用户名: 密码: 验证码:
深部骑跨采巷道围岩变形力学分析及稳定性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的不断增加,巷道围岩的稳定性日趋恶化,对支护技术的要求越来越高,给煤矿高效安全集约化生产带来严重影响。跨采动压巷道围岩的稳定性一直是煤矿安全生产的难题,特别对于深部骑跨采动压巷道围岩需经历煤层工作面开采引起的支撑压力影响长期作用,围岩变形表现出强烈的流变特征,给巷道围岩的稳定性控制带来困难。本文综合运用理论分析、数值模拟和现场观测等方法对深部骑跨采动压巷道围岩稳定性的力学机理及控制方法等进行了系统研究,取得了如下主要研究成果:
     (1)建立了骑跨采动压巷道围岩流变特征分析的力学模型,应用粘弹塑性理论分析了巷道围岩应力分布特征及对围岩稳定性的影响,得到了巷道围岩应力与变形随巷道埋深H、巷道距上部煤层工作面端头的垂直距离、水平距离的变化规律,给出了巷道的应力及变形随时间变化的估算表达式。
     (2)借助于数值模拟方法,分析了骑跨采动压巷道在煤层工作面回采时的稳定性特征,得到了巷道围岩应力、变形及塑性区范围等随巷道埋深、巷道与上部煤层工作面端头垂直距离、水平距离的变化规律。研究表明:当煤层工作面端头距巷道的水平距离较小时,巷道围岩的稳定性需经受工作面前方和工作面端头侧向支撑压力的影响;巷道的顶板与外帮受上方煤层工作面影响最为强烈;巷道顶板及外帮长的时间高应力作用引起的流变效应是给形成巷道围岩稳定性严重隐患的重要原因。
     (3)分析了骑跨采动压巷道围岩的流变特性,考察了巷道围岩应力、变形和塑性破坏区的时间相关性特征,得到了巷道与煤层工作面端头的垂直间距、水平间距、巷道埋深等对巷道围岩流变及破坏特征的影响规律,结果表明:围岩的应力随时间呈降低趋势,应力集中区逐渐向围岩深部扩大;围岩变形、塑性区范围随时间有较大幅度增加,并表现为初期增加较快,约60天后围岩变形基本趋于稳定;围岩流变主要由粘塑性蠕变导致。
     (4)针对某矿区骑跨采动压巷道的稳定性特点,设计了相应的现场观测研究方案,对巷道的表面位移、围岩内部变形位移、锚杆(索)锚固状态等方面分别进行了长期的监测研究,得到了上方煤层工作面采动及采动后相当长一段时间内巷道的变形破坏规律及流变特征。
     (5)利用注浆加固提高围岩的基本力学特性及抗流变性能的特点,结合锚杆(索)支护技术,针对性地提出了骑跨采动压巷道稳定性控制的锚注联合支护方案,设计了适合于试验巷道条件的专用注浆锚杆。经现场实测证实,可有效地控制骑跨采动压巷道流变变形,确保上方工作面回采期间巷道的稳定与安全。
     研究成果可为类似条件下巷道围岩稳定性控制提供重要参考。
With the increasing depth of coal mining, the stability of roadway surrounding rock is deteriorating, and the requirements on support technology are increased, which has serious impact on the efficient and safe intensive production in coal mine. The surrounding rock stability of roadway affected by cross mining(RCM)has always been a difficult problem of safe production in coal mine. Especially for the roadway affected by deep riding mining(RADRM), which means that the roadway located at the bellow of the working face and the advancing direction of working face is along with the roadway axis,its surrounding rock is affected by the support pressure caused from the coal face mining for a long time and the deformation shows strong rheological properties, which gives rise to difficulties in stability control of surrounding rock. A synthetically study means combined with theoretical analysis, numerical simulation and field observations is applied to study systematically the mechanical mechanism of the stability of RADRM in deep and its control ways. And the study results with innovative significance are shown in the following:
     (1) The mechanics model of RADRM is established to analyze the rheological properties of surrounding rocks, and the visco-elastic-plastic theory is applied to study the stress distribution of roadway surrounding rock and its influence on the stability of surrounding rock and obtain the distribution law of the stress and deformation of roadway surrounding rock with the changing of the roadway depth H, the vertical distance h and the horizontal distance b between the roadway and the end of the working face above, and the estimated expression of the stress and the deformation of roadway with the time changing are respectively gained.
     (2) With the help of numerical simulation, the stability characteristics of RADRM in coal seam mining are analyzed and obtain the distribution law of the stress, the deformation and the plastic zone size of roadway surrounding rock with the changing of the roadway depth H, the vertical distance h and the horizontal distance b between the roadway and the head of the working face above. The study results indicate that when the horizontal distance b between the roadway and the head of the working face above is smaller, the roadway stability is affected by the advanced abutment pressure in working face and the lateral abutment pressure. Especially the roadway roof and the roadway side near to the end of working face are affected seriously by the coal seam mining above, and their rheological effect deduced from the high stress effect for a long time is the important reason for the hidden trouble of the roadway stability.
     (3) The rheological properties of the surrounding rock of RADRM is analyzed to investigate the time dependent properties of the stress, the deformation and the plastic failure zone of roadway surrounding rock, and obtained the influence of the roadway depth H, the vertical distance h and the horizontal distance b between the roadway and the end of the working face above on the rheological and failure properties of the roadway surrounding rock. The study results indicate that the stress of surrounding rock tended to decrease with time passing, and the stress concentration zone gradually expanded to the deep surrounding rock; the deformation and the plastic failure zone of surrounding rock are increase sharply with time passing, showed rapid initial increase and the surrounding rock deformation tends to stability after 60 days. The rheology of surrounding rock is mainly resulted from its viscoplastic creep.
     (4) Aimed at the stability of RADRM in a coal mine, the corresponding field observation scheme is designed. We have conducted long-term monitoring on the surface displacement of roadway, the deformation of surrounding rock inside, the anchorage situation of bolt(cable), and obtained the deformation failure law and rheological properties of the roadway during the coal seam mining and for a long time after mining.
     (5) Grouting can improve the basic mechanical properties and Anti-rheological properties of surrounding rock. Taking advantage of this characteristic and combined the bolt(cable) support technology, the combined bolt-grouting support scheme is presented to control the stability of RADRM, and designed the special grouting anchor adapted to the testing roadway conditions. Field observation were carried out to validate that this support technology can control effectively the rheology deformation of RADRM and insure the stability and safe of the roadway surrounding rock during the coal seam mining above.
     The study results can provide important reference to stability control of the roadway surrounding rock on the similar condition.
引文
[1] Sun Jun,Wang Sijing. Rock mechanics and rock engineering in China: developments and current state-of-the-art [J]. Tnt. J. Rock Mech.Min.Sci. ,2000(37):447~465.
    [2]孙钧.迎接新世纪的岩石力学若干进展.第五届全国岩石力学与工程大会论文集[C].上海:中国科学技术出版社,1998:1~10.
    [3]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91~99.
    [4] Mei Li, Xiao-ping Zhang, Shan-jun Mao, Quan-sheng Liu. Study of deep mining safety control decision making system[J]. Procedia Earth and Planetary Science. 2009, 1(1):377-383.
    [5]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法[J].岩土工程学报,2008,30(1):1–20.
    [6]尤明庆,苏承东,候勇.大理岩孔道试样的强度及变形特性的试验研究[J].岩石力学与工程学报,2007,26(12):2420–2429.
    [7]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [8]喻勇,尹健民.三峡花岗岩在不同加载方式下的能耗特征[J].岩石力学与工程学报,2004,23(2):205–208.
    [9]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028–2031.
    [10]徐松林,吴文,王广印等.大理岩等围压三轴压缩全过程研究I:三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763–767.
    [11]徐松林,吴文,王广印等.大理岩等围压三轴压缩全过程研究(II):剪切断裂能分析[J].岩石力学与工程学报,2002,21(x):65一69.
    [12]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报. 2003,25(3): 336-338.
    [13]沈明荣,石振明,张雷等.不同加载路径对岩石变形特性的影响[J].岩石力学与工程学报,2003,22(8):1234–1238.
    [14]韩林,刘向君,孟英峰,王利娟.加载途径对深部孔隙性砂岩力学特性的影响[J].岩石力学与工程学报.2008,27(3):596-600
    [15]李永明,郝临山,魏胜利等.煤岩加卸载不同应力途径变形破坏力学参数的研究[J]..煤炭技术,2006,25(12):129-131.
    [16]杨继华,刘汉东.岩石强度和变形真三轴试验研究[J].华北水利水电学院学报,2007,28(3):66–68.
    [17] Chang C,Haimson B C. True triaxial strength and deformability of the KTB deep hole amphibolite [J]. Journal of Geophysical Research,2000,105(8):18999–19013.
    [18] Haimson B C,Chang C. True triaxial strength of KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in-situ stress[J]. Journal of Geophysical Research,2002,107(B10):2257–2271.
    [19] Thomas Gabet, Yann Malécot, Laurent Daudeville. Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states[J].Cement and Concrete Research, 2008, 38(3):403-412.
    [20] R. Yoshinaka, T.V. Tran, M. Osada. Mechanical behavior of soft rocks under triaxial cyclic loading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3-4):354.e1-354.e14.
    [21] Mingqing You. True-triaxial strength criteria for rock[J].International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1):115-127.
    [22] Rajendra P. Tiwari, K. Seshagiri Rao. Post failure behaviour of a rock mass under the influence of triaxial and true triaxial confinement[J]. Engineering Geology, 2006, 84(3-4):112-129.
    [23] H. B. Li, J. Zhao, T. J. Li. Triaxial compression tests on a granite at different strain rates and confining pressures[J].International Journal of Rock Mechanics and Mining Sciences, 1999,36,(8):1057-1063.
    [24] Enrico Maranini, Tsutomu Yamaguchi.A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J].Mechanics of Materials, 2001, 33(5):283-293.
    [25] S. Okubo, K. Fukui, K. Hashiba. Development of a transparent triaxial cell and observation of rock deformation in compression and creep tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3):351-361.
    [26]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8):1537–1543.
    [27] Griggs, D.T. Creep of rocks[J]. Journal of Geology, 1939, 47 :225~251.
    [28]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982(1):1~8.
    [29]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999,12.
    [30]黎克日,康文法.岩体中泥化夹层的流变试验及其长期强度的确定[J].岩土力学,1983, 4(1):39~46.
    [31]许东俊,罗鸿禧.葛洲坝工程基岩稳定性的试验研究[J].岩土力学,1983, 4 (1):1~15.
    [32]吴玉山.不良岩体流变特性的现场试验及流变模拟分析[J].岩土力学,1986, 7 (2 ):45~52.
    [33]王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,1999,11.
    [34]刘家应.黄崖不稳定边坡的蠕变特征[J].岩石力学,1982. 8:1~8.
    [35]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997(16):246~251.
    [36]李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998(5):559~564.
    [37]吴立新.煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997(3):29~34.
    [38]吴立新.煤柱设计与监测基础[M].徐州:中国矿业大学出版社,2000.
    [39]郭志.软岩流变过程与强度研究[J].工程地质学报,1996(1):75~79.
    [40]金丰年,蒲奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4):355~361.
    [41]崔希海,付志亮.岩石流变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(5):1021-1024.
    [42]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程报,2005,27(11):1273-1276.
    [43]赵永辉,何之民,沈明荣。润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583–586.
    [44]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299–303.
    [45]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745–3749.
    [46]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480–48
    [47]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2002,(1):10–15.
    [48] Géraldine Fabre, Frédéric Pellet. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, Volume 43, Issue 6, September 2006, Pages 950-960.
    [49] Pierre Bérest, Pierre Antoine Blum, Jean Pierre Charpentier, Hakim Gharbi, Frédéric Valès. Very slow creep tests on rock samples[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4):569-576.
    [50] Y.L. Chen, R. Azzam. Creep fracture of sandstones[J].Theoretical and Applied Fracture Mechanics, 2007, 47(1):57-67.
    [51] L.S. Tsai, Y.M. Hsieh, M.C. Weng, T.H. Huang, F.S. Jeng. Time-dependent deformation behaviors of weak sandstones[J]International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2):144-154.
    [52] O. M. L. Yahya, M. Aubertin, M. R. Julien A unified representation of the plasticity, creep and relaxation behavior of rocksalt[J]. International Journal of Rock Mechanics and MiningSciences, 2000, 37(5): 787-800.
    [53] Q.X. Lin, Y.M. Liu, L.G. Tham, C.A. Tang, P.K.K. Lee, J. Wang. Time-dependent strength degradation of granite[J].International Journal of Rock Mechanics and Mining Sciences, 2009, 46(7):1103-1114.
    [54] Yanan GAO, Feng GAO, Zhizhen ZHANG, Tao ZHANG. Visco-elastic-plastic model of deep underground rock affected by temperature and humidity[J].Mining Science and Technology (China), 2010, 20(2):183-187.
    [55]侯朝炯,何亚男.《软岩巷道底鼓机理与预防的研究》总结报告[R].1997,10.
    [56]刘高.高地应力区结构流变围岩稳定性研究[D].兰州大学,2001,10.
    [57]彭苏萍,王希良,刘咸卫,赵森林.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报,2001,26(2):149~152.
    [58]刘夕才.软岩巷道的粘弹性流变分析[J].矿山压力与顶板管理.1997(1):29~31.
    [59]万志军,周楚良,罗兵全,马文顶,窦林名.软岩巷道围岩非线性流变数学力学模型[J],中国矿业大学学报,2004,33(4):468~472.
    [60]万志军,周楚良,马文顶,刘长友,巷道/隧道围岩非线性流变数学力学模型及其初步应用[J].岩石力学与工程学报,2005,24(5):761~767.
    [61] J.F. Shao, K.T. Chau, X.T. Feng. Modeling of anisotropic damage and creep deformation in brittle rocks[J].International Journal of Rock Mechanics and Mining Sciences, 2006, 43,(4):582-592. [62 ] A. Golshani, M. Oda, Y. Okui, T. Takemura, E. Munkhtogoo. Numerical simulation of the excavation damaged zone around an opening in brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6):835-845.
    [63] T. Onargan, M. Y. Koca, K. Kucuk, A. Deliormanli, S. Saydam. Impact of the mechanical characteristics of weak rocks and trona ore beds on the main drift deformation at the beypazari mine, Turkey[J].International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4):641-654.
    [64] Hao WU, Qin FANG, Ya-dong ZHANG, Zi-ming GONG. Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels—mechanism and discussion of characteristic parameters [J]. Mining Science and Technology (China), 2009, 19(3):306-311.
    [65] P. Egger. Design and construction aspects of deep tunnels (with particular emphasis on strain softening rocks)[J].Tunnelling and Underground Space Technology, 2000, 15(4):403-408.
    [66] Ahmad Fahimifar, Farshad Monshizadeh Tehrani, Ahmadreza Hedayat, Arash Vakilzadeh. Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s materialunder hydrostatic stress field[J].Tunnelling and Underground Space Technology, 2010, 25(4):297-304.
    [67] Ming-shi Gao, Lin-ming Dou, Yao-she Xie, Jie Gao, Li-sheng Zhang. Latest progress on study of stability control of roadway surrounding rocks subjected to rock burst[J].Procedia Earth and Planetary Science, 2009, 1(1):409-413.
    [68] C. Wang, Y. Wang, S. Lu. Deformational behaviour of roadways in soft rocks in underground coal mines and principles for stability control[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6):937-946.
    [69] Yan LU, Shihao TU. Rules of distribution in a plastic zone of rocks surrounding a roadway affected by tectonic stress[J]. Mining Science and Technology (China), 2010,20(1):47-52.
    [70] Jin-xi WANG, Ming-yue LIN, Duan-xin TIAN, Cun-liang ZHAO. Deformation characteristics of surrounding rock of broken and soft rock roadway[J].Mining Science and Technology (China), 2009, 19(2):205-209.
    [71] R. N. Singh, I. Porter, J. Hematian. Finite element analysis of three-way roadway junctions in longwall mining[J]. International Journal of Coal Geology, 2001, 45(2-3):115-125.
    [72] N. Bilgin, T. Dincer, H. Copur, M. Erdogan. Some geological and geotechnical factors affecting the performance of a roadheader in an inclined tunnel[J]. Tunnelling and Underground Space Technology, 2004, 19(6):629-636.
    [73] J. Tora?o, R. Rodríguez Díez, J. M. Rivas Cid, M. M. Casal Barciella. FEM modeling of roadways driven in a fractured rock mass under a longwall influence[J]. Computers and Geotechnics, 2002, 29(6):411-431.
    [74] E. Unal, I. Ozkan, G. Cakmakci. Modeling the behavior of longwall coal mine gate roadways subjected to dynamic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2):181-197.
    [75] Yan LU, Shihao TU. Rules of distribution in a plastic zone of rocks surrounding a roadway affected by tectonic stress[J]. Mining Science and Technology (China), 2010, 20(1):47-52.
    [76]Xing-ping Lai, Fen-hua Ren, Yong-ping Wu, Mei-feng Cai. Comprehensive assessment on dynamic roof instability under fractured rock mass conditions in the excavation disturbed zone[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(1):12-18.
    [77] Tingkan Lu, Yuzhou Liu, Fusheng Xu. Deformation and failure of stratified weak roof strata of longwall roadway[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Volume 14, Issue 5, October 2007, Pages 387-394.
    [78] S.K. Mandal, M.M. Singh. Evaluating extent and causes of overbreak in tunnels[J].Tunnellingand Underground Space Technology, 2009, 24(1):22-36.
    [79]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [80]康红普.软岩巷道底鼓的机理及防治[M].煤炭工业出版社,1993,6.
    [81]康红普.软岩巷道和硐室的底鼓机理及卸压技术的研究[D].徐州:中国矿业大学,1991,6.
    [82]康红普,陆士良.巷道底鼓机理的分析[J].岩石力学与工程学报,1991,(2):187~190.
    [83]康红普,陆士良.巷道底鼓的挠曲效应及卸压效果分析[J].煤炭学报,1992,(l):37~51.
    [84]马念杰,侯朝炯.采准巷道矿压理论及应用[M].北京:煤炭工业出版社,1995.
    [85]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989,(4):21-29.
    [86]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [87]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,l9(l):21-32.
    [88]董方庭,郭志宏.巷道围岩松动圈支护理论(上)[J].锚杆支护,1997,1(1):7-10.
    [89]董方庭,郭志宏.巷道围岩松动圈支护理论(下)[J].锚杆支护,1997,1(2):5-8,35.
    [90]靖洪文,付国彬,郭志宏.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,1999,18(l):70-74.
    [91] Papanastasiou P and Vardoulakis I,Bifurcation analysis of deep boreholes:Ⅱ,Scale effect, Int.J.Number. Anal.amethods, Geomech.13,183-198(1998).
    [92]何满潮,景海河.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62.
    [93]王俊臣,贾明魁,何满潮等.关键部位二次耦合支护技术及其应用[J].煤炭科学技术,1999,27(10):1-3.
    [94]吕攀峰、韩文峰等.金川岩体各向异性与巷道支护变形破坏关系探讨[J].岩石力学与工程学报,2000,19(2):149-152.
    [95]蒋金泉,韩继胜,石水奎著.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999.
    [96]张生华.构造应力作用下软岩巷道变形与控制研究[J].矿业工程,2003,1(3):14-18.
    [97]宋志敏,程增庆等.构造应力区软岩巷道围岩变形与控制[J].矿山压力与顶板管理,2005,4:48-50.
    [98]程宜康,李天珍.不同支护方式下圆形巷道围岩变形分析[J].矿山压力与顶板管理,2000,4: 68-69.
    [99]孙广义,马云东.矿井巷道围岩与支护系统稳定性的耗散结构[J].黑龙江科技学院学报, 2007, 17(3):169-172.
    [100]靖洪文,李元海,许国安.深埋巷道围岩稳定性分析与控制技术研究[J].岩土力学,2005, 26(6): 877-881.
    [101]翟所业,贺宪国.巷道围岩塑性区的德鲁克-普拉格准则解[J].地下空间与工程学报,2005,1(2): 223-227.
    [102]朱维申,邱祥波等,损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报,1997,16(5): 431-436.
    [103]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2005,35(2): 145-148.
    [104]潘一山,王来贵等.巷道底鼓的计算模型及有限元数值分析[J].矿山压力与顶板管理,1993, (1):16-22.
    [105]潘一山,李国臻,张梦涛.深埋软弱岩层巷道底鼓机理及控制的模拟试验研究[J].矿山压力与顶板管理,1992,(2):9-14.
    [106]林崇德.层状岩石顶板破坏机理数值模拟过程分析[J]岩石力学与工程学报,1999,18(4): 392-396.
    [107]林崇德,陆士良,史元伟.煤巷软弱顶板锚杆支护作用的研究[J].煤炭学报,2000,25(5): 482~485.
    [108]林崇德,牛锡悼.软弱岩体中巷道围岩的特性及其支护特点[J].煤炭学报,1988,(1):23-31.
    [109]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制设计[M].煤炭工业出版社,1999.
    [110]刘传孝.采准巷道围岩结构稳定性分析与控制研究[D].泰安:山东矿业学院,1997.
    [111]谭云亮,刘传孝.巷道围岩稳定性预测与控制「M].徐州:中国矿业大学出版社,1999.
    [112]段克信.用巷帮松裂爆破卸压维护软岩巷道[J].煤炭学报,1995, 20(3):311-316
    [113]林崇德.层状岩石顶板破坏机理数值模拟过程分析[J].岩石力学与工程学报,1999,18(4):392-396.
    [114]解联库,李华炜,杨天鸿等.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3):54-57.
    [115]贾蓬,唐春安,王述红等.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,31(1):11-15.
    [116]孔德森,蒋金泉,宋振骐.深部平行巷道在构造应力场中的稳定性分析[J].煤,2000,9(5):5-7.
    [117]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J],岩石力学与工程学报, 2005,24(11):1857-1862.
    [118]周传波,郭廖武,姚颖康,尹小鹏,姜守俊.采矿巷道围岩变形机制数值模拟研究[J].岩土力学,2009,30(3):654-658.
    [119] M.奥顿哥特.巷道底鼓的防治[M].煤炭工业出版社,1985.
    [120]姜耀东,陆士良.巷道底膨机理的研究[J].煤炭学报,1994,19(4):343-351.
    [121]姜耀东.巷道底臌机理及其控制方法的研究[D].徐州:中国矿业大学,1993.
    [122]陆士良,姜耀东.巷道底鼓的机理和防治[J].中国煤炭,1995:(8):13-17.
    [123]朱德仁,王金华.巷道煤帮稳定性相似材料模拟试验研究[J].煤炭学报,1998,23(1):42-47.
    [124]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D〕.徐州:中国矿业大学,1998.
    [125]勾攀峰,侯朝炯.回采巷道锚杆支护顶板稳定性分析[J].煤炭学报,1999,24(5):466-470
    [126]刘汉喜,李学华,陈秀友,陈稼轩.采动敏感型底板岩巷失稳机理模拟分析[J].采矿与安全工程学报,2007,24(2):226-230.
    [127]薛亚东,康天合.回采巷道围岩结构特征及变形破坏规律研究[J],太原理工大学学报,2000,31(4):444-446.
    [128]郜进海,康天合,靳钟铭,郑铜镖.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19):3292-3297.
    [129]马文顶,赵海云,韩立军.跨采软岩巷道锚注加固技术的实验研究[J].中国矿业大学学报,2001, 30(2):191-194.
    [130]韦四江,马建宏,孙光中.软岩巷道锚固体蠕变特性研究[J].河南理丁大学学报(自然科学版),2008,27(5):524-528.
    [131]李学华,姚强岭,张农,王东禹,郑西贵,丁效雷.高水平应力跨采巷道围岩稳定性模拟研究[J],采矿与安全工程学报,2OO8,25(4):420-425.
    [132]李刚,梁冰,张国华.高应力软岩巷道变形特征及其支护参数设计[J],采矿与安全工程学报,2009,26(2):183-186.
    [133]吴秀祥张伟忠.采区动压巷道锚网支护[J].山东矿业学院学报,1994, 13(3): 241-243.
    [134]韩立军付厚利.动压巷道锚注预加固试验研究[J].矿山压力与顶板管理,2000,2: 8-10.
    [135]高明中,黄殿武.底板软岩动压巷道围岩应力分布的数值分析[J].安徽理工大学学报:自然科学版, 2003,23(3): 14-18.
    [136]顾士亮.软岩动压巷道围岩稳定性原理及控制技术研究[J].能源技术与管理2004,1: 15-17,38.
    [137]马元,靖洪文,陈玉桦.动压巷道围岩破坏机理及支护的数值模拟[J],采矿与安全工程学报,2007,24(1):109-113.
    [138]乔峰邦. U形钢抬棚支护在巷道交岔点中的应用[J].煤炭科技,2008,(2): 53-55.
    [139]王德勇,吴继鲁. U形拱棚配锚索在盘区巷道支护中的应用[J].华北科技学院学报,2007, 4(1): 8-11.
    [140]常庆粮,周华强,李大伟等.软岩破碎巷道大刚度二次支护稳定原理[J].采矿与安全工程学报, 2007, 24(2):169-172,177.
    [141]冯豫.我国软岩道支护的研究[J].矿山压力与顶板管理,1990,( 2): 42-44,67.
    [142] Kang Hong-pu, Lin Jian, Wu Yong-zheng. Development of high pretensioned and intensivesupporting system and its application in coal mine roadways[J]. Procedia Earth and Planetary Science, 2009, 1(1):479-485.
    [143] Tan Yun-liang, Sun Chun-jiang, Gu Shi-tan, Chen Yun-juan. Anchor safety potential reinforcing theory and its applications in roadway affected by mining[J]. Procedia Earth and Planetary Science, 2009, 1(1):438-443.
    [144] J.P. Loui, J.C. Jhanwar, P.R. Sheorey. Assessment of roadway support adequacy in some Indian manganese mines using theoretical in situ stress estimates[J].International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1):148-155.
    [145] C. Wang. The optimal support intensity for coal mine roadway tunnels in soft rocks[J].International Journal of Rock Mechanics and Mining Sciences, Volume 37, Issue 7, October 2000, Pages 1155-1160.
    [146] B. Shen, A. King, H. Guo. Displacement, stress and seismicity in roadway roofs during mining-induced failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5):672-688.
    [147] Guofeng LI, Manchao HE, Guofeng ZHANG, Zhigang TAO. Deformation mechanism and excavation process of large span intersection within deep soft rock roadway[J]. Mining Science and Technology (China), 2010, 20(1):28-34.
    [148] H. W. Song, S. M. Lu Repair of a deep-mine permanent access tunnel using bolt, mesh and shotcrete[J]. Tunnelling and Underground Space Technology, 2001, 16(3):235-240
    [149] Xiao-ming SUN, Feng CAI, Jun YANG, Wu-fu CAO Numerical simulation of the effect of coupling support of bolt-mesh-anchor in deep tunnel[J].Mining Science and Technology (China), 2009, 19(3):352-357.
    [150] Hao WU, Qin FANG, Ya-dong ZHANG, Zi-ming GONG. Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels—Elasto-plastic analysis of stress field of enclosing rock mass[J]. Mining Science and Technology (China), 2009, 19(1):84-90.
    [151] Hao WU, Qin FANG, Zhi-kun GUO. Zonal disintegration phenomenon in rock mass surrounding deep tunnels[J]. Journal of China University of Mining and Technology, 2008,18(2):187-193.
    [152] H. L. Dai, X. Wang, G. X. Xie, X. Y. Wang. Theoretical model and solution for the rheological problem of anchor-grouting a soft rock tunnel[J]. International Journal of Pressure Vessels and Piping, 2004, 81(9):739-748.
    [153] M. Rasouli. Engineering geological studies of the diversion tunnel, focusing on stabilization analysis and support design, Iran[J]. Engineering Geology, 2009, 108(3-4, 8):208-224.
    [154] Pierpaolo Oreste. A probabilistic design approach for tunnel supports[J]. Computers and Geotechnics, Volume 2005, 32(7):520-534.
    [155] Reza R. Osgoui, Erdalünal. An empirical method for design of grouted bolts in rock tunnels based on the Geological Strength Index (GSI) [J]. Engineering Geology, 2009, 107(3-4):154-166.
    [156] Wen-bing Xie, Sheng-guo Jing, You-kui Ren, Tao Wang. The invalidation mechanism of bolt-mesh support in soft coal roadway[J]. Procedia Earth and Planetary Science, 2009, 1(1):384-389.
    [157] Zhibiao GUO, Jianjun SHI, Jiong WANG, Feng CAI, Fuqiang WANG. Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines[J]. Mining Science and Technology (China), 2010, 20(2):254-259.
    [158] Fu-qiang GAO, Yao-she XIE. Resist-decreasing effects of rock bolts on strength of rock mass around roadway—insight from numerical modeling[J]. Mining Science and Technology (China), Volume 19, Issue 4, July 2009, Pages 425-429.
    [159] Fu-qiang GAO, Hong-pu KANG. Effect of pre-tensioned rock bolts on stress redistribution around a roadway—insight from numerical modeling[J]. Journal of China University of Mining and Technology, 2008,18,(4):509-515.
    [160] B. Liu, Z.Q. Yue, L.G. Tham. Analytical design method for a truss-bolt system for reinforcement of fractured coal mine roofs—illustrated with a case study[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2):195-218.
    [161] Zhang Nong, Wang Cheng, Zhao Yi-ming. Rapid development of coal mine bolting in China[J]. Procedia Earth and Planetary Science, 2009, 1(1):41-46.
    [162] W. Lawrence. A method for the design of longwall gateroad roof support[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4):789-795.
    [163]侯朝炯,何亚男.加固巷道帮、角控制底鼓的研究[J].煤炭学报,1995,20(3):1-5.
    [164]陆士良,王悦汉.软岩巷道支架壁后充填与围岩关系的研究[J].岩石力学与工程学报.1999,18(2):180-183.
    [165]何满潮,邹正盛,彭涛.论高应力软岩巷道支护对策[J].水文地质工程地质,1994(4):7-11.
    [166]何满潮,高尔新.软岩巷道偶合支护力学原理及应用[J].水文地质工程地质,1998,2:1-4.
    [167]何满潮,彭涛,陈宜金.软岩工程中的大变形问题及研究方法[J].水文地质工程地质,1994(5):5-8.
    [168]郑雨天.关于软岩巷道地压与支护的基本观点[J].软岩巷道掘进与支护文集,1985(5):31-35.
    [169]朱效嘉.锚杆支护理论进展[J].光爆锚喷,1996,(3):1-4.
    [170] J.Gramberg,Achsiale Sprodmchbiding Zweiter Und Hoherer Ordnurg Scherender Beitrag Zum 11,Landertreffen des Intemational Buros Fur Grbirgsmechanik d der Deutsdhen.
    [171] Cruden,D.M.Rock Slope Movements in the Candion Cordillera,Canadia Geotechnical Tournal,22,4,1985,528-540.
    [172] Ayetey,J.K.Slope Stability Investigation and Design Parameters Studies in Phyilites in Ghano,Bulletion of the International Association of Engineering Geology,19-25,1985.
    [173] D.F.Howarth.The Effect of Pre-Ezisting Microcaviyies on Mechanical Rock Performance in Sedimentary and Crystalline Rock,Int.J.Rock Mech.Min.Sci.Vol.24,4,223~233,1987.
    [174] R.W.Seedsman.Strength Implication of the Crystalline and Osmetic Swelling of Claysin Shaled,Int.J. Rock Min.Sci.V01.24,No.6,357~363,1987.
    [175]李世辉.隧道围岩稳定性系统分析.北京:中国铁道出版社,1991.
    [176]陈宗基,康文法.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1~1992.
    [177]李玉生.西德煤矿防治巷道底鼓及改善支护的新方法[J].煤炭科学技术,1982(6):52~55.
    [178] Farmer,I.W.汪浩译.岩石的工程性质[M].徐州:中国矿业大学出版社,1988.
    [179]韩立军,陈学伟,李山年.软岩动压巷道锚注支护试验研究[J].煤炭学报,1998.23(4):241~245.
    [180]周钢,戴标兵.软岩回采巷道的联合支护新技术研究[J].煤炭学报,1998,23(2):145~149.
    [181]姚国平.柳新煤矿回采巷道底臌防治的研究.[硕士学位论文]中国矿业大学,1990,5.
    [182]汪理全,李学华,周劲锋等.高应力软岩硐室底鼓及其治理[J].矿山压力与顶板管理,1997(3):131~133.
    [183]段浓田,姜浩.应用卸压控制法支护软岩巷道[J].煤矿开采,2000(增刊):44-46.
    [184]潘一山,李国臻,章梦涛.深埋软弱岩层巷道底鼓机理及控制的模拟实验研究[J].矿压力与顶板管理,1992,2:9~13.
    [185]范坚.国内外软岩工程支护技术发展与动向[J].江西煤炭科技,1995(1):7-12.
    [186]黄运飞.切缝对软岩巷道维护效果的模型试验研究[J].软岩工程,1998(1):10-14.
    [187]井原恕等.采用巷帮卸压法的巷道维护效果[J].井巷地压与支护,1985(1):51-58.
    [188] Roest J.P.A..在高应力状态下通过巷道围岩卸压圈保障巷道的稳定[J].矿山压力,1985(1):74-77.
    [189]康红普.邻近开巷卸压法维护软岩大断面峒室的研究与实践[J].岩石力学与工程学报,1993,12(1):20-27.
    [190]张东升.卸压法防治胶带运输机峒室底臌的研究.[硕士学位论文]中国矿业大字,1990,12.
    [191] Serata s..Stress control methods:Quantitative approach to stabilizing mine opening in weak ground.Stability in Underground Mining,1984:52~98.
    [192]科森列夫Г.Г.岩体松动爆破卸压的应用[J].河南煤炭,1984,(1):57-59.
    [193]利特维斯基Г.Г.巷道围岩应力状态的控制[J].石煤科技,1983,(3):48-50.
    [194]马念杰,侯朝炯.采准巷道矿压理论及应用[M].煤炭工业出版社,1995,10.
    [195]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D].徐州:中国矿业大学,2008.
    [196]高延法,张庆松.矿山岩体力学[M].徐州:中国矿业大学出版社,2000.
    [197]黄醒春.新世纪土木工程系列教材岩石力学(M).徐州:高等教育出版社,2005.
    [198]杨峰.高应力软岩巷道变形破坏特征及让压支护机理研究[D].中国矿业大学,2009,6.
    [199]杜春志.煤层水压致裂理论及应用研究[D].中国矿业大学,2008.
    [200]杨圣奇.岩石流变力学特性的研究及其工程应用[D].河海大学, 2006.
    [201]韦立德.岩石力学损伤和流变本构模型研究[D].河海大学, 2006.
    [202]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700