用户名: 密码: 验证码:
湿度场下灰质泥岩的力学性质演化与蠕变特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在实验室条件下进行了灰质泥岩试件的三向自由膨胀试验,利用YAW系列微机控制电液伺服压力试验机控制系统结合美国Physical Acoustics公司的CTA-1型煤岩声电数据采集系统对不同含水率下的灰质泥岩进行了单轴压缩实验,分析了湿度场对灰质泥岩力学性质的影响。运用湿度场应力理论、弹塑性理论、损伤力学和粘弹性理论探讨了湿度条件下的灰质泥岩的本构模型。研究成果为水电工程、矿山工程、建筑工程、环境工程以及石油工程等重大工程中的岩石水力学问题提供了有益的研究资料。论文主要研究成果和创新点如下:
     基于湿度应力场理论,结合弹塑性力学,建立了考虑湿度对岩石材质影响的增量型弹塑性本构模型,并分别推导了等向强化模型以及随动强化模型下的弹塑性本构关系以及加卸载准则。
     通过对灰质泥岩的三向自由膨胀试验,研究了完全自由膨胀应变的时间效应规律,提出了膨胀稳定的时间阈值概念,并据此推导了侧限条件下膨胀应变随时间的变化规律;并根据传统的岩石膨胀理论推导了考虑时间效应的非稳定膨胀理论。并结合多孔介质基本理论,推导了考虑湿度膨胀效应的非饱和岩土介质的动态孔隙度模型。
     研究了含水率对岩石的力学和声发射特性的影响,实验结果表明弹性模量、抗压强度随着含水率的增加而减小,峰值应变随着含水率的增加而增大。结合损伤力学理论,探讨了单轴压缩条件下,含水岩石的损伤演变规律,并推导了考虑载荷和湿度共同作用的灰质泥岩的损伤本构模型。
     以西原体模型为基础,引入膨胀岩石的湿度膨胀系数,粘性衰减系数和损伤变量,综合考虑湿度效应对岩石弹性变形、粘性流动以及结构损伤的共同影响,建立了岩石湿度损伤粘弹塑性本构关系,推导了考虑湿度效应的岩石蠕变方程、卸载方程以及松弛方程,并建立了能全面反映膨胀岩石在含水状态下的粘弹塑性质的三轴蠕变理论模型。
     基于FLAC3D软件,以淮北煤业集团祁南煤矿82五中车场为工程背景对干燥围岩巷道无支护、有支护、含水弱化围岩巷道无支护、有支护等几种模型的蠕变特征进行数值模拟,研究了各种模型的表面位移、主应力分布、剪应力分布以及塑性区分布等规律,定性分析了水对巷道支护设计的影响,等到一些可供支护设计参考的结论。
Three directions free swelling tests of calcareous mudstone specimens were conducted under laboratory conditions in this paper. By using YAW series microcomputer controlled electro-hydraulic servo compression testing machine control system combining with CTA-1 coal rock acoustic-electric data acquisition system supplied by American Physical Acoustics company, the uniaxial compression experiments on calcareous mudstone with different water content were carried out and the influence of humidity field on mechanical properties of the specimens was also analyzed. The constitutive model of the calcareous mudstone under humidity conditions was studied based on coupling equation of humidity stress field theory, elastic-plastic constitutive theory, damage mechanics and viscoelastic theory. The research results could provide helpful information for hydropower project, mining, construction, environmental and petroleum engineering on the rock hydraulics issues. The main achievements and innovative points are as follows:
     Based on theory humidity stress field and combined with elastic-plastic theory, elastic-plastic constitutive model of incremental type which had taken the humidity into account was found. The elastic-plastic constitutive relations and the loading-unloading criterion were derived from isotropic hardening model and kinematic hardening model.
     The time-effect law of full free swelling was studied through the tests of three directions free swelling. The concept of time threshold value was presented and the variation law of swelling strain versus time under laterally constrained condition was deduced hereby. By connecting with porous media theory, dynamic porosity model of unsaturated geotechnical medias which had considered humidity swelling effect was derived.
     By researching the effect of water content on mechanics and acoustic emission features, it was found that the elastic modulus and the compressive strength decreased with the increasing water content when peak strain showed the reverse trend. The damage evolution law of water-bearing rocks under uniaxial compression was also studied which had combined with the damage mechanics theory, and then the damage constitutive model of calcareous mudstone which had taken the loading and humidity together into consideration was deduced.
     The differential thermo-visco-elasto-plastic constitutive equation of rock which considers the influence of humidity on elasticity, viscosity and damage has been established based on the Nishihara rheological model by introducing humidity expand coefficient, viscosity attenuation coefficient and damage variable. Creep equation, unloading equation and Relaxation Equation of rock considering humidity effect have also been derived,and the theoretical model of multiaxial creep which can fully reflect the visco-elastic-plastic quality of swelling rock in watered state been established.
     Base on FLAC3D software and take 82 fifth middle yard in Qi-nan coal mine of Huai-bei coal industry group for background, numerical simulation of creep characteristics on several models of dry and moisture weaken surrounding rock roadway with and without supporting was performed, several rules of these models such as surface displacement, principal stress distribution, shear stress distribution, plastic zone distribution etc. were researched. Conclusions about the effect of water on roadway supporting design were obtained which provided a reference for supporting design.
引文
[1]闫小波.软岩各向异性渗透特征及力学特征的试验研究[D].博士学位论文,上海:同济大学, 2007.
    [2]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社, 2001.
    [3]封志军,周德培,周应华,王毅敏.红层软岩三轴应力-应变全过程试验研究[J].路基工程, 2005, 06: 32-35.
    [4]卿启湘,王永和,李光耀,郭建湖.软岩填筑高速铁路路堤的室内试验研究[J].岩土力学, 2007, 27(7): 1119-1128.
    [5]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报, 1998, (l): 100-110.
    [6]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京,科学出版社, 2007.
    [7]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报, 2005, 24(1): 77-82.
    [8]谭志祥.断层突水的力学机制浅析[J].矿业安全与环保, 1999, (3): 21-23.
    [9]施龙青,韩进.底板突水机理及预测预报[M].中国矿业大学出出版社, 2004.
    [10]赵全福主编.中国煤矿防治水技术经验汇编[M].北京:煤炭工业出版社, 1998.
    [11] Brace, Matthew. Predicting coalmine water[M]. Australian Mining, 2006: Reed Business Publishing Pty. Ltd.
    [12]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社, 1996.
    [13]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社, 1992.
    [14]中国统配煤矿总公司生产局,煤炭科技情报研究所.煤矿水害事故典型案例题汇编, 1992.
    [15] Zhang J. C.. Investigations of water inrushes from aquifers under coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 350-360.
    [16] Zheng Y. G., Wang P., Ting H.. The exploration and prevention of mine water invasion in Fetching area based on RS[J]. Proceedings of SPIE-The International Society for Optical Engineering, v 5568, Remote Sensing for Agriculture, Ecosystems and Hydrology V. I., 2004:197-204.
    [17]煤炭工业部煤炭科学研究总院西安分院.华北型煤田奥灰岩溶水煤矿床带压安全开采配套技术(之三), 1995. 10.
    [18]煤炭部生产协同司.国有重点煤矿井田内受小煤矿开采影响安全生产情况的调查, 1995.
    [19]王子忠,张良喜.膨胀岩水-岩耦合作用对隧洞衬砌变形破坏的机制分析及施工设计要点[J].四川水力发电, 2003, 22(2): 21-23.
    [20] Heggheim T., Madland M. V., Risnes R., et a1. A chemical induced enhanced weakening of chalk by seawater[J]. Journal of Petroleum Science and Engineering. 2004, 46(3):171-184.
    [21] Den Brok S. W. J., Spiers C. J.. Experimental evidence for water weakening of quartzite by micro- cracking plus solution-precipitation creep[J]. Journal of Geological Society, 1991, 148(3): 541-548.
    [22] Hadizadeh J.. Water-weakening of sandstone and quartzite deformed at various stress and strain rotes[J]. Int. J. Rock Mech. Mill. Sd., 1991, 28(5): 431-439.
    [23]杨春和,冒海军,王学潮等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学, 2006, 27(12): 2090-2098.
    [24]周翠英,邓毅梅,谭祥韶等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报, 2005, 24(1): 33-38.
    [25]冒海军,杨春和,黄小兰等.不同含水条件下板岩力学实验研究与理论分析[J].岩土力学, 2006, 27(9), 1637-1642.
    [26]孟召平,彭苏萍,傅继彤.含煤岩系岩石力学性质控制因素探讨[J].岩石力学与工程学报, 2002, 21(1): 102-106.
    [27]王军,何淼,汪中卫.膨胀砂岩的抗剪强度与含水量的关系[J].土木工程学报, 2006, 39(1), 98- 102.
    [28]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J].同济大学学报, 1997, 25(2), 127- 134.
    [29]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报, 1999, 34(3), 335-342.
    [30]何满潮,周莉,李德建等.深井泥岩吸水特性试验研究[J].岩石力学与工程学报, 2008, 27(6): 1113-1120.
    [31]徐礼华,刘素梅,李彦强.丹江口水库区岩石软化性能试验研究[J].岩土力学, 2008, 29(5), 1430-1435.
    [32]李铀,朱维申,白世伟,杨春和.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报, 2003, 22(10): 1673-1677.
    [33]刘亚晨,蔡永庆,刘泉声等.温度饱和水下的裂隙岩体力学特性研究[J].岩石力学与工程学报, 2002, 2l(2): 233-237.
    [34]朱合华,周治国,邓涛.饱水对致密岩石声学参数影响的试验研究[J].岩石力学与工程学报, 2005, 24(5): 823-828.
    [35]李维树,谭新,乐俊义.乌江银盘水电站工程岩体力学性质试验研究[J].人民长江, 2008, 39(4), 80-84.
    [36]荣耀,许锡宾,靖洪文,赵明阶.不同含水岩石蠕变试验电磁辐射频谱分析[J].岩石力学与工程学报, 2005, 22(增1): 5091-5094.
    [37]许波涛,尹健民,王煜霞.岩石干湿状态下动静弹模关系特征及工程意义[J].岩石力学与工程学报, 2001, 20(增): 1755-1757.
    [38]颜玉定.饱水时间对岩石动态参数的影响[C].岩土力学与工程的新进展,广州:华南理工大学出版社, 1996: 7-11.
    [39]李元辉,赵兴东,赵有国等.不同条件下花岗岩中声波传播速度的规律[J].东北大学学报(自然科学版), 2006, 27(9): 1030-1033.
    [40] Wiederhorn S. M., Johnson H.. Effect of electrolyte pH on crack propagation in glass[J]. J. Am Ceram Soc., 1973, 56: 192-197.
    [41] Atkinson B. K., Meredith P. G.. Stress corrosion cracking of quartz a note on the influence of chemical environment [J]. Tectonophysics, 1981, 77 (1/2): 1-11.
    [42]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报, 2002, 21(6): 822-827.
    [43]汤连生,张鹏程,王思敬.水-岩化学作用之岩石宏观力学效应的试验研究[J].岩石力学与工程学报, 2002, 21(4): 526-531.
    [44]周翠英,彭泽英,尚伟,谭祥韶.论岩土工程中水-岩相互作用研究的焦点问题-特殊软岩的力学变异性[J].岩土力学, 2002, 23(1):121-128.
    [45]冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报, 2005, 24(9):1465-1473.
    [46]鲁祖德,丁梧秀,冯夏庭,张友良.裂隙岩石的应力-水流-化学耦合作用试验研究[J].岩石力学与工程学报, 2008, 27(4): 796-804.
    [47]乔丽苹,刘建,冯夏庭.砂岩物理化学损伤机制研究[J].岩石力学与工程学报, 2007, 26(10): 2117-2124.
    [48] Robertson A. M.. Lateral Swelling Pressure in Active Clay. Sixth Regional Conference for Africa on Soil [J]. Mechanics & Foundation Engineering. Darbanm South Africa, September 1975.
    [49] Holtz W. C., Gibbs H. J.. Engineering Properties of Expansive Clays[J]. Proc. Am. Soc. Civ. Engrs. 121, 1956.
    [50] Komornik A., Zeitten J. G.. Laboratory Determination of Lateral and Vertical Stresses in Compacted Swelling Clay[J]. Joumal of Materials, JMLSA, 1970(1): 108-128.
    [51]孙均,李成江.复合膨胀渗水围岩-隧洞支护系统的流变机理及其粘弹塑性效应[J].中国科学院基金资助课题,上海, 1985.
    [52] Einstein H. H.. Suggested Methods for Laboratory Testing of Arginaceous Swelling Rock[J]. Int. J. Rock Meth. Min. Sci., 1989(3): 415-426.
    [53] Davison L. R., Atkinson J. H.. Continuous Oedometer Testing of Soils Quarterly[J]. Journal of Engineering Geology, London, 1990, Vol.23, 34, 7-355.
    [54] Lo K. Y.. Time-Dependent Deformation Behaviour of Queenston Shale[J]. Can. Geotech, 1990(5): 461-471.
    [55]杨庆,廖国华.膨胀岩三轴膨胀试验的研究[J].岩石力学与工程学报, 1994 (1): 51-58.
    [56]焦建奎.膨胀岩膨胀特性的试验研究[D].大连理工大学硕士学位论文, 1999.
    [57]王幼麟.开展软岩丁程性质的微观研究[J].岩石力学与工程学报, 1989(1): 94-96.
    [58]茅献彪,缪协兴.膨胀岩特性的细观力学试验研究[J].矿山压力与顶板管理, 1995(1): 60-63.
    [59]朱建民,任大贵.小官传庄铁矿软岩微观特性的实验室研究[J].中国矿业, 1997(4): 56-60.
    [60]刘长武,陆士良.泥岩遇水崩解软化机理的研究[J].岩土力学, 2001, 21(1), 28-31.
    [61]周翠英,邓毅梅,谭祥韶等.软岩在饱水过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报, 2004, 23(22), 3813-3817.
    [62]傅学敏,潘清莲.软岩的膨胀规律和膨胀机理[J].煤炭学报, 1990, 15(2), 35-39.
    [63]李成江.膨胀性围岩力学机制及其隧洞支护效应的数值模拟分析[J].同济大学学报, No.2, 1998.
    [64]孙均,张德兴,李成江.渗水膨胀粘弹塑性围岩压力隧洞的祸合蠕变效应[J].同济大学学报, 1984(2): 1-13.
    [65]杨庆.膨胀岩与巷道稳定[M].冶金工业出版社, 1995.
    [66]杨庆,廖国华.膨胀岩三维膨胀本构关系的研究[J].岩石力学与工程学报, 1995(1): 33-38.
    [67]陈宗基,闻聋梅.膨胀岩与隧洞稳定[J].岩石力学与工程学报, 1983(1): 1-10.
    [68]缪协兴,杨成永.膨胀岩体中的湿度应力场理论[J].岩土力学, 1993(4): 49-55.
    [69]缪协兴.湿度应力场理论的耦合方程[J].力学与实践, 1995(6): 22-24.
    [70] Kovari K.. Design and Construction Methods-Tunnelling in Swelling Rock[C]. Proceeding of 29th U. S. Symposion, University of Minesota, June 1988.
    [71] Didier G., Roberts A., Azzous R., A Survery Method for Swelling Marls Applied to an Exploration Gallery[C]. Fifth International Conferenceon Expansive Soils, Adelaide South Australia, 1984.
    [72] Hamberg D. L., Nelson J. D..底板隆起的预测[M].国外膨胀土研究新技术,成都科技大学出版社, 1986.
    [73] Kodandaraswamy K.. The Prediction of Settlements and Heave in Clays[J]. Can. Geotech. J., 1980(17): 623-631.
    [74] Gysel M.. Design Methods for Structurein Swelling Rock[J]. ISRM Volume VI.
    [75] Gysel.M..膨胀岩体隧道衬砌的设计[J].地下工程, 1980(2): 43-51.
    [76] Gysel.M.. Design of Tunnelsin Swelling Rock[J]. Rock Mechanics and Rock Engineering, 1978(20): 219-242.
    [77]史维汾,陈海松,苏惠兰.膨胀围岩中隧道支护设计原理的探讨及按极限变形控制的设计计算方法[J].地下工程, 1982(11): 16-20.
    [78] Wittke, Pierau B.. Foundations for the Design and Construction of Tunnel in Swelling Rock[C]. Proceeding of the 4th international Congress on Rock Mechanics, ontreuox, Sweiterland Vol.2, 1979.
    [79] Richards B. G..膨胀粘土体积变化的有限元分析[M].国外膨胀土研究新技术,成都科技大学出版社, 1986.
    [80] Justo J. L., Saura J., et al. A Finit Element Method to Design and Calculate Pier Foundation in Expansive Collapsing Soils[C]. Fifth International Conference on Expansive Soils, Adelaide SouthAustralia, 1984.
    [81]卢爱红,茅献彪.湿度应力场的数值模拟[J].岩石力学与工程学报, 2002(12): 2470-2473.
    [82] KauaHOBЛ. M.,ИЗВ.Ан.Ссср.. OTH., NO.8, CTр.(1958): 26-31.
    [83] PaбOTHOBю.н..МехаНизМдьногоразрщения.1959.
    [84] Lemaitre J., Chaboche J. L.. As Peet Phenomen-ologique dela Rupture Parendornrnagement[J]. J. demee. APPl., Vol.2, No.3, 1978.
    [85] Lemaitre J.. How to use damage meehanics[J]. Nuelear engineering and design, Vol.80, PP. 233-245, 1984.
    [86] Chaboehe J. L.. Lifetime Predietions and cumulative damage under high temperture conditions[J]. Int. Sump. On low cycle fatigue and life Prediction, Firming. Franee. ASTMSTP, 770(1980).
    [87] Chaboehe J. L.. Continuous damage mechanics: a tool to describe phenomena before crack inatiation[J]. Nuclear Engineering and design, Vol.64, PP. 233-247, 1981.
    [88] Krajcinovc D., Fonseka G.U.. The coniinuous damage theory of brittle materials[J]. Part 1 and Part 2. ASMEJ. APPl. Mech., Vol.48, PP. 809-824, 1981.
    [89] Krajcinove D., Silva M. A. G.. Statistical aspects of the continuous damage theory[J]. Int. J. Solids Structure, Vol.18, NO.7, 1982.
    [90] Krajcinove D.. Contmuum damage mechanics[J]. Appl. Mech. Reviews, Vol.37, NO.1, 1984.
    [91] Taehyo Park, Voyiadjis G. Z.. Kinematic deseription of damage[J]. J. of APP. Mech., 1986, Vol.65, March: 93-97.
    [92] Murakami S.. Mechanical modeling of material damage[J]. J. of APP. Mech. 1988, Vol.55, June: 280- 286.
    [93] Budiansky B.. Micromechanics advances and trens in structural and solid mechanics[J]. (Eds: Noor A. K., Housner J. M.) Pergamon Press, PP. 3-12, 1983.
    [94] Gurson A. L.. Theory of duetile rupture by void nucleation and growth[J]. Part l-yield criteria and flow rules for porous duetile media. J. of Eng. Materials and Tech., 1977, Vol.99: 2-15.
    [95] Horii H., Nemat-Nasser S.. Overall moduli of solids with mieroeraeks: load-induced anisotropy[J]. J. Mech. Phys. Solids, 1983, Vol.31: 315-330.
    [96] Nema-Nasser S., Obata M.. A microcrack model of dilatancy in brittle materials[J]. Transaction of the ASME, 1988, March, Vol.55: 24-35.
    [97] Tu J. W., Lee X.. Micromechnical damage models for brittle solids[J]. Part I: tensile loadings. J. Engng. Mech., 1991, Vol.117, NO.7: 1495-1514.
    [98] Tu J. W., Lee X.. Micromechnical damage models for brittle solids[J]. PartⅡ: tensile loadings. J. Engng. Mech., 1991, Vol.117, NO.7: 1515-1536.
    [99] Bazant Z. P., Prat P. C.. Micro-plane model for brittle plastic material[J]. Part I:Theory, PartⅡ: Verification J. Engng. Mech., ASCE, Vol.114: 1672-1702.
    [100] Bazant Z. P., Ozbolt Josko. Nonlocal microplane model for fracture,damage and size effect in structures[J]. J. Engng. Mech., 1990, Vol.116, No.11: 2485-2505.
    [101] Weibull W. K.. Svenska Vetanskapsakad Handl., 151, Stockholm(1939).
    [102] Sahimi M., Arbabi S.. Phys. Rev., B, 1993, Vol.47.
    [103]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报, 1999, 18(l): 23-27.
    [104]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报, 1998, 17(6): 628-633.
    [105]谢和平.岩石、混泥土损伤力学[M].徐州:中国矿业大学出版社, 1990.
    [106] Curran D. R., Shockey D. A., Seaman L. J.. APPI. Phys., 1973, Vol.44: 4025.
    [107]柯孚久,白以龙,夏蒙棼.理想微裂纹系统演化的特征[J].中国科学(A辑), 1990(6): 621-631.
    [108]柯孚久,白以龙,夏蒙棼.固体中微裂纹系统统计演化的基本描述[J].力学学报, 1991, 23(3): 290-298.
    [109]夏蒙棼,柯孚久,吕永华,白以龙.理想微裂纹系统中的随机扩展效应[J].中国科学(A辑), 1991(3): 276-284.
    [110] Marigo J. J.. Modelling of brittle and fatigue damage for elasti material by growth of microvoids[J]. Eengineering Fracture Mechanics, 1985, Vol.21, NO.4: 861-874.
    [111] Krajcinovc D.. Constitutive equation for damaging materials[J]. J. of APPI. Mech., Vol.50, June: 355-360.
    [112] Rousselier G.. Finite deformation constitutive relations including ductile fracture damage. Three-dimensional Constiutive relations and Ductile Fracture[J]. (Eds:S., Nemat-nasser), North- Holland Publishing Company, 1981.
    [113] Lemaitre J.. A continous damage mechanics model for ductile fracture[J]. J. Eng. Material Tech., 1985, Vol.83.
    [114] Murakmi S.. A nisotropic aspects of matertal damage and application of coninuum damage mechanics[J]. Theory and Applications(Eds:Kracinovc D./Lemaitre J. L.), Springer-Verlay Wien- New York(1987), PP. 91-134.
    [115] Shen W., Peng L. H., Yue S. Z., Tang X. D.. Elastic damage and energy dissipation in anisotropic sold material[J]. Engng.Fracture Mech., Vol.33, No.2, 1987.
    [116] Simo J. C., Ju J. W.. Strain-and stress-based contium damage models[J]. Part I: formulation, PartⅡ: computational aspects. Int. J. Solid Structures, 1988, Vol.23, No.3: 821-869.
    [117] Ju J. W.. On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects[J]. Int. J. Solid structures, 1989, Vol.25, No.7: 803-833.
    [118] Shao J. F.. Poroelastic behaviour of brittle rock materials with anisotropic damage[J]. Mechanics of Materials, 1998, Vol.30: 41-53.
    [119] Shao J. F., et al. Model of induced ansotropic damage in granites[J]. Int. J. of Rock Mech. and Min.Scien., 1999, Vol.36: 1001-1012.
    [120] Dragon A., Mroz Z. A.. Continuum model for Plastic-brittle behaviour of rock and conerete[J]. Int. J. Engng. Sci., 1979, 17: 121-137.
    [121] Costin L. S.. Time-dependent damage and creep of brittle rock. Damage Mechanics and Conilnuum Modeling[C]. (Eds:N. Stubbs and D. Krajcinovic), ASCE NewYork,1985: 25-38.
    [122]谢和平.大理岩微观断裂的分形模型研究[J].科学通报, 1989, Vol.34, No.5.
    [123]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报, 1991, Vol.10, No.l.
    [124]谢和平, Sanderson D. J., Peacock D. C. P..雁形断裂分形模型和能量耗散[J].岩土工程学报, 1994, Vol.16, No.1.
    [125]凌建明.节理岩体损伤力学及时效损伤特征的研究[D].同济大学博士学位论文, 1992, 11.
    [126]叶黔元.岩石的内时损伤本构模型[C].第四届全国岩土力学数值方法与解析方法会议论文集, 1991.
    [127]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报, 1995, Vol.17, No.l.
    [128]吴澎,周维垣.节理岩体的损伤模型及非线性有限元分析[J].岩石力学与工程学报, 1988, Vol.7, No.3.
    [129]杨更社.岩石细观损伤力学特性及本构关系的CT识别[J]. 2000, 25(增刊): 102-106.
    [130]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报, 1999, 18(5): 497-502.
    [131]刘立,邱贤德,阎宗岭,黄木坤.复合岩石的微结构损伤破坏[J].矿山压力与顶板管理, 1999 (2): 77-80.
    [132]李广平.考虑裂纹闭合效应的岩石损伤本构关系[J].应用力学学报, 1996, 13(l): 93-97.
    [133]李浩,任林娥.岩石软化的细观损伤模型[J].武汉大学学报, 2001, 34(2): 6-9.
    [134]赵永红.岩石弹脆性分维损伤本构模型[J].地质科学, 1997, 32(4): 487-494.
    [135]周光泉,陈德华,席道瑛.岩石连续损伤本构方程[J].岩石力学与工程学报, 1995, 14(3): 229- 235.
    [136]张尧,熊良宵.岩石流变力学的研究现状及其发展方向[J].地质力学学报. 2008, 14(3), 274- 285.
    [137] Okubo S., Nishimatsu Y., Fukui K.. Complete creep curves under uniaxial compression [J]. Int. J. Rock Meeh. Min. Sci. Geomech. Abstr., 1991, 28(1): 77-82.
    [138]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报, 1995, 16(1): 39-47.
    [139]杨建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院院报, 1995, 8(2): 77-80.
    [140]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报, 1996, 18(4): 63-67.
    [141]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报, 1997, 16(3): 246-251.
    [142]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报, 1996, 18(6): 55-60.
    [143]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海学报, 1997, 25(2): 1-7.
    [144]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报, 1999, 22(5): 99-103.
    [145]朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报, 2002, 24 (5): 77-79.
    [146]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学, 2003, 24(4): 583-586.
    [147]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报, 2004, 23(22): 3745-3749.
    [148]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报, 2005, 27(11): 1273-1276.
    [149]姜永东,鲜学福,熊德国等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报, 2005, 27 (12): 1478-1481.
    [150]袁海平,曹平,许万忠等.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报, 2006, 28(6): 796-799.
    [151]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报, 2006, 25(5): 1021-1024.
    [152]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学, 1995.
    [153] Fujii Y., Kiyama T., Ishijima Y., Kodama J.. Cicumferential strain behavior during creep tests of brittle rocks[J]. Int. J. Rock. Mech. Min. Sci., 1999, 36: 323-337.
    [154] Maranini E., Brignoli M., Creep behaviour of a weak rock: experimental characterization[J]. Int. J. Rock Mech. Min. Sci., 1999, 36(1):127-138.
    [155]彭苏萍,王希良,刘咸卫等.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报, 2001, 26 (2): 149-l52.
    [156]赵法锁,张伯友,彭建兵,仁义河.特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报, 2002, 21(10): 1527-1532.
    [157]陈渠,西田和范,岩本健等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报, 2003, 22(6): 905-912.
    [158]万玲.岩石类材料粘弹塑性损伤本构模型及其应用[D].重庆:重庆大学博士论文, 2004.
    [159]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报, 2004, 23 (10): 1635-1639.
    [160]刘建聪,杨春和,李晓红.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[J].岩石力学与工程学报, 2004, 23(22): 3794-3798.
    [161]徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(1):模型分析[J].岩土力学, 2005, 26(5): 693-698.
    [162]冒海军,杨春和,刘江等.板岩蠕变特性试验研究与模拟分析[J].岩石力学与工程学报, 2006, 25(6): 1204-l209.
    [163]杨圣奇,徐卫亚,谢守益.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报, 2006, 28(8): 962-969.
    [164]范庆忠,李术才,高延法.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报, 2007, 26 (7): 1381-l385.
    [165]陈有亮,孙钧,岩石的流变断裂特性[J].岩石力学与工程学报, 1996, 15 (4): 323-327.
    [166] Sun J., Hu Y. Y.. Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China[J]. Int. J. Rock Mech. Min. Sci., 1997, 34(3): 306.
    [167]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报, 2000, 22(3): 299-303.
    [168] Wawersik W. R.. Time-dependent behaviour of rock in compression. In: Advances in Rock Mecha- nics Proc. 3rd Congr. Int. Soc. Rock Mech., Denver, Colorado, 1974, 357-363.
    [169] Amadei B., Curran J. H., Creep behaviour of rock joints[A]. In: 13th Canadian Rock Mechanics Symposium[C]. 1980, 146-150.
    [170] Schwartz C. W., Kolluru S., The influence of stress level on the creep of unfilled rock joints[A]. In: US Symposium on rock mechanics[C]. 1982, 333-340.
    [171]孙钧,李永盛,李祥生.多组节理岩体的流变性质及其粘弹塑性效应[R].同济大学, 1984.
    [172]徐平,夏熙伦.三峡枢纽岩体结构面蠕变模型初步研究[J].长江科学院院报, 1992, 9(1): 42-46.
    [173]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报, 2001, 20(增刊): 1882-1885.
    [174]陈沅江.岩石流变的本构模型及其智能辨识研究[D].长沙中南大学博士论文. 2003.
    [175]沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报, 2004, 23 (2): 223-226.
    [176]来结合,张忠亭,罗居剑.锦屏水电站绿片岩蠕变特性研究[A].第八界全国岩石力学与工程学术大会论文集[C].北京:科学出版社, 2004.
    [177]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与理论模型研究[J].岩石力学与工程学报, 2005, 24 (增2): 5536-5542.
    [178]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999.
    [179]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报, 2002, 21(12): 1791-1796.
    [180]李铀,朱维申,白世伟.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报, 2003, 22 (10): 1673-1677.
    [181]刘光廷,胡昱,陈风歧等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报, 2004, 23(8): 1237-l241.
    [182]李铀,朱维申,彭意等.某地红砂岩多轴受力状态蠕变松弛特性试验研究[J].岩土力学, 2006,27(8): 1248-1252.
    [183]杨彩红,王永岩,李剑光等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报, 2007, 32(7): 695-699.
    [184] Bowden P. K., Curran J. H.. Time-dependent behaviour of joints in scale[A]. In: 25th US Symposium on rock mechanics, 1984, 320-327.
    [185] Fei Y.. The creep of potash rock from new burn swick[M.S.Thesis][D]. Canada: University of Manitoba, 1998.
    [186] Malan D. F.. An investigation into the identification and modeling of time-dependent behaviour of deep level excavations in hard rock[ph. D. Thesis][D]. South Africa: University of Witwatersrand, 1998.
    [187]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报, 2000, 19(3): 270-275.
    [188]蔡立盛.砂岩依时力学特性研究及应用[D].台湾:国立台湾大学, 2006.
    [189]王金星.单轴应力下花岗岩蠕变变形特征的试验研究[D].焦作:焦作工学院, 2000.
    [190]付志亮,高延法,宁伟等.含油泥岩各向异性蠕变研究[J].采矿与工程学报, 2007, 24(3): 353- 356.
    [191] Geraldine Fabre, Frederic Pellet. Creep and time-depenent damage in argillaceous rocks[J]. Int. J. Rock Mech Min Sci., 2006, 43: 950-960.
    [192]刘泉生,许锡昌,山口勉等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报, 2001, 20(5): 715-719.
    [193]高小平,杨春和,吴文等,盐岩蠕变特性温度效应的实验研究[J].岩石力学与工程学报, 2005, 24(12): 2054-2059.
    [194]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报, 1991, 19(4): 395- 401.
    [195]金丰年,蒲奎英等.关于粘弹性模型的讨论[J].岩石力学与工程学报, 1995, 14(4): 335-361.
    [196]邓荣贵,周德培,张倬元.一种新的岩石流变模型[J].岩石力学与工程学报, 2001, 20(6): 780- 784.
    [197]曹树刚,边金,李鹏.岩石蠕变本构关系及其改进的西原正夫模型[J].岩石力学与工程学报, 2002, 21(5): 632-634.
    [198]韦立德,徐卫亚,朱珍德.岩石粘弹塑性模型德研究[J].岩土力学, 2002, 23(5): 583-586.
    [199]张贵科,徐卫亚.适用于节理岩体德新型黏弹塑性模型研究[J].岩石力学与工程学报, 2006, 25(增1): 2894-2901.
    [200]徐卫亚,杨圣奇,褚卫江.岩石非线性粘弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报, 2006, 25(3): 433-447.
    [201]陈智纯,缪协兴,茅献彪.岩石流变损伤演化方程与损伤参量测定[J].煤炭科学技术, 1994, 22(8): 34-36.
    [202]缪协兴,陈至达.岩石材料的一种蠕变损方程[J].固体力学学报, 1995, 16(4): 343-346.
    [203]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学, 1994, 11(2): 81-90.
    [204]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报, 1995, 23(2): 141- 146.
    [205]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J].河海大学学报, 1997, 25(2): 114-116.
    [206]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报, 1999, 12: 33-37.
    [207]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报, 2002, 21(11): 1602- 1604.
    [208] Cristescu N. D.. A general constitutive equation for transient and stationary creep of rock salt[J]. Int. J. Rock Mech. Min. Sci. Geomech Abstr., 1993, 30(2): 125-140.
    [209] Cristescu N. D.. A procedure to determine nonassociated constitutive equations for geomaterials[J]. Int. J. of Plast, 1994, 10(2): 103-131.
    [210] Jishan J., Cristescu N. D.. An elastic/viscoplastic model for transient creep of rock salt[J]. Int. J. of Plast, 1994, 41(1-3): 85-107.
    [211] Dahou A., Shao J. F., Bedefiat M.. Experimental and numerical investigations on transient creep of porous chalk[J]. Mechanics of Malerials, 1995, 21: 147-158.
    [212] Maranini E., Yamaguchi T.. A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J]. Mechanics of Materials, 200l, 33:283-293.
    [213]缪协兴.软岩力学[M].徐州:中国矿业大学出版社. 1995.
    [214]王伦.塑性力学引论[M].北京:北京大学出版社. 2006.
    [215]朱珍德,张爱军,张勇,邢福东.基于湿度应力场理论的膨胀岩弹塑性本构关系[J].岩土力学, 2004, 25(2) : 700-702.
    [216]刘晓丽,王思敬,王恩志,薛强.含时间效应的膨胀岩膨胀本构关系[J].水利学报, 2006, 36(2): 195-199.
    [217]胡永乐,冉启全,孙建平.流固耦合油藏数值模拟[M].北京:石油工业出版社, 2007.
    [218]徐小丽.温度载荷作用下花岗岩力学性质演化及其微观机制研究[D].中国矿业大学博士学位论文. 2008.
    [219]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社, 1992, 24-26, 73-75.
    [220]高小平.盐岩力学特性时温效应实验研究及其本构方程,硕士学位论文[D].武汉:中国科学院武汉岩土力学研究所, 2005.
    [221]谢和平,陈忠辉.岩石力学[M].北京:科学出版社, 2004, 79-81.
    [222]范雁秋.膨胀岩与工程[M].北京:科学出版社, 2008.
    [223]龚选平.泥质粉砂岩含水率对其蠕变特性影响的研究[D].西安科技大学硕士学位论文, 2006.
    [224]张俊善.材料的高温变形与断裂[M],北京:科学出版社, 2006, 145-147, 218-220.
    [225] Vanmarcke E. H., et al. Random fields and stochastic finite elements[J]. Struct. Safety, 1986(3): 143-166.
    [226] Hoek E., Grabinsky M. W., Diederich M. S.. Numerical modeling for underground excavation Inst Min&Metal[J]. 1991, 16(1): 5-9.
    [227]马健.粘性土坡破坏机制及FLAC数值模拟[D].同济大学工学硕士学位论文, 2006.
    [228]王连国,缪协兴等.动压巷道锚注支护数值模拟研究[J].采矿与安全工程学报, 2006, 23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700