用户名: 密码: 验证码:
四轮独立驱动电动汽车驱动力控制方法与驱动力分配分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车作为新能源研究领域的重要课题,其四轮独立驱动技术逐渐成为研究的核心。本文以四轮独立驱动电动汽车驱动力控制方法与驱动力分配分析为研究对象,在对国内外研究现状进行了分析的基础上,对电动汽车驱动控制的仿真及实验各个环节进行了研究。
     首先从建模开始,介绍了动力学仿真软件ADAMS在机械行业的应用及其解算优势,并介绍了科学计算仿真软件Matlab/Simulink在仿真计算领域的优点。在对车辆硬件系统进行分析并对比了ADAMS各个模块的主要功用的基础上,在ADAMS/View模块中建立了简化的四轮独立驱动车辆动力学模型;分析了电机的机械特性及PWM控制的工作原理,在Matlab/Si- mulink中建立电机及其控制器模型,完成了二者的联合仿真建模。
     其次采用等转矩电流控制方法,通过系统辨识获取驱动系统的动态响应模型,将该模型变换为驱动系统控制模型。设计整车控制方法,运用最优控制理论进行驱动系统反馈控制器设计,给出控制器参考输入的调整方法,并说明了反馈控制器和参考输入在控制中的作用。将控制器分别应用于联合仿真及实车试验,对比分析,验证了仿真模型的精确度及控制器的稳定性及快速性,证明了控制器具有良好的控制品质。
     最后,以车辆的驱动防滑控制为目标,对车辆整体及轮胎部分分别进行了力学的数学建模,分析轮胎的附着率与滑动率的关系,建立目标函数及相关约束并选取参数,在已有的仿真平台上完成了控制器的建模,并进行了驱动力的优化仿真及驱动力的分配分析。
For the sake of environmental protection and energy save, electrical vehicle (EV) takes in the most important research area of environmental energy sources now, and the 4 independently wheels driving technical becomes the focus of the EV research. This article takes driving force distribution analysis and control method of 4wd EV as the object of study, on the foundation of the domestic and foreign research present situation analysis, and takes research on each link of the simulation and experiment on 4WD EV control.
     First, an introduction of ADAMS (Automatic Dynamic Analysis of Mechanical System) and Matlab/Simulink software is made. After analyzing the structural property of model vehicle, a multi-body dynamic model of a full independent 4WD EV is established by using ADAMS software, and an electric motor combined the drive-control system is established under Matlab/Simulink environment.
     Second, dynamics of vehicle with four independently-driving wheels (4WD) is analyzed to show the purpose of vehicle running control. Dynamic response model of driving system is obtained through system identification, and then be transformed into a control model of driving system. The whole vehicle control method is designed, optimal control theory is used to design system feedback controller, and then adjustment method of controller’s reference input is given. Action of feedback controller and reference input in the whole vehicle control is expounded. The equality torque driving force distribution strategy is applied in experiment, and the method get favorable effect.
     At last, taking anti-slip control as the goal, mathematics models was built for the force of both the whole vehicle and the tire part. After an analysis of the relationship between adhesion coefficient of road surface and wheel slip was made, the cost function and restrains was established with the selection of related parameters. Driving force distribution analysis and driving force optimize simulation was finished after the completion the model of controller
引文
1徐小东,张炳力.混合动力技术与未来汽车的发展.安徽建筑工业学院学报(自然科学版), 2008 (03)
    2李素华.电控四轮驱动技术的研究现状与发展趋势.现代机械, 2005 (6)
    3李春生.双轮独立驱动电动车驱动系统的研究.[浙江大学硕士毕业论文]. 2003 (3): 12-55
    4李益新,李栓成.四轮驱动汽车溯源.汽车运用(月刊), 2004 (10)
    5王玲珑,黄妙华.轮毂式电动汽车驱动系统的研究与开发.汽车电器, 2007 (3)
    6姜炜,余卓平,张立军.汽车底盘集成控制综述.汽车工程, 2007 (5)
    7孟文阁.四轮驱动汽车的工作特性研究.交通科技与经济, 2006 (4): 57-58
    8张缓缓.采用电动轮驱动的电动汽车转矩协调控制研究[吉林大学博士论文], 2009: 64-98
    9贺鹏,掘洋一.四轮独立驱动电动汽车的稳定性控制及其最优动力分配法.河北工业大学学报, 2007, 36 (4): 26-33
    10赵向阳,朱命怡.四轮驱动汽车动力传动系统研究.河南机电高等专科学校学报, 2009 (6)
    11张兴宇.轮毂式电动汽车电子差速系统的研究[武汉理工大学博士论文], 2008: 25-83
    12 Motoki Shino, Masao Nagai. Yaw-moment control of electric vehicle for improving handling and stability. JSAE Review, 2001, 22 (4): 473-480
    13 Yoichi Hori. Future Vehicle Driven by Electricity and Control—Research on Four-Wheel- Motored. UOT Electric March II .IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (5)
    14赵艳娥,张建武.四轮驱动燃料电池汽车动力系统参数匹配与优化.汽车工程, 2007, 25 (9): 409-414
    15 Shin-ichiro Sakai, Yoichi Hori. Advanced motion control of electric vehicle with fast minor feedback loops: basic experiments using the 4-wheel motored EV“UOT Electric March II”. SAE Review. 2001, 22 (4): 527-536
    16 Mokhiamar O, Abe M. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control. Dynamic Systems Measurement and Control, Transactions of the ASME, 2004, 126 (4): 753-763
    17 Shin-ichiro Sakai, Hideo Sado, Yoichi Hori. Motion Control in an Electric Vehicle with 4 Independently Driven In-Wheel Motors. IEEE Transactions On Mechatronics. 1999, 4 (1): 9-16
    18 Tahami F, Kazemi R, Farhanghi S. A novel driver assist stability system forall-wheel-drive electric vehicles. IEEE Transactions on Vehicular Technology, 2003, 52 (3): 683-692
    19 Ossama Mokhiamar, Masato Abe. How the four wheels should share forces in an optimum cooperative chassis control. Control Engineer Practice, 2006, 14 (3): 295-304
    20 Fredriksson J, Andreasson J, Laine J. Wheel force distribution for improved handling in a hybrid electric vehicle using nonlinear control. Decision and Control, 2004 (04): 40-81
    21 Tahami F, Farhangi S, Kazemi R. A fuzzy logic direct yaw-moment control system for all-wheel-drive electric.Vehicles System Dynamics, 2004, 41 (3) :203
    22 Hallowell Stephen J, Ray Laura R. All-wheel driving using independent torque control of each wheel. Proceedings of the American Control Conference, 2003 (3): 2590-2595
    23余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制.同济大学学报(自然科学版), 2005, 33 (10)
    24 Shuibo Zheng, Houjun Tang, Zhengzhi Han,Yong Zhang. Controller design for vehicle stability enhancement. Control Engineering Practice, 2006, 14: 1413-1421
    25靳立强,王庆年,岳巍强,宋传学.基于四轮独立驱动电动汽车的动力学仿真模型.系统仿真学报, 2005,117 (12)
    26郑建荣. ADAMS——虚拟样机技术入门与提高.北京:机械工业出版社,2001: 6-15
    27陈立平.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社, 2005: 1-15
    28李增刚. ADAMS入门祥解与实例.北京:国防工业出版社, 2006: 1-5
    29郭卫东.虚拟样机技术与ADAMS应用实例教程.北京:北京航空航天大学出版社, 2008: 1-23
    30 Michael Sayers. A Generic Multibody Vehicle Model for Simulating Handling and Braking. Vehicle system Dynamics, 1996: 71-19
    31范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高.北京:机械工业出版社, 2006: 1-30
    32王沫然. Simulink 4建模及动态仿真.北京:电子工业出版社, 2002: 123-168
    33安娜.四轮独立驱动四轮转向电动汽车的电气总成研制及试验. [燕山大学硕士论文]. 2008: 45-46
    34刘超.四轮独立驱动四轮转向电动汽车的底盘总成研制及试验. [燕山大学硕士论文]. 2008: 21-53
    35石博强. ADAMS基础与工程范例教程.北京:中国铁道出版社, 2007: 1-20
    36陈家瑞.汽车构造.第2版.北京:机械工业出版社, 2004: 244-272
    37陈军. MSC.ADAMS技术工程分析实例.北京:中国水利水电出版社. 2008: 159-203
    38任卫群.车—路系统动力学中的虚拟样机: MSC.ADAMS软件应用实践.北京:电子工业出版社, 2005: 1-10
    39高雪峰,徐顺余,张建武. QREV电动轿车的操纵稳定性建模与仿真.传动技术, 2005, (2)
    40尔桂花,窦日轩.运动控制系统.北京:清华大学出版社, 2002: 12-56
    41陈伯时.电力拖动自动控制系统.北京:机械工业出版社, 2000: 8-45
    42凌跃胜,黄文美,宋桂英.电机理论基础.北京:中国电力出版社, 2009: 50-56
    43 Robert Sheehan. Modeling for peak, valley and emulated current mode control. Power electronics and technology exhibition and conference. PES02, 2006
    44史维祥.系统辨识.北京:机械工业出版社,1989: 6-14
    45 Dave Crolla,喻凡.车辆动力学及其控制.北京:人民交通出版社,2 003: 28-256
    46王向东,魏明,赵建文.基于Matlab系统辨识工具箱的参数辨识.军械工程学院学报, 2008,20(4): 75-78
    47 Bockstedte, Paevere. Parameter analysis of the differential model of hysteresis. Journal of Applied Mechanics, 2004: 342-349
    48 Akaike. The Statistical Model Identification. IEEE Tram Autom Control. 2005: 716-723
    49施颂椒,陈学中,杜秀华.现代控制理论基础.北京:高等教育出版社, 2009: 45-50
    50王益群,孔祥东.控制工程基础.北京:机械工业出版社, 2001:27-37
    51 Bernatt, Glinka. Electric motors with permanent magnets with two-zone rotational speed control. International Aegean Conference on Electrical Machines and Power Electronics and Electronic motion. 2007: 653-658
    52 Shin-ichiro Sakai. Numerical simulation of a 4WD±4WS tractor turning in a nice road. Journal of terra mechanics, 2009,36 (3): 91-115
    53 M.米奇克.汽车动力学.陈荫三译.北京:人民交通出版社, 1997:359-643
    54威鲁麦特.车辆动力学模拟及其方法.孙逢春译.北京:北京理工大学出版社, 1998: 90-124
    55 Mizuno, Masahiko, Saka Hideki. Development of tire force model for vehicle dynamics analysis including the effect of tire surface temperature. Transactions of the Japan Society of Mechanical Engineers, 2005:3208-3215
    56王庆年,张媛媛,靳立强.四轮独立驱动电动车转向驱动的转矩协调控制.吉林大学学报(工学版), 2007,37 (5)
    57余志生.汽车理论.第四版.北京:机械工业出版社, 2000: 25-30
    58庄继德.计算汽车地面力学.北京:机械工业出版社, 2002: 52-65
    59 Dustin Bevly, David M. A method to estimate critical tire properties using non-linear tire models. International Mechanical Engineering Congress and Exposition Proceedings Books, 2008:1137-1146
    60 Li Shu, Yan feng. Automotive engine idle speed control based on mixed logical dynamical system. Proceedings of the World Congress on Intelligent Control and Automation, 2008: 1584-1587
    61靳立强,王庆年,宋传学.四轮独立驱动电动汽车动力学控制仿真.吉林大学学报(工学版), 2004, 34 (4): 547-553
    62 Boada B L, Boada M J L , Diaz V. Fuzzy-logic applied to yaw moment control for vehicle stability. Vehicle System Dynamics, 2005, 43(10): 753-770
    63皮大伟,陈南,张丙军.基于主动制动的车辆稳定性系统最优控制策略.农业机械学报, 2009,(11)
    64邹广才,罗禹贡,李克强.四轮独立电驱动车辆全轮纵向力优化分配方法.清华大学报, 2009,49(5): 111-115
    65 Junya Yamakawa, Keiji Watanabe. A method of optimal wheel torque determination for independent wheel drive vehicles. Department of Mechanical Engineering, 2005: 239-8686
    66 Kiencke U, Nielsen L. Automotive Control Systems. SAE Book, 2000: 322
    67楮洪生,杜增吉,阎金华等. MATLAB 7.2优化设计实例指导教程.北京:机械工业出版社,2006: 59-187
    68黄平.最优化理论与方法.北京:清华大学出版社, 2009: 14-19
    69 Zhu Fu-Sheng, FEM Zhang, Wu Ze-FengJun. Analysis of tire's dynamic contact pressure during braking by 3-D Source. Journal of Northeastern University, 2007: 1652-1655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700