用户名: 密码: 验证码:
微型燃机发电系统的一体化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型燃机发电系统是一种新型能源发电系统,具有清洁、可靠、多用途等优点,应用于分布式发电系统和冷热电联供系统,以及作为备用电源、便携式电源和特种军用电源,具有广泛的应用前景和重要的研究价值。
     本文以国家“863”项目“100kW级微型燃气轮机研制(2002AA503020)”和“电气传动及控制系统节能技术的研发(2006AA04Z183)”为依托,研究了燃机起动、运行控制及电力变换等全过程,构造了燃机一体化控制系统,建立了燃机发电系统非线性动态数学模型,提出了基于转速的自适应模糊H∞控制。为了提高微型燃机系统电能转换质量和供电质量,提出了高频PWM整流器自适应控制策略和基于阻抗变换的三相四桥臂逆变器解耦控制策略,研制了燃机控制系统和电力变换器系统。
     在一体化控制方面,通过分析燃机本体结构和实现的目标,将燃机起动控制、速度控制、燃料压力控制、整流及逆变控制等整合到以燃机控制为核心的控制系统中,最后采用中央控制单元整体协调,构造完备的一体化微型燃机控制系统。通过对燃机系统的机理分析,基于能量守恒和质量守恒原则,根据燃机热力学理论和国家“863”计划项目的控制目标,推导了燃机转速、排气温度、透平入口压力、透平入口温度、压气机出口压力等关系方程,建立了基于燃机转速、透平入口压力和排气温度的系统非线性状态空间方程模型。同时,针对微型燃机内的一体化永磁同步发电机,建立了dq0坐标系下的电压方程、磁链方程、电流方程、电磁转矩方程、运动方程和功率方程。
     在燃机控制方面,为抑制因一体化控制时带来的电磁干扰,在速度给定和反馈通道上,嵌入了跟踪微分器。针对电磁干扰频率可测和幅值有界的特点,应用线性函数代替非线性饱和函数,重新构造了快速的跟踪微分器,从而进一步减小了跟踪延迟。由于燃机动态模型非常复杂,且存在很大的不确定性,所以本文提出了燃机转速的自适应模糊H∞控制策略,应用线性矩阵不等式控制技术,在李亚普诺夫稳定意义下设计了自适应模糊PID控制器以及在线自适应调节的鲁棒H∞控制补偿项,以减小模糊逼近误差和外部干扰对控制性能的影响,保证了闭环系统的稳定性和跟踪性能。仿真研究结果表明,应用提出的复合控制方案对抑制电磁干扰和转速跟踪都取得了良好的控制效果,具有很好的实时性,易于工程上的实现。
     在PWM整流器控制方面,通过分析PWM整流器的工作原理和基于永磁同步发电机模型,建立了PWM整流器模型,对系统进行了功率控制。考虑微型燃机发电系统容量小,受负载波动影响大,以及负载不确定性的特点,在功率控制的基础上,提出了直流侧电压自适应H∞控制方案,在李亚普诺夫稳定意义下,通过自动补偿负载变化,实现直流侧电压稳定和高功率因数。仿真结果验证了所提方案的有效性和实用性。
     在三相四桥臂逆变器控制方面,提出了基于内阻变换的三相四桥臂解耦控制策略。主要将逆变器和其输出滤波器作为一体化逆变电源,进行一体化建模和一体化控制。经过等效变换,将零线桥阻抗值变换为零,将其它各相的阻抗等效地降为较低的阻抗值,将其解耦成三个相互独立的单相逆变器。这样就将三相四桥臂逆变器控制控制问题转化成了单相逆变器控制问题。控制方法上,采用幅相多环控制,这样不但能使逆变电源独立运行,也能通过跟踪电网的频率进行并网运行,完全发挥出了四桥臂逆变结构的优势,特别是对不平衡和非线性负载具有良好的控制能力。仿真结果验证了该控制方法的正确性和有效性。
     最后,对微型燃机控制系统、PWM整流器和三相四桥臂逆变器分别研制了样机,在100kW微型燃机发电机组实验平台上进行了实验研究,对燃机系统的起动、点火、加速、脱机和发电等全过程进行了实验。从实验数据和实验波形看,一体化控制系统及其控制策略达到了预期效果。
Micro-turbine generator (MTG) is a novel power generation system, whose main advantages are clean, reliable and multipurpose. MTG is applied in the fields such as distributed power generation systems, combined cooling-heating systems. Furthermore, this system can be taken as backup power supply, mobile power supply or special military high performance mini-station. MTG has great potential in application and important worth in research.
     Relying on national "863" project "100kW-level micro-turbine development (2002AA503020)" and "research of energy-saving technology based on electric drive and control system (2006AA04Z183)", the whole process including MTG start-up, running and power conversion is studied in this thesis. The integrated control system is constructed. The nonlinear dynamic mathematical model of MTG is formulated. The adaptive fuzzy Hx control of speed is proposed. In order to improve the quality of MTG power conversion and quality of power supply, the adaptive control strategy of high-frequency PWM rectifiers and the decoupling control strategy of three-phase four-leg inverters based on impedance transformation are proposed. Finally, we developed a control system of gas turbine and an electric power converter system.
     With respect to the integrated control system, we integrate start-up control, speed control, fuel pressure control, rectifier control and inverter control into the gas turbine control system by analyzing the MTG structure and control goal. Finally, overall subsystems are coordinated into the central control unit and the integrated micro-turbine control system is constructed. According to the principle of energy conservation, quality conservation, gas turbine thermodynamic theory and the control objective of the national "863" project, the system relationship equations for the variables such as gas turbine speed, exhaust temperature, turbine inlet pressure, turbine inlet temperature and compressor exit pressure are derived through the mechanism analysis of gas turbine. Then, a nonlinear state space equation for turbine speed, turbine inlet pressure and exhaust temperature is described. Meanwhile, the voltage equation, flux linkage equation, current equation, electromagnetic torque equation, motion equation and power equation is established in the dqO frame for integrated permanent magnet synchronous generator in the micro-gas turbine.
     In the control of gas turbines, the tracking differentiator is embedded in speed reference channel and feedback channel for suppress electromagnetic disturbance due to integrated control. Since the electromagnetic interference frequency is measurable and its amplitude is bounded, the non-linear saturation function in the tracking differentiator is replaced by a linear function. A fast-tracking differentiator is re-constructed to reduce the tracking delay. As the gas turbine dynamic model is very complex and has large uncertainty, the adaptive fuzzy control strategy of speed with H∞performance is proposed via linear matrix inequality technique for MTG based on Lyapunov stability theory. At the same time, a robust adaptive compensator is derived to eliminate the effect of the approximation error and external disturbance and guarantee the closed-loop system stability and good tracking performance. Simulation results show that the proposed hybrid control strategy can satisfy the requirement of the real-time control, speed tracking and suppression of electromagnetic disturbance. It is easy to be implemented in engineering.
     In the control of PWM rectifier, a PWM rectifier model is formulated and a power control scheme is applied by analyzing the principle of PWM rectifier and the permanent magnet synchronous generator model. Considering the features including the small capacity of MTG system, the load fluctuation and the uncertain load condition in AC-DC power conversion process, an adaptive control H∞strategy in the sense of Lyapunov stability is proposed for DC link voltage based on the power control method. Through automatic compensation for load changing, a stable DC link voltage and high power factor can be achieved. The simulation results show that the proposed scheme is effective and practicable.
     In the control of three-phase four-leg inverters, decoupling control strategy of three-phase four-leg is proposed based on the internal impedance transformation. The inverter and its output filter are regarded as an integrated inverter power supply to modeling and control as a whole unit. After equivalent transformation, the impedance of zero-leg is transform into zero and the others are reduced to a lower equivalent impedance value. The three-phase four-leg inverter is decoupled into three independent single-phase inverters which can be controlled by single-phase inverter control method. In this scheme, an amplitude-phase multi-loop system is applied. Therefore, it will not only enable the inverter operate independently, but also connect to grid by tracking the frequency. Advantages of the four-leg inverter structure are exerted particularly for unbalanced and non-linear load. The simulation results show that the control method is correct and effective.
     Finally, the prototypes of MTG control system, PWM rectifier and three-phase four-leg inverter are developed respectively. In the 100kW MTG experimental platform, experiments are carried out in the whole process of power generation including start-up, ignition, accelerating, off-line and generating. The experimental data and experimental waveforms show that MTG integrated control system and its control strategy have achieved the expected goals.
引文
1.林汝谋,金红光.燃气轮机发电动力装置及应用[M].北京:中国电力出版社,2004.
    2.陶德安,段立强,杨勇平.微型燃机在分布式能量系统中的应用及发展[J].现代电力,2007,2(5):75-81.
    3.李政,王德慧,徐大懋.微型燃机变工况运行方式研究[J].汽轮机技术[J],2005,47(2):114-117.
    4. Davis M W, Gifford A H, Krupa T J. Microturbines-an economic and reliability evaluation for commercial, residential, and remote load applications[J]. IEEE Transactions on Power Systems,1999, 14(4):1556-1562.
    5.贾武元,袁春,史银建.微型燃气轮发电机组及其在军事领域的应用前景[J].移动电源与车辆,2003,(4):43-45.
    6.郭力,王成山,王守相,等.两类双模式微型燃机并网技术方案比较[J].电力系统自动化,2009,33(8):84-88.
    7. Saha A K, Chowdhury S P, Chowdhury S, Crossley P A, Gaunt C T. Microturbine based distributed generator in smart grid application[C]. Electricity Distribution,20th International Conference and Exhibition,8-11, June,2009:l-6.
    8. Saha A K, Chowdhury S P, Chowdhury S., Crossley P A. Study of microturbine models in islanded and grid-connected mode[C]. Universities Power Engineering Conference,2008 (UPEC 2008).43rd International.1-4, Sep,2008:1-5.
    9. Nikkhajoei H, Iravani M R. A matrix converter based micro-turbine distributed generation system[J]. IEEE Transactions on Power Delivery,2005,20(3):2182-2192.
    10.袁春,何国库,微型燃机发电技术进展[J],移动电源与车辆,2002,4:39-40,23.
    11.肖利,曾成碧,李纪财.以微型燃机为核心的分布式供能系统方案[J].四川电力技术,2008,301(2):78-81.
    12.郭力,王成山,王守相,等.微型燃机微网技术方案[J].电力系统自动化,2009,33(9):81-85.
    13.韩吉田,康兴娜,于泽庭.分布式冷热电联供总能系统的发展[J].山东电力技术,2008,6:65-68.
    14.魏兵,王志伟,蒋露,李莉.微型燃机冷热电联供系统的热力学分析[J].节能技术,2006,24(5):394-398,414.
    15.蒋毅,任禾盛,刘宝兴.微型燃机冷热电联供系统的热经济性分析[J].上海理工大学学报,2004,26(5):485-489.
    16.安连锁,张健,刘树华,马辉.固体氧化物燃料电池与燃气轮机混合发电系统[J].可再生能源,2008,26(1):62-64.
    17.陈启梅,翁一武,翁史烈,朱新坚.燃料电池-燃气轮机混合发电系统性能研究[J].中国电机工程学报,2006,26(4):13-35.
    18. Zhou Yunhai, Stenzel J. Simulation of a Microturbine Generation System for Grid Connected and Islanding Operations[C]. Power and Energy Engineering Conference,2009. APPEEC 2009. Asia-Pacific,27-31 March 2009:1-5.
    19.杨德东,张化光,邓伟.微型燃机控制系统设计中的几个问题[J],控制工程,2006.5 13(3):278-281.
    20. Min Sik Rho, Gi Rae Kim, Young Kyu Choi, Mun Suk Chae. Development of Power Conditioning System for a Microturbine in Vehicle[C]. Power Electronics Specialists Conference,2007. PESC 2007. IEEE,17-21 June 2007:1496-1501.
    21.吴石贤.燃气轮机控制系统概况[J].发电设备,2003,2:56-58.
    22.戴云飞,周珏.新一代燃气轮机控制系统-MarkⅥ介绍[J].燃气轮机技术,2004,17(4):29-32,13.
    23.刘孝鑫.燃气轮机控制系统-SPEEDTRONIC-MarkⅥ[J]电气时代,2009,8:104-105.
    24.倪维斗,许基豫.自动调节原理与涡轮机械自动调节[M],北京:机械工业出版社,1991.
    25.王静,崔国民,张勤,李美玲.微型燃机的控制研究[J].机电设备,2004,4:1-6.
    26.王晓暄,张春有,李爱平.微型燃机转速控制系统的设计[J].控制工程,2005,12(1):73-76.
    27.岳俊红,刘吉臻,谭文,刘向杰.微型燃机转速模糊PID控制器设计[J].燃气轮机技术,2006,19(4):43-46.
    28.邓玮,张化光.基于燃气轮机转速直接型自适应模糊控制器的设计[J].系统仿真学报,2007,19(2):361-363,460.
    29.潘蕾,杨瑜文,林中达.神经网络鲁棒控制及其在燃气轮机排气温度控制中的仿真应用[J].动力工程,2001,21(6):1542-1547.
    30. Jiang Jiang Wang, You Yin Jing, Chun Fa Zhang. Self-adaptive neuron PID control in exhaust temperature of micro gas turbine[C]. Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming,12-15,July,2008:2125-2130.
    31. Jiang Jiang Wang, Chun Fa Zhang, You Yin Jing. Self-adaptive RBF neural network PID control in exhaust temperature of micro gas turbine [C]. Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming,12-15 July 2008:2131-2136.
    32. Ashikaga M, Kohno Y, Higashi M, et al. A study on applying nonlinear control to gas turbine systems[C]. Proceedings of the International Gas Turbine Congress, Tokyo, November 2-7,2003,1-8.
    33. Balakrishnan S R, Santhakumar S. Fuzzy modeling considerations in an aero gas turbine engine start cycle[J]. Fuzzy Sets and Systems,1996,78:1-4.
    34. Shijie Yan, Yongkui Man, Huaguang Zhang. Fuzzy PD controller application in microturbine start-up, DCABES 2006 PROCEEDING, OCT.,2006:711-714.
    35.张春有,张化光,王晓喧,边春元,满永奎.一种基于BP神经网络的解耦控制方法及其在微型燃机控制中应用的研究[J].信息与控制,2005,34(2):214-218.
    36. Nikkhajoei H.Iravani M R. A matrix converter based micro-turbine distributed generation system[J]. IEEE Transactions on Power Delivery,2005,20(3):2182-2192.
    37. Ortega M, Jurado F, Cano A. Analysis of a six phase matrix converter in microturbine based distributed generation systems[C]. Industrial Electronics,2008. ISIE 2008. IEEE International Symposium on, June 30-July 2,2008:1610-1615.
    38. BIAN Chunyuan, REN shuangyan, YAN Shijie. Optimal V/F control of super high-speed PMSM and its application, ISICT'2006 PROCEEDING[C]. OCT,2006,714-719.
    39. Halkosaari T. Optimal U/f-control of high speed permanent magnet motors[C]. Industrial Electronics, 2006 IEEE International Symposium on,9-13 July 2006,3::2303-2308.
    40.Nikkhajoei H,Saeedifard M,Iravani R. A three-level converter based micro-turbine distributed generation system[C]. Power Engineering Society General Meeting,2006. IEEE,2006:1-6.
    41. Morimoto M, Aiba K, Sakurai T,Hoshino A, Fujiwara M. Position sensorless starting of super high-speed PM Generator for micro gas turbine[J]. IEEE Transactions on Industrial Electronics,2006, 53(2):415-420.
    42. Chunyuan Bian, Shuangyan Ren, Liangyu Ma. Study on Direct Torque Control of Super High-speed PMSM[C]. Automation and Logistics,2007 IEEE International Conference on,18-21 Aug.2007:2711-2715
    43.闫士杰,于革.微型燃机电力变换SVPWM过调制策略的实现[J].控制工程,2006,13(5):502-505.
    44.闫士杰,耿加民,张化光,陈宏志.SVPWM快速控制算法在微型燃机软起动中的应用[J].控制工程,2008,15(1):88-90.
    45.王成山,马力,王守相.基于双PWM换流器的微型燃机系统仿真[J].电力系统自动化,2008,32(1):56-60.
    46.赵克,耿加民,汪之文,孙力.微型燃机发电系统启动过程控制[J].电工技术学报,2009,24(2):48-53.
    47.李志民,张遇杰.同步电动机调速系统.北京:机械工业出版社.
    48. Md Enamul Haqu,, Limin Zhong, Muhammed Fazlur Rahman. A Sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive[J]. IEEE Trans. on powew electronics,2003,18(6):1376-1383.
    49. Haoran Bai, Fengxiang Wang, Dapeng Wang, ChangLiang Liu, TianYu Wang. A pole assignment of state feedback based on system matrix for three-phase four-leg inverter of high speed PM generator driven by micro-turbine[C]. Industrial Electronics and Applications,2009. ICIEA 2009.4th IEEE Conference on,25-27 May 2009:1361-1366.
    50.李政,王德慧,薛亚丽,李东海.微型燃机的建模研究(上)-动态特性分析[J].中国动力工程学报,2005,25(1):13-17.
    51.李政,王德慧,薛亚丽,李东海.微型燃机的建模研究(下)-简化与分析[J].中国动力工程学报,2005,25(2):160-164.
    52.赵景峰,叶春,秦春申.燃气轮机及控制系统的综合建模研究[J].华东电力,2005,33(4):13-16.
    53. Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8:338-358.
    54. Pedrycz W. An approach to the analysis of fuzzy systems[J]. International Journal of Control,1981, 34(3):403-421.
    55.陈建勤,吕剑虹,陈来久.模糊控制系统的闭环模型及稳定性分析[J].自动化学报,1994,20:1-9.
    56.陈建勤,吕剑虹,陈来久.利用关系矩阵分析模糊控制系统的稳定性[J].控制理论与应用,1995,12(5):635-639.
    57. Farinwata S S, Vachtsevanos G Stability analysis of the fuzzy logic controller designed by the phase portrait assignment algorithm[C]. Proceedings of 2nd IEEE International Conference on Fuzzy Systems, San Francisco,1993,1377-1382.
    58. Malki H A, Li H, Chen G R. New design and stability analysis of fuzzy proportional derivative control systems[J]. IEEE Transactions on Fuzzy Systems,1994,2(4):245-254.
    59. Misir D, Malki H A, Chen G R. Design and analysis of a fuzzy proportional- integral-derivative controller[J]. Fuzzy Sets and Systems,1996,79(3):297-314.
    60. Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics,1985,15(1):116-132.
    61. Sugeno M, Yasukawa T. A fuzzy logical based approach to qualitative modeling[J]. IEEE Transactions on Fuzzy Systems,1993,1:7-25.
    62. Takagi T, Sugeno M. A robust stabilization problem of fuzzy control systems and its application to backing up control of truck-trailer[J]. Fuzzy Sets and Systems,1994,2(2):119-133.
    63. Cao S G, Rees N W. Analysis and design for a class of complex control systems Part Ⅰ:fuzzy modeling and identification[J]. Automatica,1997,33:1017-1028.
    64. Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems Part Ⅱ:fuzzy controller design[J]. Automatica,1997,33:1029-1039.
    65 Wang L X. Fuzzy systems are universal approximators[C]. IEEE International Conference on Fuzzy Systems, San Diego,1992,1163-1170.
    66. Wang L X, Mendel J M. Fuzzy basis function, universal approximation, and orthogonal least squares learning[J]. IEEE Transaction on Neural Networks,1992,3(5):807-814.
    67. Chang Y C. Robust tracking control of nonlinear MIMO system via fuzzy approaches[J]. Automatica, 2000,36(3):1535-1545.
    68. Chang Y C. Adaptive fuzzy-based tracking control for nonlinear SISO system via VSS and H∞ approaches[J]. IEEE Transactions on Fuzzy Systems,2001,9(2):278-292.
    69.佟绍成,柴天佑.一种非线性系统的模糊自适应控制[J].信息与控制,1997,26(2):87-91.
    70.张化光,全永兵.模糊双曲正切模型的建模方法与控制器设计[J].自动化学报,2000,26(6):729-735.
    71. Zhang H G, Quan Y B. Modeling, identification and control of a class of nonlinear system[J]. IEEE Transactions on Fuzzy Systems,2001,9(2):349-354.
    72.桑振远.100kW微型燃气轮机总体方案分析[D].哈尔滨:哈尔滨工程大学,2006.
    73.朱行健,王雪瑜.燃气轮机工作原理及性能[M].北京:科学出版社,1992.
    74.彭鸿才.电机原理及拖动(第2版)[M].北京:机械工业出版社,2007.
    75.董钺,孔力微型燃气轮机发电系统直流侧建模方法[J].电网技术,2008,32(3):13-17.
    76.倪维斗,徐向东,李政,等.热动力系统建模与控制的若干问题[M].北京:科学出版社,1996.
    77. Xunwei Yu, Zhenhua Jiang, Abbasi A. Dynamic modeling and control design of microturbine distributed generation systems[C]. Electric Machines and Drives Conference,2009.IEMDC'09. IEEE International,3-6 May 2009:1239-1243.
    78. J B Ahn, Y H Jeong,etc. Development of high speed PMSM for distributed generation using microturbine[C]. Industrial Electronics Society,30th Annual Conference of IEEE, Nov.2004,1.3:2879-2882.
    79. Ikeda M, Siljak D D. Lotka-Volterra equations:Stability, decomposition, and aggregation[C]. Decision and Control including the Symposium on Adaptive Processes,1979 18th IEEE Conference on, Dec. 1979,18:593-601.
    80. Wenjun Xiong, Jigui Jian, Jinde Cao. Novel Stability Criteria of A Lotka-Volterra System with Time-varying Delays[C]. Control and Automation, ICCA 2007 IEEE International Conference on May 30 2007-June 1 2007:3119-3121.
    81.曹少中,刘贺平,涂序彦.仿射非线性系统状态方程的任意阶近似解[J].北京科技大学学报,2008,30(6):690-693.
    82.沈启坤,张天平,钱厚斌.一类非仿射非线性系统的自适应模糊控制[J].电机与控制学报,2006,10[6];592-596.
    83.汤蕴璆,张奕黄,范瑜.交流电机动态分析[M].北京:机械工业出版社,2004.
    84.韩京清,王伟.非线性跟踪—微分器[J],系统科学与数学,1994,14(2):177-183.
    85.韩京清,袁露林.跟踪—微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    86.韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):20-23.
    87.张文革,韩京清.跟踪-微分器用于连续系统辨识[J].控制与决策,1999,14(增):557-560.
    88.武利强,林浩,韩京清.跟踪微分器滤波性能研究[J],系统仿真学报,2004,16(4):651-653.
    89.王新华,陈增强,袁著祉.全程快速非线性跟踪-微分器[J].控制理论与应用,2003,20(6):875-878.
    90.史永丽,侯朝桢.改进的非线性跟踪微分器设计[J].控制与决策,2008,23(6):647-650,659.
    91.佟绍成.非线性系统的自适应模糊控制[M].北京:科学出版社,2006.
    92. Wen Shyong Yu. Adaptive fuzzy PID control for nonlinear systems with H∞ tracking performance [C]. 2006 IEEE International Conference on Fuzzy Systems, Canada, July 16-21,2006:1010-1015.
    93. K Y Lian, C S Chia, P Liu. Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with Hoo motion internal force tracking performance [J]. IEEE Trans. Syst. Man. Cyber.-Part B Cybernetics,2002,32(3):269-280.
    94. Y C Chang. Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H∞ approaches[J]. IEEE Trans Fuzzy Syst.,2001,9(2):278-292.
    95.俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    96.姜长声,吴庆宪,陈文华,王从庆.现代鲁棒控制基础[M].哈尔滨:哈尔滨工业大学出版社,2005.
    97.苏宏业,褚健,鲁仁全,嵇小辅.不确定时滞系统的鲁棒控制理论[M].北京:科学出版社,2007.
    98.张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.
    99.YAN Shijie, BIAN Chunyuan, WANG Zhiqian. Microturbine control based on fuzzy neural network[C]. ISICT'2007 proceeding, OCT.,2007:909-914.
    100. Shijie Yan, Xu Wang. Fuzzy control with tracking differentiator for microturbine[C]. The 6th International Conference on fuzzy systems and knowledge discovery (FSKD'09), Aug.2009:805-810.
    1O1.Yan Shijie, Wang Xu. RBF neural network adaptive control of microturbine[C].2009 Global Congress on Intelligent Systems(GCIS 2009), May,2009:288-292.
    102. Shijie Yan, Xu Wang, Active disturbance rejection fuzzy control of MTG fuel pressure[C]. The 2009 IEEE International conference on mechatronics and automation (ICMA 2009), Aug.,2009:3015-3020.
    103.闫大朋,闫士杰,李爱平,张化光.微型燃机的新型神经网络控制的研究[J].控制工程,2008,15(5):541-548.
    104.清源科技TMS320LF240X DSP应用程序设计教程[M],北京:机械工业出版社,2003.
    105.刘和平,严利平,张学峰,卓青峰.TMS320LF240X DSP结构原理及应用[M],北京:北京航空航天出版社,2003.
    106.马莹莹.微型燃气轮机SCADA系统的研究与实现[D].沈阳:东北大学硕士论文,2006.
    107.闫大朋.微型燃机的通讯控制系统的设计与实现[D].沈阳:东北大学硕士论文,2008.
    108.金玉玉.微型燃气轮机温度检测系统的研究[D].沈阳:东北大学硕士论文,2008.
    109.徐福斌.微型燃机蓄电池管理系统的研究与优化[D].沈阳:东北大学硕士论文,2006.
    110.张崇巍,张兴编著.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    111.熊宇,张仲超,于相旭等.三相电压型单位功率因数整流器的新型间接电流控制方案[J].电源技术应用,2002,9(7):10-15.
    112.张笑微,李永东,刘军.PWM整流器电流控制策略的研究[J].电工技术杂志,2003(12):57-59.
    113. Wang Xu, Huang Kaizheng, Yan Shijie, Xu Bin.Simulation of three-phase voltage source PWM rectifier based on direct current control[C].2008 Congress on Image and Signal Processing(CISP 2008),2008:194-198.
    114.王久和,李华德,李正熙.电压型PWM整流器直接功率控制技术综述[J].电工电能新技术,2004,23(3):64-67.
    115.王久和,李华德,李正熙.电压型PWM整流器直接功率控制研究[J].辽宁工程技术大学学报,2004,23(5):658-660.
    116. Toshihiko Noguchi, Hiroaki Tomiki, Seiji Kondo et al. Direct power control of PWM converter Without Power-source Voltage Sensors [J]. IEEE Trans. on industry applications,1998,34(3): 473-479.
    117.刘秀翀,张化光,褚恩辉,闫士杰.三相电压型PWM整流器功率控制方法[J].电机与控制学报,2009,13(1):47-51,56.
    118. Wang Xu, Huang Kaizheng, Yan Shijie, Xu Bin. Simulation of three-phase voltage source PWM rectifier based on the space vector modulation[C].2008 Chinese Control and Decision Conference (CCDC), Jul.,2008:1881-1884.
    119.赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电 机工程学报,2005,25(20):56-61.
    120.杨涛,郭尚峰,张民.一种用模糊逻辑控制的新型三相电压型PWM整流器[J].海军工程大学学报,2003,15(3):65-68.
    121.汪波,钟炎平,陈耀军.PWM整流器的电压模糊-PI控制研究[J].空军雷达学院学报,2007,21(3).
    122.徐金榜,赵金,罗泠,万淑芸.PWM整流系统模糊逻辑控制研究[J].华中科技大学学报,33(2):47-49.
    123.张波,卢至峰,邓卫华.三相电压型PWM整流器的反馈线性化解耦模型和仿真[J].华南理工大学学报(自然科学版),2004,32(6):10-13.
    124.邓卫华,张波,丘东元,卢至锋,胡宗波.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    125.阮立飞,张艳红,叶芃生.三相单位功率因数整流器的电流控制方法研究[J].电气传动,2001,31(6):27-29.
    126. Hasan Kobmurcugil, Osman Kukrer. Lyapunov-based control for three-phase PWM AC/DC voltage-source converters[J]. IEEE Trans. Power Electronics.1998,13 (5):801-813.
    127. Meng Yongqing, Liu Zheng, Su Yanmin, Yu Ting. Study on mathematical model and Lyapunov-based control for three-phase four-wire three-level NPC voltage-source rectifier[C]. IEEE ISIE 2005, June 20-23, Dubrovnik, Croatia,2005:669-674.
    128.闫向峰.高速永磁同步电机控制策略的研究[D].沈阳:东北大学硕士论文,2006.
    129. Jang-Hwan Kim, Seung-Ki Sul. A carrier-based PWM method for three-phase four-leg voltage source converters[J]. IEEE Trans. Power electronics,2004,19(1):66-75.
    130.张方华,丁勇,王慧贞,等.四桥臂三相逆变器的特定谐波消除控制[J].中国电机工程学报,2007,27(7):82-87.
    131.官二勇,宋平岗,叶满园.基于三次谐波注入法的三相四桥臂逆变电源[J].电工技术学报,2005,20(12):43-46.
    132.杨宏,阮新波,严仰光.四桥臂三相逆变器的PWM控制[J].南京航空航天大学学报,2002,34(6):575-579.
    133. V.H. Prasad, D. Borojevic, R. Zhang. Analysis and comparison of space vector modulation schemes for a four-leg voltage source inverter[C].12th Annual IEEE. APEC,1997, vol.2:864-871.
    134. R. Zhang, V. Himamshu Prasad, Dushan Boroyevich, et al. Three-dimensional space vector modulation for four-leg voltage-source converters[J]. IEEE Trans. Power electronics,2002,17(3): 314-326.
    135.陈新,龚春英,郦鸣,等.应用于三相变换器的三维空间矢量调制[J].南京航空航天大学学报,2002,34(2):148-153.
    136. Michael J. Ryan, Rik W. De Doncker, Robert D. Lorenz. Decoupled control of a four-leg inverter via a new 4×4 transformation matrix[J]. IEEE Trans. Power electronics,2001,16(5):694-701.
    137.孙驰,毕增军,魏光辉.一种新颖的三相四桥臂逆变器解耦控制的建模与仿真[J].中国电机工程学报,2004,24(1):124-130.
    138.陈宏志,刘秀翀,钱晓龙,闫士杰.一种高性能单相正弦逆变电源的多环控制策略[J].东北大学学报,2007,28(12):1685-1688.
    139.张纯江,顾和荣,王宝诚等.基于新型相位幅值控制的三相PWM整流器数学模型[J].2003,中国电机工程学报,23(7):28-31.
    140. R Zhang, F C Lee, D Boroyevich. Four-legged three-phase PFC rectifier with fault tolerant capability[J]. in Proceeding IEEE-PESC'00 Conf.,2000:359-364.
    141. Hou Zhenyi, Sun Jin. Study on control strategy for three-phase four-leg inverter power supply[C]. 30th Annual IEEE.IECON, Busen, Korea,2004, vol.1:805-809.
    142. Olorunfemi Ojo, Parag M. Kshirsagar. Concise modulation strategies for four-leg voltage source inverters[J]. IEEE Trans. Power electronics,2004,19(1):46-53.
    143. M.A. Perales, M.M. Prats, R. Portillo, et al. Three dimensional space vector modulation for four-leg inverters using natural coordinates[C]. IEEE International Symposium on industrial electronics,2004, vol.2:1129-1134.
    144. Wu Rui, Xie Shaojun. Research of the four-leg voltage source inverters based on space vector modulation in abc coordinates[C].8th IEEE. ICEMS,2005, vol.2:1442-1446.
    145. Y X Su, C H Zheng, B Y Duan. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors[J]. IEEE Trans. On Industrial Electronocs, Vol.52, No.3, PP. 814-823,2005.
    146.邵立伟,廖晓钟.自抗扰控制器在电压型PWM整流器中的应用[J].北京理工大学学报,2008,28(1):50-53.
    147.韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    148.张兆靖,杨慧中,姜永森.一种单神经元自抗扰控制器[J].东南大学学报,2006,36 sup(Ⅰ):132-134.
    149.高龙,韩俊生,李崇坚等.非线性鲁棒自抗扰控制器在电力系统中的应用[J].清华大学学报,2000,40(3):27-29.
    150.冯光,黄立培,朱东起.异步电机的新型非线性自抗扰控制器的研究[J],清华大学学报,1999,39(3):30-33.
    151.张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    152.程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998.
    153. S Mallet, W L Hwang. Singularity detection and processing with wavelets[J]. IEEE trans. on information theory,1992,38(2):617-643.
    154. Y Xu, J B Weaver, D M Healy. Wavelet transform domain filters:a spatially selective noise filtration technique[C]. IEEE trans. image processing,1994,3(6):747-758.
    155. D L Donoho. Denoising by soft thresholding[J]. IEEE trans. on information theory,1995,41(3): 613-627.
    156. Q Xiao, J H Wang, Y Jiang, et al. An improved wavelet threshold denoising method and its application[C].2008 Chinese Control and Decision Conference,2008:3465-3468.
    157. J Tang, Y B Xie, W Zhu, et al.. Suppression of narrowband interference with EMC threshold method for complex wavelet transform[J]. Automation of electric power systems,2005,29(7):1-5.
    158.闫士杰,王旭,黄延龙,荆艳强.小波自适应消澡算法在微型燃机温度检测中的应用[J].仪器仪表学报,2008,29(n2):252-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700