用户名: 密码: 验证码:
热泵耦合反季节储能技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热泵耦合反季节储能技术(即热泵耦合地下含水层储能技术),是将含水层储能技术与热泵空调系统相结合,以浅层地下水为热泵的热(冷)源用于建筑物的供暖(冷),同时将温度降低(升高)的地下水回灌并储存,为下一个运行周期提供冷(热)源的技术。
     文中描述了含水层储能(ATES)技术的原理及类型、含水层主要水文地质条件、建立含水层数学模型的理论依据以及采用的数值计算方法。本文对天津市地矿珠宝公司的热泵耦合对井抽灌反季节储能系统进行了研究,利用Flowheat1.0软件模拟了系统自2002年冬季到2005年夏季运行期的储能场形成过程和温度场分布,并预测了系统未来4年内的储能场分布情况,分析了系统的储能效果及对地下环境的影响情况。分别模拟了不同井距条件、不同类型含水层内的储能场变化过程,分析了井距和含水层的水文地质参数对储能的影响;另外,本文从地下水的天然流速和井抽灌量两方面分析了地下水动力场对储能效果的影响。依据实测数据,定义和计算了系统的储能率,通过储能率变化分析了系统的储能效果;对采用含水层储能技术和未采用该技术两种情况下热泵机组的COP值和耗电量作了计算和对比分析,并针对热泵耦合含水层储能技术的应用提出了建议。
Heat pump coupled with Seasonal Thermal Energy Storage in an aquifer is a technology of combining heat pump air-conditioning system with Aquifer Thermal Energy Storage (ATES), which uses shallow underground water as the heat source (or sink) for space heating (or cooling), and then recharges the cooled (or warmed) ground water into the underground and stored to provide the heat sink (or source) for the next summer (or winter).
     The principle and type of ATES technology, several hydro geological parameters of aquifer, theory which the simulation model of aquifer based on and the numerical method was introduced in this paper. The Heat Pump coupled with two wells’ATES system of Tianjin Mining Jewellery Firm was studied. The changes in Geo-temperature field from winter of 2002 to summer of 2005 and four years later were simulated by Flowheat1.0. Then the energy storage effectiveness of the system and the impact on underground environment were discussed according to the simulation results. The Geo-temperature fields of different models were also simulated which included different spacing of wells, and different hydro geological parameters. Also, how these factors affected the energy storage effectiveness was analyzed. Moreover, the influence that the groundwater dynamic field (natural flow of groundwater and well flow) hade on the energy storage effectiveness was studied. According to the measured data, the Energy Storage Efficiency of the system were defined and calculated, the energy storage effectiveness of the system was evaluated according to the value of energy storage efficiency. The COP (Coefficient of Performance) and electricity consumption of heat pump with and without ATES system were caculated and compared. At last several advices were given for the application of the technology of heat pump coupled with ATES.
引文
[1]崔海亭,杨锋编著.蓄热技术及其应用[M].北京:化学工业出版社,2004
    [2]李传统.新能源与可再生能源利用技术[M].南京:东南大学出版社,2005
    [3]孙殿军,郄振生,刘春旭.水源热泵在实际应用中的浅析[J].黑龙江电力,2005,27(2):125~127
    [4]何满潮,韩增珍,朱家玲.深部地层储能技术与水源热泵联合应用工程实例[J].太阳能学报,2005,26(1):23~26
    [5] w.J.Schaetzle,C.E.Brett,D.M . Grubbs.A heat pump integrated community energy system using annual aquifer energy storage[J].ASHRAE Transactions,1980,86(1):955~966
    [6]孙永福.采灌条件下含水层能量计算[J].上海地质,1990,(3): 7~14
    [7]邬小波,马捷.中国地下含水层储能技术及其发展[J].能源研究与信息,1999,l5(4):8~12
    [8]吴增菲等译.当前含水层蓄热项目的回顾.清华大学,1980.
    [9]马捷,赵新颖,王锦程.地下含水层储能的发展及意义[J].油田节能,2004,15(3):1~4,13
    [10]马捷,邬小波.地下含水层储能与地下水源热泵的互补系统[A].中国国际建筑节能研讨会,2001
    [11]赵新颖万曼影马捷,地下含水层储能及其对环境影响的评估[J].能源研究与利用,2004,(1):51~53
    [12] B.Qvale,J.Hagelskjaer,L.J.Andersen,et a1.Aquifer thermal energy storage,technology ,systems,economics[J].ASHRAE Transactions,1984,90(2B):137~156
    [13] C.E.Brett,W.J.Sehaetzle.Experiences with unconfined aquifer chilled water storage[J].ASHRAE Transactions,1984,90(2B): l69~l80
    [14] ItC.Midkif,C.E.Brett, Balaji,et a1.1ong-term performance of an air-conditioning system based on seasonal aquifer chill energy storage[C] . In 27th Intersociety Energy Conversion Engineering Conference Proceedings[c].San Diego,C 1992.49~54
    [15]赵新颖,万曼影,施锡钜.利用含水层储能的水源热泵工程及其对环境影响的评估[J].能源工程,2004,(2):20~24
    [16] F.gabus,P.Semt.Aquifer Thermal Energy Storage for the Berlin Reichstag building new seat of the German Parliament[A] . In :Proceedings World Geothermal Congress 2000 [C].Kyushu-Tohoku,Japan ,2000:3611~3615
    [17] H.O.Paksoy,O.Andersson,S.Abaci,et a1.Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer [J].Renewable Energy,2000,19:ll7~122
    [18] H.O.Paksoy,Z.Gurbuz,B、Turgut,et a1.Aquifer Thermal Storage(ATES)for air-conditioning of a supermarket in Turkey[J].Renewable Energy,2004,29:1991~1996
    [19] V Sethi, S Sharma. Greenhouse heating and cooling using aquifer water[J]. Energy, 32 (8):1414~1421
    [20]倪龙,荣莉,马最良.含水层储能的研究历史及未来[J].建筑热能通风空调, 2007,26(1):18~24
    [21]高青,李明,江彦等。能量地下蓄存及其传热效能分析,热科学与技术,2006,5(3):216~221
    [22] MEYER C F, TODD D K. Conserving energy with heat storage wells [J]. Environmental Science and Technology, June 1973: 512~516.
    [23] D Werner, W Kley. Problems of heat storage in aquifers[J].Journal of Hydrology,1977,34:35~43
    [24]邬小波.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J].暖通空调,2004,34(1):19~22
    [25]张东.浅谈蓄能型水源热泵的应用[J],技术交流,2004(4):28~29.
    [26]王锦程,万曼影,马捷.地下含水层储能技术的应用条件及其关键科学问题[J].能源研究与信息,2003,19(4):229~234
    [27]阮艳贞,张玉冰.浅谈新型水源热泵空调系统[J].福建能源开发与节约,1997,(3):10~12
    [28]龙翔,万蔓影,马捷.含水层储能技术的应用及储能条件的分析[J].能源与环境,2005,1:42~44
    [29]王谦,孟繁贵.海河图书馆应用地下储能技术的可行性分析[J].建设,2006,4:30,31,33
    [30]庄斌舵,陈兴华.蓄热(冷)器[J].能源利用与研究,2000,(3): 31~34
    [31]刘宪英,等.地源热泵地下垂直埋管换热器的试验研究[J].重庆建筑大学学报,1999,21(4):20~26
    [32] A. Hauer, Thermal Energy Storage with Zeolite for Heating and Cooling, Proceedings of the 7th International Sorption Heat Pump Conference ISHPC′02,Shanghai, China,24~27. September 2002
    [33]马捷,王明育,郝振良.地下储能介绍和换热特点比较分析[J].油田节能,2004,(4):1,2,27
    [34]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004
    [35]王大纯,张人权,史毅虹等。水文地质学基础[M].北京:地资出版社,1978
    [36]河北省地质局水文地质四大队.水文地质手册[M].北京:地资出版社,1978
    [37] Halime V. Paksoy .Thermal Energy Storage For Sustainable Energy Consumption: Fundamentals, Case Studies And Design [M]. Springer Netherlands,2007:155~176
    [38] Hans Buitenhuis. System concepts with Aquifer Thermal Energy Storage[R].DWA Energy and Installation consultancy, Bodergraven, The Netherlands
    [39]美国内政部水力资源局编,李顺昌,戴鸿麟译.地下水手册[M].北京:地资出版社,1989
    [40]曹剑锋,迟宝明,王文科等.专门水文地质学[M].北京:科学出版社,2006(3)
    [41]王旭升.FlowHeat Modeling for Windows 1.0FlowHeat 1.0软件用户手册:水资源与环境工程北京市重点实验室,中国地质大学(北京)水资源与环境学院.2006:1~28
    [42]张远东.单(多)井抽灌对浅部地温场的影响研究(博士学位论文) [D].北京:中国科学院,2006
    [43] Kipp, K. L., Jr., 1997, Guide to the revised heat and solute transport simulator, HST3D-Version 2:U.S. Geological Survey Water-Resources Investigations Report 97~4157
    [44] Y.Xue,C.Xie,Q.Li.Aquifer thermal energy storage:a numerical simulation of field experiments in China[J].Water Resources Research,1990,26(10):2365~2375
    [45]低焓地热能在空调中的应用示范工程, http://bbs.chinagb.net/archiver/?tid~42777.html
    [46]付峥嵘,王汉青,罗清海等.地下含水层储能的用分析[J].煤气与热力,2006,26(2):48~50
    [47]张祉祐.制冷原理与制冷设备[M].北京:机械工业出版社,1995.
    [48]沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社,2002(3)
    [49]文远高,赵峰.水源热泵运行能耗分析[J].技术交流,2007,113(28):46~48
    [50]吴丽娟,朱能。深浅井蓄热型水源热泵系统性能分析[J].制冷空调。2006,4(110):64~68
    [51]曲云霞,张林华,方肇洪等.地下水源热泵及其设计方法[J].可再生能源,2002,6:11~14
    [52]王明育,马捷,万曼影等.地下含水层同层储能应用中储能井布置方法研究[J].工程勘察,2005,(1):15~18
    [53]张远东,魏加华,汪集旸.井对间距与含水层采能区温度场的演化关系[J].2006,27(11):1163~1167
    [54]张远东,魏加华,李宇.地下水源热泵采能的水~热耦合数值模拟[J].天津大学学报,2006,39(8):907~912
    [55] BEAR J. Dynamics of Fluids in Porous Media [M]. New York: Elsevier, 1972
    [56]张震,张超,周光辉.地下水源热泵系统变工况性能实验研究[J].流体机械,34(11):57~61
    [57]付峥嵘,李念平,汤广发等.季节性含水层储能系统在住宅中的应用[J].暖通空调.2004,34(9):84~86
    [58]倪龙,马最良.热弥散对同井回灌地下水源热泵的影响[J].建筑热能通风空调,2005,24(4):7~10,18
    [59] S.S.Papadopulos.S,P.I arson.Aquifer storage of heated water: part H-numerical simulation of field results[J].Ground Water,1978,16(4):242~248
    [60] J.F.Sykes,R.B.La ntz,S.B.Pahwa,et a1.Numerical simulation of thermal energy storage experiment conducted by Auburn University[J].Ground Water,1982,20(5):569~576
    [61]谭显辉,丁力行.地下水源热泵中的地下水分析[J].制冷与空调,2003,4:11~14
    [62] J.A.Perlinger,J.E.Almendinger,N.R.Urban,eta1.Groundwater geochemistry of aquifer thermal energy storage: long-term test cycle [J].Water Resources Research,1987,23 (12):22l5~2226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700