相变等作用,通过改变合金的相成分及组织进而改善钛合金加工性能的一种新工艺、新方法。利用氢致室温增塑效应实现钛合金的冷镦成形是置氢加工的重要应用之一,但是国内学者在这方面的研究较少。本文从氢致钛合金相变入手,系统地研究氢致室温增塑的氢处理工艺及室温增塑机理。
     利用OM、XRD、TEM等分析手段研究了氢TC4、TC16钛合金组织演变;设计了石英管封装的热处理试验装置,并借助此装置完成了金相法对置氢钛合金β相转变温度(T_p)的测定以及氢致亚稳相转变规律的研究,建立了TC4-H、TC16-H的亚稳相转变相图。研究表明:氢作为β相稳定化元素,降低了TC4、TC16钛合金的β相转变温度,促进了α″马氏体和亚稳β相的生成。但由于氢在两种合金中的有限固溶使得氢无法将两种合金的β相完全稳定至室温。尽管如此,合金中α″马氏体和亚稳β相的出现仍为氢致室温增塑提供了基础。根据氢对两种合金相转变的影响,确定了实现室温增塑的最佳热处理工艺为:T_p+10℃淬火。
     采用压缩、拉伸、夏比冲击和动态镦粗等实验系统研究了置氢对TC4钛合金室温动、静态变形行为的影响;利用OM、XRD、TEM手段分析了置氢后材料的室温变形机理。结果表明:TC4钛合金经过T_p+10℃淬火后,室温压缩极限变形率随着氢含量的增加而增加,氢含量在0.6~0.9wt%时,极限变形率较原始合金提高了近一倍。拉伸和冲击试验结果表明,无论哪一种处理方式,材料的综合性能均下降,产生脆断。微观组织观察和相分析表明,置氢TC4钛合金室温压缩增塑的机理为:①氢促进了合金中α″马氏体与亚稳β相的生成;②变形过程中产生应力诱发α″马氏体;③氢降低了位错与孪晶形成的临界应力;④淬火后氢化物以纳米级出现。
     采用静态压缩、拉伸,动态镦粗和霍普金森压杆试验等实验系统研究了置氢对TC16钛合金室温动、静态变形行为的影响,并建立了室温本构方程;利用OM、XRD、TEM手段分析了置氢合金室温变形的机理。结果表明:置氢后TC16钛合金的拉伸性能大幅度下降,产生脆断;静态变形时,随着氢含量的增加,极限变形率降低;动态变形试验表明,置氢合金具有较好的变形能力,氢含量为1.0wt%时,变形极限超过70%。微观组织观察和相分析表明,氢致TC16钛合金室温压缩增塑的机理为:①氢降低了TC16钛合金的相变点,提高了β相的稳定性;②快速变形下,绝热温升显著,氢降低了合金的高温流变应力;③氢降低了临界剪切应力促进了位错的增殖和孪晶的产生,并发生应力诱发马氏体相变。
     利用金相法研究了α″马氏体和亚稳β相的分解转变过程,并据此制定了TC4钛合金细晶强化及除氢的热处理工艺,研究了除氢后的力学性能。结果表明:α″马氏体和亚稳β相的时效分解属于扩散型相变,700℃时两相的分解孕育期最短,分解完成时间最少;氢促进了β相稳定化元素的扩散,在时效过程中优先析β相,并在除氢过程没有随着氢的除去而分解。除氢后力学性能测试表明:氢含量为0.45wt%时时效强化效果最好,但是0.8wt%时获得比较好的综合性能。
Titanium alloys are widespread availability in aviation industry due to the high strength-to-weight and the resistant to corrosion. However, its low room temperature plastic, high resistance of deformation, and easily to crack during deformation limited the cold working properties. Thermohydrogen processing (THP), based on the modifying effect of hydrogen as an alloying element on phases and kinetics of phase transformation in titanium alloys, has been used as a new method to improve the mechanical properties of titanium alloys. Hydrogen induced cold plasticity is one of the mainly aspects, but the investigation on this aspects is little in national. Therefore, this work begins from the studying of hydrogen induced phase transformation, and then investigated the heat treatment for improve the cold forming and the mechanism of the cold deformation systematically.
     OM, XRD, TEM were utilized to investigate the effect of hydrogen on the microstructure evolution of TC4 alloys and TC16 alloys. A quartz tube device was designed and theβphase transition temperature of the hydrogenated titanium alloys was investigated using metallographic method by the device. The effect of hydrogen on the metastable phase transition was investigated and the corresponging TC4-H, TC16-H phase diagram were built, which establish the theoretical basis of the hydrogen treatment. The results showed that, as aβstabilizer, the addition of hydrogen decreased theβphase transition temperature of the TC4, TC16 alloys, promoted the formation of a" martensites and the metastableβphase. However, theβphase can not be stabilized completely to room temperature due to the limited solid solubility of hydrogen in titanium alloy. Even though, the appearance of the a" martensites and the metastableβphase still provide a basis for the improvement of cold deformation. According to the phase transition, the optimum for the improvement of cold deformation is quenching 10℃above theβphase transition temperature
     The compression test, tensile test, charpy impact test and dynamic upset test were conducted to investigate the dynamic and the static deformation behaviors of the hydrogenated TC4 alloys. OM, XRD, TEM were utilized to investigate the mechanism of the cold deformation. The results showed that the deformation limit of hydrogenated specimen increases with the increase of hydrogen concentration, and reaches maximum in specimen containing 0.6~0.9wt % H, nearly one times of the as-received. However, the results of the tensile test and the charpy impact test showed that the mechanical properties of hydrogenated alloy decreased and embrittled and shown no relationship with the treatment. According to the evolution of the microstructure after deformation, it can be concluded that the improvement of the cold deformation for TC4 alloy are owing to:①the addition of hydrogen promoted the formation ofα" martensites and the metastableβphase;②the stress induced martensites occurred during deformation;③hydrogen decreased the critical stress of the formation of dislocation and twins;④the formation of nano-structured hydrides.
     The compression tests, tensile tests, dynamic upset test and SHPB were conducted to investigate the dynamic and the static deformation behaviors of the hydrogenated TC16 alloys. OM, XRD, TEM were utilized to investigate the mechanism of the cold deformation. The results showed that the tensile properties decreased greatly after hydrogenation. Under the static deformation, the deformation limit decreased with the increase of the hydrogen concentration, while the alloy exhibited well deformation abilities under dynamic deformation, no crack occurred even upsetting to 70% in specimens containing 1.0wt %H. According to the evolution of the microstructure after deformation, it can be concluded that the improvement of the cold deformation for TC16 alloy are owing to:①the addition of hydrogen decreased theβtransition temperature and improved the stability of theβphase,②adiabatic temperature rise occurred during the fast deformation which supplied the conditions for hydrogen induced plasticity,③hydrogen decreased the critical stress of the formation of dislocation and twins and promoted the stress induced martensites occurred during deformation.
     Metallographic method was utilized to investigate the decomposition of theα" martensites and the metastableβphase, and according to the results the refining processing and the dehydrogenation heat treatment of the TC4 alloy were formulated. The results showed the decomposition of these metastable phases occurs by a nucleation and growth process controlled by atom diffusion and the shortest incubation of the decomposition is at 700℃, in which the decomposition time is shortest. The addition of hydrogen promoted the diffusion of theβstabilizer, resulting in the formation of the stableβphase, which finally retained in the alloy during the dehydrogenation. The mechanical properties of the alloy after dehydrogenation showed that specimens containing 0.45wt % H with full martensites after hydrogen treatment shows a high degree increase of strength. However, a fine grain and a comprehensive mechanical properties was obtain in specimens contains 0.8wt % H.
引文
[1]杨健.钛合金在飞机上的应用[J].航空制造技术.2006,11:41-43.
    [2]曹春晓.航空用钛合金的发展概况[J].航空科学技术,2005,4:3-6.
    [3]张庆玲,王庆如,李兴无.航空用钛合金紧固件选材分析[J].材料工程,2007,1:11-14.
    [4]沙爱学,王庆如,李兴无.BT16钛合金紧固件加工工艺分析[J].稀有金属材料与工程,2006,35(3):455-458.
    [5]马琴琴.TC16钛合金在冷变形及热处理过程中的组织演变[D].北京:北京科技大学,2007.
    [6]吴崇周.退火制度对TC16钛合金组织和性能的影响[J].金属学报,2002,38:94-96.
    [7]吴崇周.固溶时效热处理对TC16钛合金组织和性的影响[J].金属学报,2002,38:97-100.
    [8]鲍利索娃,著.陈石卿,译.钛合金金相学[M].北京:国防工业出版社,1986.
    [9]邓肯,汉森,著.周光爵,王桂生,译.钛应用与选择[M].北京:冶金工业出版社,1988.
    [10]曹春晓,闫润林,黄旭.我国航空系统钛合金发展现状及展望[J].钛工业进展,2002,4:26-28.
    [11]王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985.
    [12]侯红亮,李志强,王亚军,等.钛合金热氢处理技术及其应用前景[J].中国有色金属学报,2003,13(3):533-549.
    [13]ILYIN A A,POKING I S,MAMONOV A M,et al.Titanium' 95:Science and Technology [C].Cambridge:The Cambridge University Press,1995,4:2462-2469.
    [14]张勇.钛合金及Ti_3Al基合金的氢处理研究[D].北京:北京航空材料研究院,1996.
    [15]宫波.氢致钛和钛合金的相变组织转变及其应用[D].沈阳:东北工学院,1992.
    [16]KERR K,SMITH P R.Titanium' 80 science and technology,Proceedings of the fourth international conference on titanium[C].Kyoto:Warrendale Pa Metallurgical Society of AIME,1980:2477-2486.
    [17]林天辉.钛合金中的氢及其对力学性能的影响[D].北京:北京科技大学,1990.
    [18]宗影影.钛合金置氢增塑机理及其高温变形规律研究[D].哈尔滨:哈尔滨工业大学,2007.
    [19]张少卿.氢在钛合金热加工中的作用[J].材料工程,1992(2):24-29.
    [20]SENKOV O N,FROES F H.Thermohydrogen processing of titanium alloys[J].International Journal of Hydrogen Energy,1999,24:565-576.
    [21]ELIAZ N,ELIEZER D,OLSON D L.Hydrogen assisted processing of materials[J].Materials Science and Engineering,2000,A289:41-47.
    [22]GOLTSOV V A.Hydrogen treatment(processing) of materials:current status and prospects [J].Journal of Alloys and Compounds,1999,293-295:844-857.
    [23]GOLTSOV V A,Fundamentals of hydrogen treatment of materials and its classification [J].International Journal of Hydrogen Energy,1997,22(2-3):119-124.
    [24]GOLTSOV V A,VEZIROGLU T N.From hydrogen economy to hydrogen civilization[J].International Journal of Hydrogen Energy,2001,26:909-915
    [25]GOLTSOVV A,VEZIROGLU T N,GOLTSOVA L F.Hydrogen civilization of the future—A new conception of the IAHE[J].International Journal of Hydrogen Energy,2006,31:153-159.
    [26]GOLTSOV V A,VLASENKO N N.Hydrogen phase "naklep" and hydrogen treatment in Niobium [J].International Journal of Hydrogen Energy,1997,22(2-3):151-159.
    [27]GOLTSOV V A,GLYAKOV D A,ZHIROV G I.Influence of dissolved hydrogen on recrystallization and recovery of mechanical properties of deformed palladium[J].International Journal of Hydrogen Energy,2006,31:211-216.
    [28]GOLTSOV V A.Presentation of a new book Progress in hydrogen treatment of materials [J].International Journal of Hydrogen Energy,2002,27:845-852.
    [29]ILYIN A A,NOSOVV K,KOLLEROVM Y et al.Hydrogen technology of semiproducts finished goods production from high strength titanium alloys[J].Advances in the science and technology of titanium alloy processing,1997:517-523.
    [30]C.莱因斯,M皮特尔斯著,陈振华译.钛及钛合金[M].北京:化学工业出版社,2005.
    [31]张喜燕,赵永庆,白晨光.钛合金及其应用[M].北京:化学工业出版社,2005.
    [32]《有色金属及其热处理》编写组.有色金属及其热处理[M].北京:国防工业出版社,1981.
    [33]张宝昌.有色金属及其热处理[M].西安:西北工业大学出版社,1993.
    [34]孙毓蔚.Ti-6Al-4V合金加工[J].钛工业进展,2001,(1):20-25.
    [35]刘东升.高强韧钛合金的热处理工艺及相变行为研究[D].北京:清华大学,2005.
    [36]孙小明.钛的热处理[J].稀有金属快报,2005,24(6):41-42.
    [37]邓安华.钛合金的马氏体相变[J].上海有色金属,1999,20(4):193-199.
    [38]王荣滨.钛合金热处理强化与应用[J].五金科技,2005,(8):13-16.
    [39]国防科学技术工业委员会.钛及钛合金的热处理[M].北京:国防工业出版社,1999.
    [40]KERR W R.The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V[J].Metallurgical and Materials Transactions A,1985,16:1077-1087.
    [41]ILYIN A A,KOLACHEV B A,MAMONOV A M.Titanium' 92:Science and Technology[C].Sandiego California:Warrendale,PA,The Minerals,Metals & Materials Society,1993:941-947.
    [42]TUN-YING FANG,WEN HSIUNG Wang.Microstructural features of thermochemical processing in a Ti-6Al-4V alloy[J].Materials Chemistry and Physics,1998,56:36-47.
    [43]GRIMBERG I,LEVIN L.BOTSTEIN O,et al.Microstructural features of the hydrogenation dehydrogenation process in Ti alloys[J].Journal of Materials Research,1991,6:2069-2076.
    [44]GONG B,LAI Z H,NIINOMI M.Improvement in tensile properties of alpha+beta type Ti alloys by hydrogen treatment[J].Acta Metallurgica Sinica A,1993,6:121-124.
    [45] YOSHIMURA H, HAYASHI M. Ultra-fine equiaxed grain refinement and improvement of mechanical properties of α+β type titanium alloys by hydrogenation, hot working, heat treatment and dehydrogenation [J]. Materials Transactions-JIM , 1994, 35:266-272.
    [46] O N. SENKOV, JONAS J J. Dynamic strain aging and hydrogen induced softening in alpha titanium [J]. Metallurgical and Materials Transactions A ,1996,27:1877-1887.
    [47] ELIAZ N, ELIEZER D, OLSON D L. Hydrogen-assisted processing of materials [J]. Materials Science and Engineering A ,2000,289:41-53.
    [48] KOLACHEV B A. Hydrogen technology as new perspective type of titanium alloy processing [J]. Advances in the science and technology of titanium alloy processing , 1992, 2:331-338.
    [49] SENKOV O N, JONAS J J, FROES FH. Recent advances in the thermohydrogen processing of titanium alloys [J]. Journal of the Minerals, Metals and Materials Society , 1996,48(7):42-47.
    [50] MURZINOVA M, MAZURSKI M I, SALISHCHEV G A, et al. Application of reversible hydrogen alloying for formation of submicrocrystalline structure in α+β titanium alloys [J]. International Journal of Hydrogen Energy ,1997, 22(2-3): 201-204.
    [51] YOSHIMURA HIROFUMI. Mezzoscopic grain refinement and improved mechanical properties of titanium materials by hydrogen treatments [J]. International journal of Hydrogen Energy , 1997, 22(2-3):145-150.
    [52] MURZINOVA M A, SALISHCHEV G. A, AFONOCHEV D D. Formation of nanocrystalline structure in two-phase titanium alloy by combination of thermohydrogen processing with hot working [J]. International Journal of Hydrogen Energy , 2002,27:775-782.
    [53] RONALD S V, KANJI O. Hydrogen solubility in alpha titanium [J]. Metallurgical and Materials Transactions B , 1971, (2):608-609.
    [54] COSTA J E, BANERJEE D , WILLIAMS J C. Beta titanium alloys in the 1980' s [C]. New York:TMS-AIME Warrendale Press, 1983:69-83.
    [55] MCQUILLAN A D, MCQUILLAN M K. Titanium [M]. Academic Press, New York Butter worths Scientific Publications , London, 1956.
    [56] QAZI J I. Thermohydrogen processing(THP) of Ti-6A1-4V and TiAl alloys [D]. Idaho: University of Idaho, 2002.
    [57] QAZI J I, RAHIM J, SENKOV O N, et al. Phase transformation in the Ti-6A1-4V-H system [J]. Journal of the Minerals, Metals and Materials Society ,2002:68-71.
    [58] QAZI J I, SENKOV O N, RAHIM A G, et al. Phase transformtion in the Ti-6Al-4V-H alloys [J]. Metallurgical and Materials Transations A ,2001,32:2453-2463.
    [59] QAZI J I, SENKOV O N, FROES F H. High Performance Metallic Materials for Cost Sensitive Applications [C].Seattle, Washington: Warrendale Press, The Minerals, Metals & Materials Society ,2002:93-100.
    [60] KERR W R, SMITH P R. Titanium' 80: Science and Technology[C]. Kyoto: Warrendale Pa Metallurgical Society of AIME, 1980,14:2477-2486.
    [61] ILYIN A A, MAMONOV A M, NOSOV V K. Proceedings of 2nd pacificrim international conference on advanced materials and processing[C]., New York :Springer 1995:697-705.
    [62] KOLACHEV B A. On the Possibility of Temperature Decreasing for Hot Heating of Bolts Made of VT 16 Titanium Alloy by Reversible Hydrogenation [J]. Izvestiya AN SSSR: Metally ,1991,3:67-69.
    [63] KOLACHEV B A, MALKOV A V, VOROBYOV I A, et al. Titanium' 92:Science and Technology [C]. Sandiego California: Warrendale, PA, The Minerals, Metals & Materials Society , 1993: 861-869.
    [64] KOLACHEV B A, EGOROVA Y B, TALALAEV V D. Advances in the Science and Technology of Titanium Alloy Processing [C]. Anaheim: Warrendale, PA, TMS, 1997:339-346.
    [65] SENKOV O N, JONAS J J, FROES F H. Thermally flow of beta titanium and titanium-hydrogen alloys [J]. Philosophical Magazine A, 2000, 80:2813-2825
    [66] SENKOV O.N, BASHKIN L O. Metallurgical Processes for the Year 2000 and Beyond [C].. Pennsylvania: Warrendale, PA, TMS, 1994:271-280.
    [67] FANG T Y, WANG W H. Proceeding of National Science Council[C]. Taipei, Taiwan:Natl Sci Counc, 1998,22:116-125.
    [68] GONG B, ZHANG C B, LAI Z H. Improvement of Superplastic Properties of Ti-6Al-4V Alloy by Temporary Alloying with Hydrogen [J]. Journal of Materials Science Letters, 1994, 13(21): 1561-15633.
    [69] ZHANG S Q, ZHAO L R. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy [J]. Journal of Alloys Compounds ,1995,218:233-236.
    [70] KOLACHEV B A. Reversible hydrogen alloying of titanium alloys [J]. Metal- lovedenie Termicheskaya Obrabotka Metallov, 1993,10:28-32.
    [71] MALKOV A V, KOLACHEV B A, NIZKIN L D. Effect of hydrogen on ductilityof a VT16 alloy [J]. Izv VUZ, Tsvetnaya Metallurgiya ,1990,6:96-100.
    [72] KOLACHEV B A. On the Possibility of Temperature Decreasing for Hot Heating of Bolts Made of VT16 Titanium Alloy by Reversible Hydrogenation [J]. Izvestiya AN SSSR: Metally, 1991,3:67-69.
    [73] APGAR L S, EYLON D. Microstructure Control of titanium aluminide powder compacts by thermochemical processing [J]. ISIJ International, 1991, 31:915-921.
    [74] KAOWH,. EYLON D, YOLTONC F, et al. Effect of Temporary Alloy ing by Hydrogen (Hydrovac) on the Vacuum Hot Pressing and Microstructure of Titanium Alloy Powder Compacts [J]. Progress in Powder Metallurgy ,1982,37:289-301.
    [75]AZEVEDOC R,RODIRGUES F,BENEDUCE D.Ti-Al-V powder metallurgy(PM) via hydrogenation-dehydrogenation (HDH) process[J].Journal of Alloys and Compounds,2003,353:217.
    [76]SENKOV O N,FROES F H,BABURAJ E G.Development of a nanocrystalline titanium aluminide—titanium silicide particulate composite[J].Scripta Materialia,1997,37:575-579.
    [77]YONG K,GUO Z X,EDMONDS D V.Processing of titanium matrix composites with hydrogen as a temporary alloying element[J].Scripta Metallurgica,1992,27:1695-1700.
    [78]GUO Z X,LI J H,Yang K,et al.Effect of hydrogen as a temporary alloying element on the microstructure of Ti_3Al intermetallic[J].Composites,1993,28:71-77.
    [79]MUKHOPADHYAY D K,SRISUKHUMBOWORNCHAI N,SENKOV O N,et al.Advanced Particulate Materials and Processes Conference[C],Princeton:TMS,Warrendale,PA,1997:145-152.
    [80]LI J H,GRANT P S,JENKINS M L,et al.Hydrogen incorporation in Ti-based metal-matrix composites fabricated by vacuum plasma spraying and vacuum hot pressing[J].Journal of Microscopy,1997,185:132-145.
    [81]GREENSPANJ,RIZZITANO F J,SCALA E.Metal matrix composites by decomposition sintering of titanium hydride[J].Army Materials and Mechanics Research Center,1971.
    [82]KLACHEV B A,NOSOV V K.Hydrogen plasticization in hot deforming of titanium alloys [C].Titanium 85 Science and Technology,1984:625-631.
    [83]苏彦庆,骆良顺.置氢对Ti6Al4V合金室温组织的影响[J].材料科学与工艺,2005,13(1):103-107.
    [84]苏彦庆,骆良顺.Ti6Al4V合金渗氢氢化组织及氢脆机制的研究[J].稀有金属材料与工程,2005,34(4):526-530.
    [85]宫波,赖祖涵,新家光雄,等.通过氢处理改善α+β型钛合金的拉伸性能[J].金属学报,1992,28(10):A431-434.
    [86]MORASCH K R,BAHR D F.The effects of hydrogen on deformation and cross slip in BCC titanium alloy[J].Script Materialia,2001,45(2):839-845.
    [87]KERR W R,GURREY F J,MARTORRWLL I A.Pilot plant forging of hydrogenated Ti-6Al-4V[R].AD A089107,Air Force Wright Aeronautical Laboratories,1980.
    [88]张勇,张少卿,陶春虎.氢化Ti-25Al-10Nb-3V-1Mo铸态合金的热压缩行为及其显微组织[J].金属学报,1996,32(3):235-240.
    [89]张勇,张少卿,陶春虎.Ti-25Al-10Nb-3V-1Mo合金的氢化行为及其热压缩行为[J].中国有色金属学报,1995,5(增刊):218-224.
    [90]韩潇.氢处理对TC4钛合金组织和热变形行为的影响[D].哈尔滨:哈尔滨工业大学,2004.
    [91]LEDERICH R J,SASTRY S M.Advanced Processing Method for Titanium[C].Proceedings of the Symposium,Louisville:1982:115-128.
    [92]赵林若.钛合金超塑性机理及氢的作用[D].北京:北京航空材料研究院,1988.
    [93]丁桦.Ti-Al系金属间化合物的超塑性研究[D].沈阳:东北大学,2000.
    [94]丁桦,高建成,张彩锫.氢对Ti3Al-Nb合金微观组织和超塑性变形行为的影响[J].钢铁研究学报,2000,12(2):48-53.
    [95]丁桦,高建成,路贵民.氢处理对Ti_3Al金属间化合物组织和性能的影响[J].材料科学工艺,1998,6(4):55-59.
    [96]丁桦,高建成,张彩锫.氢对Ti3Al基合金和超塑性能的影响[J].中国有色金属学报,1998,8(增刊2):341-345.
    [97]高文,张少卿.氢对TC11钛合金超塑性性能的影响[J].稀有金属,1992,16:227-230.
    [98]姜波.双相钛合金置氢高温拉伸与扩散连接试验研究[D].北京:北京航空制造工程研究所,2004.
    [99]潘峰,张少卿,薛志痒.铸造钛合金的氢处理细化晶粒的研究[J].航空学报,1987,8(1):A77-A82.
    [100]徐振声,宫波,赖祖涵.用氢细化Ti-6Al-4V合金显微组织的研究[J].有色矿冶,1990,2:45-48
    [101]HIDEKI FUJII.Strengthening of α+β titanium alloys by thermomechanical processing [J]Materials Science and Engineering A,1998,243:103-108.
    [102]O.A KAIBYSHEV.Grain refinement in commercial alloys due to high plastic deformation and phase transformation[J].Journal of Material Processing Technology,2001,117:300-306.
    [103]HIROFUMI YOSHIMURA,JUN NAKAHIGASHI.Tensile and impact properties of mesoscopicgrained alpha-type titanium alloys obtained through hydrogen treatments[J].Journal of Alloys and Compounds,1999,293-295:858-861.
    [104]LIU CHIA TE,WU TAIR I,JIANN KUO Wu.Mater.Formation of nanocrystalline structure of Ti-6Al-4V alloy by cyclic hydrogenation-dehydrogenation treatment[J].Materials Chemistry and Physics,2008,110:440-444.
    [105]杜忠权,王高潮,陈玉秀.氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果[J].航空学报,1994,15(7):882-886.
    [106]赵越,郑华,刘实,等.Ti-Mo合金的结构及吸放氢性能研究[J].金属学报,2003,39(1):89-93
    [107]HIROOKA Y,MIYAKE M.A study of hydrogen absorption and absorption by titanium[J].Journal of Nuclear Materials,1981,96:227-232.
    [108]黄利军,虞炳西,高树浚.钛吸氢和放氢动力学[J].金属功能材料,1998,5:124-126.
    [109]WANG WEI.Thermodynamic evaluation of the titanium-hydrogen system[J].Journal of Alloys and Compounds,1996,(238):6-12.
    [110]ILIN A A,MAMONOV A M,NOSOV V K.The effect of Hydrogen on the diffusion mobility of metal atoms in the beta-phase of titanium-alloys[J].Russian Metallurgy,1994,5:74-77.
    [111]崔昌军,彭乔.钛及钛合金的氢渗过程研究[J].稀有金属材料与工程.2003,32(12):1010-1015.
    [112]MIYOSHI T,NAITO S,YAMMAMOTO M.Diffusion of hydrogen in titanium Ti-88 Al-12 and Ti3Al [J].Journal of the Chemical Society-Faraday Transations,1996,92(3):483-486
    [113]马凤仓.热加工对原位自生钛基复合材料组织和力学性能影响的研究[D].上海:上海交通大学,2006。
    [114]QAZI J I,SENKOV O N,RAHIM J,et al.Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys[J].Materials Science and Engineering A,2003,359:137-149.
    [115]林莺莺.Ti60钛合金的氢处理研究[D].西安:西北工业大学,2005.
    [116]FROES F H,EYLON D,SURYANARYAYANA C.Thermochemical processing of titanium alloys[J].Journal of the Minerals,Metals and Materials Society,1990,42(3):26-29.
    [117]IVASISHIN O M,USTINOV A I,SKORODIZIEVSJII V.S,et al.Structural and compositional changes during isothermal annealing of a" martensite in Ti-8wt%Mo alloy[J].Scripta Materialia,1997,37(6):883-888.
    [118]TURTELTAUB S,SUIKER A S J.Transformation-induced plasticity in ferrous alloys[J].Journal of the Mechanics and Physics of Solids,2005,53:1747-1788.
    [119]ZHANG W,WU B,ZHAO W S,et al.Formation of novel β-Ti martensites in Ti-6Al-4V under an electric-current-pulse heat treatment[J].Materials Science and Engineering A,2006,438-440:320-323.
    [120]ATROSHENKO S A.Martensite transformation in metals induced shock loading[J].Materials Science and Engineering A,2004,378:293-298.
    [121]MANERO J M,GIL F J,PLANELL J A.Deformation mechanisms of Ti-6Al-4V alloys with a martensitic microstructure subjected to oligocylic fatigue[J].Acta Materialia,2000,48:3353-3359.
    [122]PING D H,CUI C Y,YIN F X,Y,et al.TEM investigations on martensite in a Ti-Nb-based shape memory alloy[J].Scripta Materialia,2006,54:1305-1310.
    [123]MATSUMOTO,SADAO WATANABE,SHUJI HANADA α' martensite Ti-V-Sn alloys with low young' s modulus and high strength[J].Materials Science and Engineering,A,2007,448:39-48.
    [124]王吉会,郑俊萍.材料力学性能[M].天津:天津大学出版社,2006.
    [125]束德林.工程材料力学性能[M].北京:机械工业出版社.2009.
    [126]盛国裕.工程材料测试技术[M].北京:中国计量出版社,2007.
    [127]胡赓详,钱苗根.金属学[M].上海:上海科学技术出版社,1980.
    [128]吴崇周,李兴无.TC16钛合金室温变形特性研究[J].钛工业进展,2006,2(6):17-19
    [129]汪冰峰.钛及钛合金中绝热剪切带微观结构演化及其集体行为研究[D].长沙:中南大学,2006.
    [130]陈军,赵永庆,杨海瑛.Ti-B19钛合金绝热剪切带研究[J].热加工工艺,2006,35(22):17-19.
    [131]ZIMMERMANNF,HUMBERT M.Determination of the habit plane characteristics in the β→α'phase transformation induced by stress in Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe[J].Acta Materialia,2002,50:1735-1740.
    [132]LIQIANG WANG,WEIJIE LU,JINNING QIN,et al.Effect of precipitation phase on microstructure and superelasticity of cold-rolled beta titanium alloy during heat treatment[J].Materials Science and Engineering A,2008,490:421-426.
    [133]ILYIN A A,KOLLEROV YU M,GOLOVIN I S.Hydrogen influence on plastic deformation mechanism of β-titanium alloys of Ti-Nb system[J].Journal of Alloys and Compounds,1997,253-254:144-147.
    [134]FERREIRA P J.Hydrogen effects on crystal dislocations and stacking-fault energy[D].Illionois:University of Illionois,1996.
    [135]GOLTSOV V A,GLUKHOVA ZH L,MINAKOVA O A.Hydrogen elasticity phenomenon:Experimental manifestations and theory[J].Journal of Alloys and Compounds,2005,404-406:576-579.
    [136]CLARKE C F,HARDIE D,IKEDA B.M.Hydrogen- induced cracking of commercial pure titanium [J].Corrosion Science,1997,39(9):1545-1559.
    [137]ELIEZER D,TAL-GUTELMACHER E,CROSS C E,et al.Hydrogen trapping in β-21S titanium alloy[J].Materials Science and Engineering A,2006,421:200-207.
    [138]TETER D F,ROBERTSON I M,BIRNAUM H K.The effects of hydrogen on the deformation and fracture of β titanium[J].Acta Materialia,2001,49:4313-4323.
    [139]周义清.30CrMnSiNi2A钢的动态性能研究[D].太原:中北大学,2007.
    [140]常列珍.50SiMnVB合金钢动态力学性能的研究[D].太原:中北大学,2007.
    [141]胡时胜,王礼立.一种用于材料高应变率试验的装置[J].振动与冲击,1986,1:40-47.
    [142]胡时胜.Hopkinson压杆实验技术的应用进展[J].实验力学,2005,20(4):589-549.
    [143]彭艳菊,刘永强,牛海成,等.SHPB实验技术研究[J].地球物理学进展,2006,14(21):273-278.
    [144]胡柳青.冲击载荷作用下岩石动态断裂过程机理研究[D].长沙:中南大学,2005.
    [145]郭伟国.一种新型奥氏体不锈钢的塑性流变行为研究[J].西北工业大学学报,2001,19(3):476-479.
    [146]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.
    [147]杨扬,曾毅,汪冰峰.基于Johnson-Cook模型的TC16钛合金动态本构关系[J].中国有色金属学报,2008,18(3):505-510.
    [148]WANG YANG,XIA YUANMING.A modified constitutive equation for unidirectional composites under tensile impact and the dynamic tensile properties of KFRP[J].Composites Science and Technology,2000,4(1):591-596.
    [149]杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401-408.
    [150]MIAOQUAN Li,HONGSI PAN,YINGYING LIN,et al.High temperature deformation behavior of near alpha Ti-5.6Al-4.8Sn-2.0Zr alloy[J].Journal of Materials Processing Technology,2007,183:71-76.
    [151] ZHANG Y, ZHANG S Q. Hydrogenation Characteristics of Ti-6Al-4V Cast Alloy and Its Microsoftructural Modification by Hydrogen Treatment [J]. International Journal of Hydrogen Energy , 1997,22(2/3):161-168.
    [152] L F X, RODRIGUEZ D, PLANELL J. A. Influence of tempering temperature and time on the α′ Ti-6Al-4V martensite [J]. Journal of Alloys and Compounds , 1996,234:287-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700