用户名: 密码: 验证码:
并联4TPS-1PS型电动稳定跟踪平台的特性及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船在航行过程中,由于受到风浪等环境条件的影响,会产生横摇、纵摇、艏摇和升沉等运动,并且各种装备通常与舰船固连在一起,这些运动将造成装备指向的改变。稳定跟踪平台用于隔离舰船的运动并实现高性能跟踪运动,具有重大战略意义。现有研究都是针对采用串联结构的小负载稳定跟踪平台进行,本文首次系统深入地研究并联型稳定跟踪平台,从原理、特性、优化和控制等方面进行,主要内容如下:
     第一章,在查阅国内外相关研究文献的基础上,综述了现有稳定跟踪平台的结构形式和应用现状,简要介绍了并联机构的特点及应用,总结了并联机构的构型、工作空间、性能指标、尺度优化和控制策略等方面的研究现状,阐述了本课题的相关研究背景及意义,提出主要研究工作。
     第二章,建立并联型稳定跟踪平台的运动学和动力学模型。首先介绍了并联型稳定跟踪系统的构成,设计出新型4TPS-1PS并联平台结构。建立了考虑电、机、气特性的稳定跟踪平台单支链模型。推导出并联型稳定跟踪控制指令求解公式,建立平台的运动学模型,提出一种实时解析正解和一种基于Newton-Raphson方法的数值正解方法。建立静基座平台动力学模型,分析了动、静基座平台动力学模型的相同点与不同点,得到动基座动力学模型,仿真分析了载体扰动对各缸作用力的影响。
     第三章,对并联型稳定跟踪平台的工作特性进行研究。对平台执行机构—伺服电动缸特有的气阻特性进行仿真分析,绘制伺服电动缸的速度-输出力特性曲线。阐述完全可达工作空间概念,采用完全可达转动工作空间评价4TPS-1PS并联平台的工作空间。利用几何方法分析平台的理论极限转角,并提出完全可达转动空间的快速求解方法,计算得到平台样机的完全可达转动工作空间。提出平台速度、输出力的快速求解方法。分析得出并联型稳定跟踪平台的工作空间具有范围大且对称的特点,其输出速度和广义力具有幅值大且随位姿变化小的优点。
     第四章,研究并联型稳定跟踪平台的性能指标和尺度优化。推导出加权全局条件数、平台装机功率等性能指标的表达式,分析了各性能指标与结构参数的关系。以并联型稳定跟踪平台装机功率作为直接优化目标,以其他性能指标为约束条件,采用遗传算法对平台进行优化,仿真表明,以此指标优化的平台结构可以较大幅度地降低装机功率,并且满足其他性能指标要求.
     第五章,对并联型稳定跟踪平台的控制策略进行研究。首先对准闭环PID控制进行了探讨分析;然后提出一种位姿大闭环控制策略,将平台作为一个整体,直接对平台的位姿进行闭环控制,不对单个缸进行位置闭环控制。利用滑模变结构理论设计位姿大闭环鲁棒控制器。仿真结果表明该控制策略基本消除了各缸动态性能不一致引起的耦合误差,实现了各缸间的精确协同。针对稳定跟踪的特点和需求,引入计算扰动力补偿改进控制策略。仿真结果表明该控制策略有效消除了载体扰动和外部干扰及动力学模型误差的影响,可获得较高的稳定隔离度和稳定跟踪控制精度,鲁棒性好。
     第六章,稳定跟踪控制实验研究。建立了并联型稳定跟踪平台实验装置,设计了控制系统的硬件和软件。利用并联六自由度电液伺服平台模拟舰船运动,在实验室内进行稳定跟踪控制实验。进行了平台的功能性实验,验证平台软硬件设计的正确性和合理性。应用第五章设计的控制策略进行跟踪、稳定及稳定跟踪控制实验研究,测试出平台的精度及性能,验证了控制策略的有效性。
     第七章,总结本论文的主要工作,阐述研究结论和创新点,对并联型稳定跟踪平台的后续研究作出了展望。
In the process of navigation, ships will have the movement of rolling, pitching, heading, rising and falling because of the influences of storms or other environmental conditions. However, equipments are usually fixed firmly on ships. The movement will change the direction of equipments. Stabilization and tracking platform is used to isolate the ship movement and achieve high-performance tracking movement, which is of great strategic significance and illustrate a good prospect of application. The existing studies were aimed at the stabilization and tracking platform with series structure. In this paper, the stabilization and tracking platform with parallel structure was studied systematically for the first time. The study was carried out from the aspects of principles, features, optimization and control etc... The main contents are as follows:
     In chapter 1, on the basis of referring to domestic and international associated documents, structures and the current application situation of the existing stabilization and tracking platform were summarized, characteristics and application of parallel mechanism were briefly introduced, and the current research conditions of configuration, workspace, performance indices, dimensional optimization, control strategies and other aspects of parallel mechanism were summed up. The related study background and significance of the subject were expounded, and the main study work was proposed.
     In chapter 2, the kinematics and dynamics models of parallel stabilization and tracking platform were built. Firstly, the constitution of stabilization and tracking system with parallel platform was introduced, and the structure of a new 4TPS-1PS parallel platform was designed. The model of platform's actuating link was built considering the characteristics of electricity, mechanism and gas. The control command formulas of stabilization and tracking were deduced. The kinematics model of the parallel platform was built, and a real-time analytic forward kinematics solution and numerical forward kinematics solution based on Newton-Raphson method were presented. The dynamics model of the parallel stabilization and tracking platform with static base plate was built. The similarities and differences between dynamics models of the platform with moving or static base plate were analyzed. Furthermore the dynamics model of the platform with moving base plate was built. The influences of ships' disturbance on the cylinders' forces were simulated and analyzed.
     In chapter 3, the operating characteristics of parallel stabilization and tracking platform were studied. The pneumatic resistance of the servo electric cylinder was simulated, and the speed-output force curve of the servo electric cylinder was plotted out. The concept of full reachable workspace was expounded, and the full reachable rotation workspace was used to evaluate the workspace of parallel 4TPS-1PS platform. The theoretical rotation limits of the parallel platform were analyzed by geometry method, and a rapid solution of full reachable rotation workspace was put forward. The full reachable rotation workspace of the parallel platform prototype was calculated and plotted out. Rapid solutions of the parallel platform's speed and output force were put forward. It was concluded that the parallel stabilization and tracking platform's workspace had the characteristics of large range and symmetry, and the output speed and generalized force had the merits of large amplitude and little change with the parallel platform's pose.
     In chapter 4, performance indices and dimensional optimization of the parallel stabilization and tracking platform were studied. The expressions of weighted global condition number, installed power of parallel platform and other performance indices were deduced. The relations between performance indices and structure parameters were analyzed. The parallel stabilization and tracking platform was optimized by using Genetic algorithm (GA), and taking the installed power of the parallel platform as the direct optimized goal and the other performance indices as constraints. The simulation results showed that the installed power of the parallel platform with optimized structure parameters was greatly reduced and the requirements of other performance indices were met.
     In chapter 5, control strategies of the parallel stabilization and tracking platform were studied. Firstly, the PID control strategy with pose open loop was analyzed. Then a pose servo control strategy was presented, in which the platform was taken as a whole, and controlled directly with pose servo, while the cylinders were no longer controlled with position servo singly. The robust pose servo controller was designed by using the sliding mode variable structure control theory. The simulation results showed that the coupled errors caused by the inconsistencies of four cylinders' dynamic performances were almost eliminated, and the precise coordination between four cylinders was realized. Addressing the characteristics and the need of stabilization and tracking, the calculating disturbance force compensation was introduced to improve the control strategy. The simulation results showed that the influences of ships' disturbance, external disturbance and dynamic model errors were effectively eliminated, and high isolation degree and tracking precision were achieved by using this control strategy. Furthermore, the strategy was robust.
     In chapter 6, experimental studies of stabilization and tracking were carried out. The parallel stabilization and tracking platform experimental device was developed, and the hardware and the software of the control system were designed. The parallel six degree-of-freedom hydraulic servo platform was used to simulate the ship's movement for doing the stabilization and tracking control experiments in the laboratory. Functional tests of the parallel platform were firstly carried out to validate the correctness and rationality of the hardware and software design. Based on this, the experimental studies of tracking, stabilization and stabilization and tracking control were made by using the control strategy designed in chapter 5. Meanwhile, the accuracies and performances of the parallel platform were tested and the effectiveness of the control strategy was verified.
     In chapter 7, the major work of the study was summarized, and the conclusions and innovations of the study were elaborated. And the future study of the parallel stabilization and tracking platform was also prospected.
引文
[1]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999.
    [2]Hilkert,J.M.Inertially Stabilized Platform Technology:Concepts and Principles.IEEE Control Systems Magazine.2008,2:26-46.
    [3]夏鲁瑞.移动载体稳定跟踪平台关键技术研究.[硕士学位论文].武汉:国防科学技术大学,2005.
    [4]刘盛韬.灯光助降系统稳定平台的建模及仿真研究.[硕士学位论文].哈尔滨:哈尔滨工程大学,2007.
    [5]陈浩.舰载武器稳定平台控制技术研究.[硕士学位论文].哈尔滨:哈尔滨工程大学,2007.
    [6]滕云鹤,毛献辉,et al.移动卫星通信捷联式天线稳定系统.宇航学报.2002,23(5):72-75.
    [7]杨中田.双轴稳定平台嵌入式控制系统设计与开发.[硕士学位论文].武汉:国防科学技术大学,2005.
    [8]Masten,M.K.Inertially Stablized Platforms for Optical Imaging Systems.IEEE Control Systems Magazine.2008,2:47-64.
    [9]王凤英.船载电视跟踪仪自稳定问题研究.[硕士学位论文].大连:大连海事大学,2005.
    [10]张鹏.舰载摄像稳定平台的结构设计.舰船电子对抗.2006,29(3):70-73.
    [11]陈家辉,张吉平.航海气象学与海洋学.大连:大连海事大学出版社,2001.
    [12]尹勇.分布式航海仿真系统中视景实时生成算法的研究.[博士学位论文].大连:大连海事大学,2001.
    [13]Wei Ji,Q.L.,Bo Xu.Design Study of Adaptive Fuzzy PID Controller for LOS Stabilized System.Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications.2006.
    [14]K.C.Tan,T.H.L.,E.F.Khor,D.C.Ang.Design and real-time implementation of a multivariable gyro-mirror line-of-sight stabiliaztion platform.Fuzzy Sets and System.2002,128:81-93.
    [15]谢子泉,胡华伟.舰载雷达稳定平台的结构概况.电子工程.2002,(1):17-22.
    [16]郭军.光电稳定平台结构设计.电光系统.2003,104:53-55.
    [17]聂旭涛,范大鹏.基于COSMOSWorks的三轴稳定平台框架的优化设计.机电工程技术.2005,34(1):74-76.
    [18]Marcelo C.Algrain,J.Q.Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking Systems.Second IEEE Conference on Control Applications,September 13-16,Vancouver,B.C.1993.159-163.
    [19]严武升,刘宏,et al.基于前馈补偿的船载雷达三轴稳定跟踪的研究.西安电子科技大学学报(自然科学版).1998,10(5):650-655.
    [20]董挪军.一种新颖的两轴式天线稳定系统.天线技术.2003,29(2):42-46.
    [21]Peter J.Kennedy,R.L.K.Direct Versus Indirect Line of Sight(LOS)Stabilization.IEEE Transactions on Control Systems Technology.2003,11(1):3-15.
    [22]董小萌,张平.两轴稳定平台的过顶盲区问题.北京航空航天大学学报.2007,33(7):811-815.
    [23]王小军,李殿璞,et al.舰载三轴雷达波束稳定跟踪的研究.哈尔滨工程大学学报.2002,23(1):58-63.
    [24]李海霞,高钟毓,et al.四环空间稳定平台的运动学分析及电动机力矩计算.清华大学学报(自然科学版).2007,47(5):635-639.
    [25]ASP-1 Stabilized Platform Brochure.http://www.wehrliassoc.com/.
    [26]Ioakimidis,T.E.,R.S.Wexler.Commercial Ku-band SATCOM On-the-MOVE Using a Hybrid Tracking Scheme.IEEE MILCOM 2001.2001.780-784.
    [27]Brochure of ilCSC-OFS etc.http://www.imar-navigation.de/.
    [28]资料:日本90式坦克火控系统.http://jczs.news.sina.com.cn/.2004.
    [29]Brochure of Stabilized Electro-optical Airborne Instrumentation Platform.http://www.sri.org/.
    [30]Algrain,M.C.Accelerometer-Based Platform Stabilization.SPIE Acquisiton, Tracking and Pointing.1991,1482:367-382.
    [31]K.K.Tan,T.H.L.,A.Mamun,M.W.Lee,C.J.Khoh.Composite control of a gyro mirror line-of-sight stabilization platform-design and auto-tuning.ISA Transactions.2001,40(2):155-171.
    [32]Lee,T.H.,E.K.Koh,et al.Stable adaptive control of multivariable servomechanisms,with application to a passive line-of-sight stabilization system.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.1996,43(1):98-105.
    [33]T.H.Lee,K.K.T.,M.W.Lee.A variable structure-augmented adaptive controller for a gyro-mirror line-of-sight stabilization platform.Mechatronics.1998,8(1):47-64.
    [34]沈宏海,刘晶红,et al.航空光电成像平台角位置陀螺和角速率陀螺的稳定效果分析.光学精密工程.2007,15(8):1293-1299.
    [35]刘胜,邓志红,et al.猎雷声纳基阵运动姿态估计与控制研究.哈尔滨工程大学学报.2000,21(2):1-5.
    [36]胡浩军,毛耀,et al.稳定平台对基座角速率扰动的抑制能力.电机与控制学报.2007,11(1):25-28.
    [37]姬伟,李奇.陀螺稳定平台视轴稳定系统自适应模糊PID控制.航空学报.2007,28(1):191-195.
    [38]周瑞青,吕善伟,et al.弹载捷联式天线平台两种稳定实现方法的比较.系统工程与电子技术.2005,27(8):1397-1400.
    [39]牛小骥,高钟毓,et al.基于微机械惯性传感器的卫星电视天线稳定系统.中国惯性技术学报.2002,10(5):11-15.
    [40]李凤英.车载稳定平台试验研究.[硕士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [41]CWWP、CJWP稳定跟踪平台产品手册.http://www.sipat.com/.
    [42]船用卫星天线稳定跟踪平台.http://www.cbs-satcom.com/.
    [43]黄真,孔令富,et al.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [44]张曙,u.Heisel.并联运动机床.北京:机械工业出版社,2003.
    [45]何景峰.液压驱动六自由度并联机器人特性及其控制策略研究.[博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [46]Gwinnett,J.E.Amusement Device.United States.1789680.1931.
    [47]Gough,V.E.,S.G.Whitehall.Universal tyre test machine.Proceedings of the FISITA Ninth International Technical Congress.1962.117-137.
    [48]Stewart,D.A Platform With Six Degree of Freedom.Proceedings of Institution of Mechanical Engineers.1965,180(5):371-386.
    [49]Dasgupta,B.,T.S.Mruthyunjaya.The Stewart Platform Manipulator:a Review.Mechanism and Machine Theory.2000,35:15-40.
    [50]Boney,I.The True Origins of Parallel Robots.http://www.parallemic.org/.2003.
    [51]杨灏泉,赵克定,et al.飞行模拟器六自由度运动系统的关键技术及研究现状.系统仿真学报.2002,14(1):84-87.
    [52]陈晓江.六自由度舰船模拟摇摆平台运动系统的分析与研究.[南京理工大学硕士学位论文].南京:南京理工大学,2006.
    [53]王宣银,刘荣,et al.车辆运动模拟6自由度平台的协同控制研究.机械工程学报.2004,40(4):160-163.
    [54]http://www.cae.com/.
    [55]Simulators:The Bridge.http://www.mi.mun.ca/.
    [56]Caccavale,F.,B.Siciliano,et al.The Tricept Robot:Dynamics and Impedance Control.IEEE/ASME TRANSACTIONS ON MECHATRONICS.2003,8(2):263-268.
    [57]Bonev,I.Delta parallel robot-the story of success.Newsletter.2001.
    [58]王忠华,汪劲松.VAMT1Y虚拟轴机床数控系统直线和圆弧插补仿真研究.中国机械工程.1999,10(10):1121-1123.
    [59]Lee,S.H.,B.-J.Yi,et al.Analysis on Impact Propagation of Docking Platform for Spacecraft.Proceedings of the 2001 IEEE International Conference on Robotics &Automation,Seoul,Korea.2001.413-420.
    [60]苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制.[博士学位论文].西安:西安电子科技大学,2002.
    [61]Graf.R,D.R.Active Acceleration Compensation Using a Stewart-Platform on a Mobile Robots.Advanced Mobile Robots,1997.Proceedings.,Second EUROMICRO Workshop on.1997.59-64.
    [62]Kang,C.-G.Closed-form Force Sensing of a 6-axis Force Transducer Based on the Stewart Platform.Sensors and Actuator.2001,90:31-37.
    [63]#12
    [64]郑亚青,刘雄伟.绳牵引并联机构的研究概况与发展趋势.中国机械工程.2003,14(9):808-810.
    [65]刘辛军,汪劲松,et al.球坐标式3自由度并联机器人机构的运动学设计.自然科学进展.2002,12(4):409-413.
    [66]Huang,Z.,Y.F.Fang.Kinematic Characteristics Analysis of 3-dof in-Parallel Actuated Pyramid Mechanisms.Mechanism and Machine Theory.1996,31(8):1009-1018.
    [67]N.G.Ullrich,G.D.L.,F.Salsedo,M.Bergamasco.Design and Optimization of a Purely Rotational 3DOF Haptic Device.IEEE International Worksop on Robot and Human Interactive Communication.2001:100-105.
    [68]于靖军,毕树生,et al.三自由度3-CS并联平台机构的运动学分析.航空学报.2001,22(3):217-221.
    [69]黄田,倪雁冰,et al.3-HSS并联机床运动学设计.制造技术与机床.2000,(3):10-12.
    [70]Dan Zhang,C.M.Kinetostatic Analysis and Design Optimization of the Tricept Machine Tool Family.Journal of Manufacturing Science and Engineering.2002,124:725-733.
    [71]华为实.基于3-RSR并联机器人机构的天线支撑.机械.2000,27(5):10-14.
    [72]Hunt,K.H.Structural Kinematic of in-Parallel-Actuated Robot Arms.Journal of Mechanisms,Transmissions and Automation in Design.1983,105:705-712.
    [73]刘旭东,黄田.3-TPT型并联机器人工作空间解析与综合.中国机械工程.2001,12:151-154.
    [74]郑相周,宾鸿赞,et al.3-UPU转动并联机构的两类位置正解分析.华中科技 大学学报(自然科学版).2003,31(4):1-3.
    [75]李仕华,李秦川,et al.3-TPT并联平台机构的瞬时运动特性.机械科学与技术.2003,22(3):456-464.
    [76]Pierrot,F.,O.Company.H4:A New Family of 4-dof Parallel Robots.IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Atlanta.1999.508-513.
    [77]赵铁石,高英杰,et al.混合型四自由度并联平台机构及其位置分析.光学精密工程.2000,8(1):42-45.
    [78]徐礼钜,范守文.一种四自由度空间并联机构的奇异位形解析.机械设计与研究.2002,18(4):15-17.
    [79]Ming-yang,etc,C.W.-j.Z.A novel 4DOF parallel manipulator and its kinematic modeling.Proceeding of the 2000 IEEE,International Conference on Robotics &Automation,Seoul,Korea,May 21-26.2000.
    [80]Kumar,V.Characterization of workspaces of parallel manipulators.Journal of Mechanical Design-Transactions of the ASME.1992,114(3):368-375.
    [81]Merlet,J.-P.A formal-numerical approach for robust in-workspace singularity detection.IEEE Trans.on Robotics and Automation.2007,23(3):393-402.
    [82]Bonev,I.A.,J.Ryu.A Geometrical Method for Computing the Constant-Orientation Workspace of 6-PRRS Parallel Manipulators.Mechanism and Machine Theory.2001,36:1-13.
    [83]刘辛军,张立杰,et al.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法.机器人.2000,22(6):457469.
    [84]Bonev,I.A.,J.Ryu.A new approach to orientation workspace analysis of 6-DOF parallel manipulators.Mechanism and Machine Theory.2001,36:15-28.
    [85]Tsai,K.Y.,J.C.Lin.Determining the Compatible Orientation Workspace of Stewart-Gough Parallel Manipulators.Mechanism and Machine Theory.2006,41:1168-1184.
    [86]Merlet,J.-p.Trajectery Verification in the Workspace for Parallel Manipulators.The International Journal of Robotics Research.1994,13(4):326-333.
    [87]Kim,D.I.,W.K.Chung,et al.Geometrical Approach for the Workspace of 6-DOF Parallel Manipulators.Proceedings of the 1997 IEEE,International Conference on Robotics and Automation,Albuquerque,New Mexico.1997.2986-2991.
    [88]Cleary,K.C.,T.Arai.A Prototype Parallel Manipulator:Kinematics Construction,Software,Workspace Results and Singularity Analysis.Proceedings of the 1991 IEEE,Iternational Conference on Robotics and Automation,Sacramento,California.1991.566-571.
    [89]Hongjun,L.,Q.Yongfa,et al.The Reachable Workspace Analysis of a Kind of 4-DOF Parallel Mechanism Based on Constraints.Proceedings of the 2003 IEEE,International Conference on Robotics,Intelligent Systems and Signal Processing,Changsha,China.2003.799-803.
    [90]Alameldin,T.,T.Sobh.A Parallel Algorithm for Computing 3-D Reachable Workspaces.Applications of Artifical Intelligence X:Maching Vision and Robotics.1992,1708:364-374.
    [91]黄真.空间机构学.北京:机械工业出版社,1991.
    [92]Jo,D.Y.,E.J.Haug.Workspace Analysis of Closed Loop Mechanisms with Unilateral Constraints.ASME DE Advances in Design Automation.1989,19(3):53-60.
    [93]Gosselin,C.Determination of the Workspace of 6-DOF Parallel Manipulators.Journal of Mechanical Design.1990,112:331-336.
    [94]Merlet,J.P.Geometrial Determination of the Workspace of a Constrained Parallel Manipulator.APK,Ferrare.1992.326-329.
    [95]Merlet,J.P.Determination of the Orientation Workspace of Parallel Manipulators.Journal of Intelligent and Robotic Systems.1995,13:143-160.
    [96]黄田,汪劲松,et al.Stewart并联机器人位置空间解析.中国科学(E辑).1998,28(2):136-145.
    [97]江洪道,陈五一,et al.求解Stewart平台工作空间的有效包络面法.自然科学进展.2000,10(8):741-745.
    [98]Merlet,J.P.Parallel Robots.Dordrecht,Netherlands:Kluwer Academic Publishers,2000.
    [99]Ottaviano,E.,M.Ceccarelli.Optimum Design of Parallel Manipulators for Workspace and Singularity Performances.Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators,Quebec,Canada.2002.98-105.
    [100]张立杰,牛跃伟,et al.基于工作空间的球面5R并联机器人机构设计.机械工程学报.2007,43(2):55-59.
    [101]Kerr,D.R.Analysis,Properites,and Design of a Stewart-Platform Transducer.ASME Journal of Mechanism Transmissions and Automation in Design.1989,111:25-28.
    [102]Gosselin,C.Stiffness Map for Parallel Manipulators.IEEE Transactions on Robotics and Automation.1990,6(3):377-382.
    [103]Tahmasedbi,F.,L.-W.Tsai.On the Stiffness of a Novel Six-Degree-of-Freedom Parallel Minimanipulator.Journal of Robotic Systems.1995,12(12):845-856.
    [104]Bhattacharya,S.,H.Hatwal,et al.On the Optimum Design of a Stewart Platform Type Parallel Manipulators.Robotica.1995,13(2):133-140.
    [105]O.,K.,B.A.Optimization of the Inertial and Acceleration Characterics of Manipulators.IEEE International Conference on Robotics and Automation,Albuquerque.1996.2986-2991.
    [106]郭祖华,陈五一,et al.基于全局动力学性能的并联机床结构参数优化.中国机械工程.2003,14(10):861-864.
    [107]Salisbury,J.K.,J.J.Craig.Articulated Hands:Force Control and Kinematic Issues.The International Journal of Robotics Research.1982,1(1):4-17.
    [108]T.,Y.Manipulability of Robotic Mechanisms.The International Journal of Robotics Research.1985,4(2):439-446.
    [109]Yoshikawa,T.Analysis and Control of Robot Manipulators with Redundancy.1st International Symposium on Robotics Research MIT Press,1984.735-747.
    [110]M.,G.C.,A.J.The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Parallel Manipulators.Journal of Mechanisms,Transmissions and Automation in Design.1988,110(1):35-41.
    [111]M.,G.C.,A.J.The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator.Journal of Mechanisms,Transmissions and Automation in Design.1989,111(2):202-207.
    [112]O.,M.,A.J.Optimum Architecture Design of Platform Manipulator.In ICAR,Pise,June.1991.1131-1135.
    [113]黄田,汪劲松.Stewart并联机器人局部灵活度与各向同性条件解析.机械工程学报.1999,35(8):41-45.
    [114]M.,G.C.,A.J.A Global Performance Index for the Kinematic Optimization of Robotic Manipulators.ASME Journal of Mechanical Design.1991,113(3):220-226.
    [115]Lee,S.-H.,J.-B.Song,et al.Controller Design for a Stewart Platform Using Small Workspace Characteristics.Preceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.2001.2184-2189.
    [116]Kim,N.,C.W.Lee.High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control.Proceedings of the IEEE International Conference on Robotics and Automation.1998.2716-2721.
    [117]Huang,C.-I.,L.-C.Fu.Smooth Sliding Mode Tracking Control of the Stewart Platform.Proceedings of the 2005 IEEE Conference on Control Applications Toronto,Canada.2005.
    [118]王洪斌,王洪瑞,et al.并联机器人轨迹跟踪积分变结构控制的研究.燕山大学学报.2003,27(1):25-28.
    [119]M.R.,S.,S.S.E.Nonlinear control of hydraulic robots.IEEE Transactions on Robotics and Automation.2001,17(2):173-182.
    [120]杨志永,黄田,et al.3-HSS并联机床动力学建模及鲁棒轨迹跟踪控制.机械工程学报.2004,40(11):75-81.
    [121]左爱秋.基于双目体视的六自由度平台位姿视觉闭环控制基础研究.[博士学位论文].杭州:浙江大学,1999.
    [122]孙华德.并联刀具磨床的标定、位姿检测和闭环控制研究.[博士学位论文].北京:北京航空航天大学,2002.
    [123]Masory,O.,Y.Jiahua.Measurement of Pose Repeatability of Stewart Platform.Journal of Robotic Systems.1995,12(12):821-832.
    [124]Spiess,S.,M.Vincze,et al.On the Calibration of 6-D Laser Tracking System for Dynamic Robot Measurements.IEEE Transactions on Instrumentation and Measurement.1998,47(1):270-274.
    [125]Schmidt-Lange,M.P.,E.G.Amatucci,et al.Application of Laser Feedback Metrology to a Hexapod Test Strut.http://www.isd.mel.nist.gov/.1999.
    [126]Meng,G.,L.Tiemin,et al.Calibration Method and Experiment of Stewart Platform Using a Laser Tracer.2003 IEEE International Coference on Systems,Man and Cybernetics.2003.2797-2802.
    [127]韩光鲜.无刷直流电动机的建模与设计的基础研究.[博士学位论文].哈尔滨:哈尔滨工业大学,2004.
    [128]Pillay,P.,R.Krishnan.Modeling,Simulation,and Analysis of permanent-Magnet Motor Drives,Part Ⅰ:The Permanent-Magnet Synchronous Motor Drive.IEEE Transactions on Industry Applications.1989,25(2):265-273.
    [129]路甬祥.液压气动手册.北京:机械工业出版社,2002.
    [130]Nguyen,C.C.,Z.L.Zhou,et al.Efficient computation of forward kinematics and Jacobian matrix of a Stewart platform-based manipulator.IEEE Proceedings of SOUTHEASTCON.1991.
    [131]Dasgupta,B.,T.S.Mruthyunjaya.A Newton-Euler Formulation for the Inverse Dynamics of the Stewart platform Manipulator.Mechanism and Machine Theory.1998,33(8):1135-1152.
    [132]Pang,H.,M.Shahinpoor.Inverse Dynamics of a Parallel Manipulator.Journal of Robotic Systems.1994,11(8):693-702.
    [133]Liu,M.-J.,C.-X.Li,et al.Dynamics Analysis of the Gough-Stewart Platform Manipulator.IEEE Transactions on Robotics and Automation.2000,16(1):94-98.
    [134]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用.2007,24(3):407-418.
    [135]高为炳.变结构控制理论基础.北京:中国科学技术出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700