用户名: 密码: 验证码:
光纤陀螺捷联旋转式惯导系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤陀螺具有无运动部件、工艺简单、精度覆盖面广、动态范围大等优点,被捷联惯性导航系统普遍采用;光纤陀螺捷联惯性导航系统省去了复杂机械机构,结构简单、体积小、成本低。然而,由于捷联系统的惯性元件直接与载体固连,工作环境恶劣,振动、环境温度、大范围的角速度及角加速度会引起较大的系统动态误差和元件误差;此外,目前国内惯性器件受材料及加工工艺的影响,与传统的机械转子陀螺相比,光纤陀螺精度低,环境适应能力差。因此,如何提高光纤陀螺捷联惯导系统的定位精度和长时间工作能力,成为国际导航界讨论的热点。
     为减小惯性元件误差对捷联系统导航定位精度的影响,提高导航系统的定位精度,本文以实验室在研的光纤陀螺为研究对象,开展捷联旋转式系统研究。从系统设计层面,对捷联旋转式系统的关键技术和问题进行深入研究和分析。
     阐述课题的研究背景和研究意义,介绍国内外光纤陀螺捷联惯导、光纤陀螺温度控制技术和捷联旋转式惯导系统的研究发展现状。
     分析惯性器件常值误差和周期误差对惯导定位参数误差影响,阐述捷联旋转式系统抑制惯性器件误差对系统导航定位精度影响的原理;从惯导系统的误差方程出发,进一步分析捷联旋转式系统自动补偿的本质;以惯性器件常值误差、标度因数误差和安装误差为误差源,建立旋转式捷联系统对各项误差调制效果表达式。
     分析旋转系统惯性器件关键误差指标,根据捷联系统求解误差方程的方法,以惯性元件的常值漂移、标度因数误差和安装误差为误差源,针对捷联单轴旋转方案——单轴单向连续旋转和单轴正反转两种典型的旋转方式,建立单轴旋转系统定位参数误差表达式,以实现高精度捷联单轴旋转式惯导系统为目标,根据定位参数误差表达式,确定了满足定位精度要求的光纤陀螺误差指标,仿真验证单轴旋转系统定位参数误差表达式的正确性,以及误差指标分析方案的可行性。
     设计一种高精密温度控制系统,给出温度控制系统总体设计方案;以铂电阻为测温元件,采用恒流源测温电桥,提出一种温度解算方法;以半导体制冷器为温度控制元件,在-10~50℃环境温度内,为光纤陀螺提供稳定在28-35℃间的工作温度,提出了根据半导体制冷器工况合理选择制冷器型号的方法;通过实验法建立温控系统模型,设计基于BP神经网络调整PID控制器参数的半导体制冷器控制方案,引入环境温度作为神经网络的输入节点;采用温箱考核实验和陀螺漂移测试实验,验证温控系统以及采用温控时光纤陀螺的工作精度。
     分析单轴旋转系统对常值漂移调制效果,以完全补偿常值漂移为目的,提出设计双轴旋转方案应该遵循的原则;推导双轴旋转对标度因数误差调制效果农达式,提出建立标度因数误差引起的角速度误差表达式遵循的原则;根据设计原则,设计八位置双轴旋转方案,对方案补偿惯性元件误差的效果进行验证;确定双轴旋转方案关键指标(系统旋转时间、停止时间和旋转周期)对系统定位精度的影响,建立双轴旋转系统中常值漂移激励的定位参数误差表达式,提出根据定位误差表达式对关键技术指标进行定量分析的方法;通过仿真验证了,根据设计原则确定双轴旋转方案的可行性,以及优化关键指标可以有效改善旋转系统的定位精度。
Fiber optic gyro has no moving parts, simple technology, wide coverage accuracy, large dynamic range and so on, and it has been widely used in strap-down inertial navigation system. As fiber optic gyro strap-down inertial navigation system omits complex mechanical structures, it has the advantages of simple structure, small size, and low cost. However, as inertial components of strap-down system are fixed to carrier directly, bad working environments vibration environment temperature large range angular and angular acceleration may generate large sytem dynamic errors and component errors. Restricted to the influences of domestic inertial components matrial and processing technology, comparing to traditional mechanical rotor gyro, the accuracy of fiber gyro is low and environment adaptability is poor. So how to improve positioning accuracy and longtime working capability of strap-down inertial navigation sytem are hot issues in current international navigation industry.
     To reduce the influences of inertial component errors to navigation positioning accuracy of strap-down system and improve positioning accuracy of navigation system, this thesis takes the laboratory investigation fiber optic gyro as the study object, researches on strap-down rotational system. Considering from system desiging level, key technologies and problems of strap-down rotation system have been furtherly studied and analyzed here.
     First, the subject researching backgrounds and researching significances have been described, the research and development of home and abroad fiber optic gyro strap-down inertial navigation, fiber gyro temperature control technology and strap-down rotation inertial navigation sytem are introduced.
     Second, by analyzing the influences of inertial positioning paramenter errors coming from inertial components const errors and periodic errors, the principle of inhibiting inertial components errors to system navigation positioning accuracy influences are described. Starting from inertial sytem error equations, the nature of strap-down rotation system self-compensation is analyzed furtherly. Then, inertial components const errors, scale factor errors and fixing errors are as the error sources, error modulation effect expressions of rotation strap-down system are built.
     Third, analyzing rotation system inertial components key error indexes, according to strap-down system error equation calculation methods, taking inertial components const drifts scale factor errors and fixing errors as error resources, aming at strap-down single-axis rotation scheme, single-axis unidirectional continuous rotation and single-axis positive inversion two typical rotation methods, single-axis rotation system positioning parameter error expressions have been built. In order to realize high accuracy strap-down single-axis rotation inertial navigation system, by positioning parameter error expressions, fiber optic error indexes which can satisfy positioning accuarcy are determined. And the correctness of single-axis rotation system positioning parameter error expressions have been verified by simulation and the error indexes analysis scheme is feasible.
     Forth, a high accuracy temperature control system is designed, and a general design scheme of temperature control system is given. The platinum resistance is as the measuring component, using constant flow source electrical brige, a new temperature solving method is proposed. When semiconductor refrigerator is used as temperature control componments, environment temperature changing at-10~50℃, it can stabilize working temperature at28-35℃for fiber optic gyro and the method choosing refrigerator type by semiconductor working situation is proposed. And temperature control system model is built by experiment, semiconductor refrigerator control scheme based on BP neural networks adjusting PID controller parameters is designed, environment temperature as neural network input nodes is introduced. In order to verify working accuracy of temperature control system and fiber optic gyro working under temperature controlling, temperature control box evaluation experiment and gyro drifts testing experiments are used here.
     Fifth, on the foundation of analyzing constant drift modulation effect by single-axis rotation system, in order to compensate const drift completely, principles to be followed when designing double-axis rotation scheme are proposed here. Deriving scale factor error modulation effect expressions by double-axis rotation, building expression principles of angular error induced by scale factor error is proposed. According to proposed principles, double-axis rotation scheme is designed, and the compensation effects of inertial components are verified. When determing double-axis rotation scheme there are some key indexes, such as system rotation time, stopping time and rotating period. And by building positioning parameter error expressions which are motivated by double-axis rotation system const drifts, key technology indexes quantitative analysis method by positioning error expressions is proposed. Furthmore, the correctness of designing double-axis rotation scheme by proposed principles is verified by simulation, and whether positioning accuracy of double-axis rotation scheme by optimizing key designing indexes can satisfy requirements has also been tested.
引文
[1]黄德鸣,程禄.惯性导航系统.国防工业出版社,1986
    [2]Lawrence Anthony. Modern Inertial Technology:navigation, guidance, and control. 2and ed, Springer-Verlag New York, Inc,1998
    [3]陆元九.惯性器件.宇航出版社,1990
    [4]任思聪.实用惯导系统原理.宇航出版社,1988
    [5]陈永咏,钟斌.惯性导航系统.国防工业出版社,1992
    [6]杨蒲,李奇.三轴陀螺稳定平台控制系统设计与实现.中国惯性技术学报,2007,15(2):171-176页
    [7]陈哲.捷联惯导系统原理.宇航出版社.1986
    [8]David H. Titter John L. Weston. Strapdown Inertial Navigation Technology,2and Edition. UK:The Institution of Electrical Engineers,2004
    [9]中国惯性技术协会.2009-2010惯性科学技术发展报告.中国科学技术出版社,2009
    [10]George T. Schmidt. INS/GPS Technology Trends. Advances in Navigation Sensors and Integration Technology,2008:1-20P
    [11]张桂才.光纤陀螺原理与技术.国防工业出版社,2007
    [12]Herve C. Lefevre.光纤陀螺仪.国防工业出版社,2002
    [13]杨远洪.光纤陀螺技术及应用.红外与激光工程,2007,36(5):626-631页
    [14]Ryuji Usui, Aritaka Ohno. Recent Progress of Fiber Optic Gyroscopes and Applications at JAE. IEEE,2002:11-14P
    [15]Byoungho Lee. Review of the Present Status of Optic Fiber Sensors. Optic Fiber Technology,2003,9:57-59P
    [16]张炎华,王立瑞,战兴群等.惯性导航技术的新进展及发展趋势.中国造船,2008,10(49):134-141页
    [17]杨兴光.干涉型光纤陀螺仪关键技术研究.硕士学位论文,哈尔滨工程大学,2004
    [18]李钟扬.干涉式光纤陀螺的动态温度漂移特性研究.硕士学位论文,东南大学,2009
    [19]程万娟.光纤陀螺信号分析处理及滤波技术研究.硕士学位论文,哈尔滨工程大学,2009
    [20]祝燕华.光纤捷联航姿系统信号处理与姿态算法研究.博士学位论文,南京航空航天大学,2008
    [21]Avanaki, M.R.N., Full progress of digital signal processing in open loop-IFOG,2006 Asian Optical Fiber Communication & Optoelectronic Exposition and Conference. Shanghai,2006:1-11P
    [22]T.Gaiffe. U-PHINS:an Inertial Navigation System developed specifically for AUV Control and Navigation,2001. Underwater Inervention, New Orleans, to be published
    [23]E.Willemenot, A Urgell, G Hardy, T Loret.Very High Performance FOG for Space Use. Symposium Gyro Technology,2002,11:1-11P
    [24]王洪志,王彦国.新一代陀螺的发展及应用分析.光纤仪器,2004,26(1):49-51页
    [25]毛献挥,田芊,腾云鹤.几种光学陀螺的研究进展.压电与声光,2003,25(1):15-19页
    [26]王海.光纤陀螺温度影响与误差补偿.北京航空航天大学学报,2007,33(35)549-541页
    [27]金靖,李敏,张忠钢.数字闭环光纤陀螺温度误差分析.红外与激光工程,2008,37(3):521-524页
    [28]李锷.光纤陀螺闭环控制与温度补偿技术研究.硕士学位论文,国防科学技术大学,2008
    [29]Shupe D. Thermally Induced Nonerciprocity in the Fiber Optic Interferometers. Appl. Opt.1980
    [30]Heckman D.W, Baretela M. Interferometric Fiber Optic Gyro Technology. Aerospace and Electronic Systems Magazine, IEEE,2000,15 (2):23-28P
    [31]张玲.旋转调制技术在光纤捷联惯导系统中的应用及实现.硕士毕业论文,南京航空航天大学,2009
    [32]金靖,张春熹,宋凝芳.光纤陀螺标度因数温度误差分析与补偿.宇航学报,2008,29(1):167-171页
    [33]朱奎宝,张春熹,张晓月.光纤陀螺随机漂移ARMA模型研究.宇航学报,2006,27(5):1118-1121页
    [34]于明飞,陈孝军,冯进良,等.减小光纤陀螺零偏的温度补偿研究.长春理工大学学报,2007,30(1):30-32页
    [35]张广莹,邓正隆,傅振宪.陀螺仪温度建模研究.系统仿真学报,2003,15(3)369-371页
    [36]赖际舟,刘建业,盛守照.用于干涉型光纤陀螺温度漂移辨识的RBF神经网络改进算法.东南大学学报,2006,36(4):537-541页
    [37]张红线,吴衍记,王玉辉.基于模糊逻辑的光纤陀螺温度补偿技术研究.中国惯性技术学报,2007,15(3):343-346页
    [38]尹文龙,谭月辉,于晓伟,等.神经网络和遗传算法在光纤陀螺温度漂移建模中的 应用.微计算机信息,2006,22(4-2):273-275页
    [39]Kazuo HOTATE, Yoichi KIKUCHI. Analysis of Thermooptically Induced Bias Drift in Resonator Fiber Optic Gyro. Fiber Optic Sensor Technology, Proceedings of the SPIE-The International Society for Optical Engineering,2001, v4204:81-88P
    [40]Sharaf Rashad, Noureldin Aboelmagd. A neural network model of optical gyros drift errors with application to vehicular navigation. Proceedings of SPIE-The International Society for Optical Engineering,2004, v5558:13-20P
    [41]冯丽爽,南书志,金靖.光纤陀螺温度建模及补偿技术研究.宇航学报,2006,27(5):939-941页
    [42]程建华.光纤陀螺捷联惯导系统监控技术研究.博士出站报告,哈尔滨工业大学,2009
    [43]陈永奇,张春熹,任卓恒,崔佳涛.光纤陀螺捷联惯导温控系统热仿真技术研究.系统仿真学报,2008,20(4):1049-1051页
    [44]刘建峰,江勇,丁传红等.基于内模的光纤陀螺温控系统设计.仪器仪表学报,2007,10(15):187-192页
    [45]刘大伟.精密温控在光纤陀螺仪中的研究与应用.硕士学位论文,哈尔滨工程大学,2004
    [46]刘繁明,赵亚凤.一种新型的基于TEC的精密温控器设计.中国惯性技术学报,2004,12(6):61-64页
    [47]任卓恒,宋凝芳,崔佳涛.数字式精密温控对FOG MU性能的影响.北京航空航天大学学报,2007,33(6):694-697页
    [48]王魁汉.温度测量实用技术.北京:机械工业出版社,2007:1-308页
    [49]蒋爱颖,田昀,蒋静.提高铂电阻温度计测量准确度的实验方法研究.中国测试技术,2007,10(30):79-81页
    [50]黄存坚,孙传友.数字式铂电阻测温仪设计.科技创新导报,2008,1(18):11-12页
    [51]姬建伟,李平,宋家友.铂电阻高精度测量和非线性校正的研究.微计算机信息,2007,23(5):164-165页
    [52]程建华,罗立成,王鑫哲.高精度温度测量系统的测温补偿算法研究.传感器与微系统,2011,29(11):36-39页
    [53]吴扬.半导体温度控制仪的研制.硕士学位论文,哈尔滨工程大学,2006
    [54]焦明星,邢俊红,刘芸等.半导体激光器温度控制系统的设计.激光与红外,2006,36(4):261-264页
    [55]李伟,田梦君,王瑞丰.半导体制冷器温度模糊控制技术研究.机械与电子,2006(12):37-39页
    [56]周天威,陈小惠.基本半导体制冷器件的模糊恒温系统设计.微计算机信息,2007, 23(28):39-40页
    [57]Robin B. Miller. A new Strapdown attitude algorithm. Journal of Guidance and Dynamics.1983,6(4)
    [58]John E.Bortz. A new mathematical formulation for strapdown inertial navigation. IEEE Transaction on Aerospace and Electronic Systems.1971, AES-7(1):61-60P
    [59]Barbour N. Inertial Components-Past, Present and Future.2001 AIAA Guidance, Navigation and Control Conference. Montreal, Canada,2001,8:1-11P
    [60]Ishibashi, S, Tsukioka, S, Yoshida, H, Hyakudome, T, Sawa,T, Tahara,J, Aoki, T, Ishikawa, A. Accuracy Improvement of an Inertial Navigation System Brought about the Rotational Motion. Japan Agency for Marine-Earth Sci&Technol.(JAMSTEC),Yokosuka, 2007:1-5 P
    [61]Ishibashi, S, Tsukioka, S, Yoshida, H, Hyakudome, T, Sawa, T, Tahara,J, Aoki,T, Ishikawa, A. The Rotation Control System to Improve the Accuracy of an Inertial Navigation System Installed in an Autonomous Underwater. Underwater Technology and Work shop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, 2007:495-498P
    [62]Huang Wei-quan, Cheng Jian-hua, Yu Qiang, Wu Lei. Research of gyro case rotation monitor technique based on random drift characteristics of gyro. Mechatronics and Automation,2005IEEE International Conference,2005:862-967P
    [63]Lahham J I, Wigent D J, Coleman, A L. Tuned Support Structure for Structure-Borne Noise Reduction of Inertial Navigation with Dithererd Ring Laser Gyros. Position Location and Navigation Symposium, IEEE,2000:419-428P
    [64]袁保伦.四频激光陀螺旋转式惯导系统研究.国防科学技术大学,博士学位论文,2007,10
    [65]Levinson Dr E, Willcocks M. The Next Generation Marine Inertial Navigator is Here Now. IEEE Position Location and Navigation Symposium,1994:121-127P
    [66]Heckman D W, Baretela L M. Improved Affordability of High Precision Submarine Inertial Navigation by Insertion of Rapidly Developing Fiber Optic Gyro Technology. IEEE PLANS Position Location and Navigation Symposium, San Diego, CA, USA: IEEE, Piscataway, NJ, USA,2000:404-410P
    [67]Morrow R B Jr, Heckman D W. High Precision 1FOG Insertion into the Strategic Submarine Navigation System. IEEE PLANS Position Location and Navigation Symposium, Palm Springs, CA:IEEE, Piscataway, NJ, USA,1998:332-338P
    [68]于旭东,高娜.高精度单轴旋转姿态测量系统研究.应用光学,2010,31(6):980-983页
    [69]Wang Xin-zhe, Zhao-lin. The Research on Rotation Self-Compensation Scheme of Strapdown Inertial System. ICMA 2009,8:4760-4764P
    [70]刘东波,刘建业,赖际舟.基于光纤陀螺的单周快速动态寻北算法研究.传感器与微系统,2007,26(11):61-64页
    [71]袁保伦,饶谷音.光学陀螺旋转惯导系统原理探讨.国防科技大学学报,2006,28(6):76-80页
    [72]王其,徐晓苏.旋转IMU在光纤捷联航姿系统中的应用.中国惯性技术学报,2007,15(3):265-268页
    [73]于旭东等.单轴旋转对惯导系统误差特性的影响.中国惯性技术学报,2008,16(6):643-648页
    [74]翁海娜,陆全聪,黄昆.旋转式光学陀螺捷联惯导系统的旋转方案设计.中国惯性技术学报,2009,17(1):8-14页
    [75]龙兴武,于旭东,张鹏飞等.激光陀螺单轴旋转惯性导航系统.中国惯性技术学报,2010,18(2):149-153页
    [76]带路宾,李安,覃方君.双轴转位式捷联惯导系统安装误差分析.计算机仿真,2010,28(3):1-4页
    [77]陆志东,王晓斌.系统级双轴旋转调制捷联惯导误差分析及标校.中国惯性技术学报,2010,18(2):135-141页
    [78]汪人定,谷宁昌.挠性陀螺转子正、反转监控技术研究.中国惯性技术学报,1992,(1):34-41页
    [79]高启孝.陀螺转子正、反转监控效果的研究. Journal of naval academy of engineering,1997:64-71页
    [80]武凤德.陀螺漂移的自行补偿法-陀螺监控.导航,1972:6-8页
    [81]李安,李稳朝.监控陀螺正反转周期确定方法研究.中国惯性技术学报.2003,11(3):52-55页
    [82]高启孝,李安,汪人定.挠性陀螺监控技术的实验研究.中国惯性技术学报,1996,4(3)
    [83]黄卫权.船用平台式惯导系统测控技术研究.哈尔滨工程大学,博士学位论文,2006
    [84]张树侠,孙静编著.捷联式惯性导航系统.国防工业出版社,1992
    [85]郭俊,熊智,刘建业,黄磊.捷联惯性导航系统动静态误差特性分析研究.航空电子技术,2008,39(2):1-6页
    [86]罗超.FOG捷联惯导系统标定和误差补偿技术研究.哈尔滨工程大学硕士学位论文,2006:11-24页
    [87]颜苗,翁海娜,谢英.系统参数标定以及惯性元件安装误差测量与补偿技术研究.中 国惯性技术学报,2006,14(1):27-29页
    [88]娄晓芳译.捷联惯性导航系统标定方法.导航与控制,2000,2(1):75-78
    [89]刘晓庆.捷联式惯导系统误差标定方法研究.哈尔滨工程大学,硕士学位论文,2008
    [90]钱德儒.光纤陀螺温度漂移补偿及光纤环测试方法研究.硕士学位论文,哈尔滨工程大学,2009
    [91]Frigo N J. Compensation of Liner Source of Non-reciprocity in Sagnac Interferometers SPIE,1983
    [92]齐雪.掺饵光纤光源对光纤陀螺性能影响的研究.哈尔滨工程大学,硕士学位论文,2009
    [93]李志清.舰船电子设备环境试验总则.中国人民共和国国家军用标准,1983.10
    [94]庞长林等.小型半导体制冷恒温控制系统的实验研究.仪表技术与传感器,2002,12:12-14页
    [95]陈振林,孙中泉.半导体制冷器的原理与应用.微电子技术,1995(5):63-65
    [96]文小玲,刘翠梅等.铂电阻测温的非线性补偿算法分析.传感器与微系统,2009,28(8):33-36页
    [97]张萱,闻建静,楼建明.铂电阻测温非线性校正方案.南昌大学学报,2003,25(3)54-56页
    [98]胡凤忠.铂电阻温度传感器的非线性特性及线性化方法.仪表技术,2000(1):14-15,21页
    [99]李鹏程.基于恒流源的陀螺仪测温丝电阻测量电路的设计.计算机测量与控制,2008,16(12):1781-1782页
    [100]易先军,文小玲等.基于铂电阻的温度高精度测量研究.传感器与微系统,2009(1):49-51,55页
    [101]徐德胜.半导体制冷与应用技术.上海:上海交通大学出版社,1999,3:1-26
    [102]任欣,张鹏.有限散热强度下半导体制冷器性能的实验研究.低温工程,2003,134(4):57-61页
    [103]蔡震.基于半导体制冷技术的高精密温度控制系统研究.合肥工业大学硕士学位论文,2007.
    [104]宜向春,王维扬.半导体制冷器工作参数的理论分析.低温工程,1998,101(1)26-29页
    [105]毛佳妮,陈焕新.半导体制冷器制冷性能的综合影响因素探讨及其优化设计分析.中国制冷学会2009年学术年会,2009
    [106]张显库,金一丞.控制系统建模与数字仿真.大连海事大学出版社,2004
    [107]张爱民.自动控制原理.清华大学出版社,2005
    [108]李广军,张晶,曾安平.基于BP神经网络的PID控制器研究.计算机仿真,2009,26(9):128-131页
    [109]刘金琨.先进PID控制及其Matlab仿真.电子工业出版社,2003
    [110]柴燕,杨博梅,张文英.基于BP神经网络的PID智能温度控制器设计.中国仪器仪表,2006(5):66-68页
    [111]孙枫,孙伟,郭真.基于IMU旋转的捷联惯导系统自补偿方法.仪器仪表学报,2009,30(12):2511-2516页
    [112]孙枫,孙伟.旋转自动补偿捷联惯导系统技术研究.系统工程与电子技术,2010,32(1):122-125页
    [113]李莉,张春熹等.旋转方位惯性导航系统的研究.天津工程师范学院学报,2005,15(2):39-41页
    [114]于旭东,王宇等.单轴旋转惯导系统在晃动基座上的建模及误差分析.传感技术学报,2009,22(2):289-292页
    [115]张宇飞,陆全聪,翁海娜.基于IMU旋转的船用激光导航系统分析与设计.海洋技术.2009,28(2):88-91页
    [116]张玲,刘建业等.旋转光纤陀螺捷联惯性导航系统的误差调制分析.弹箭与制导学报,2009,29(2):1-3页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700