用户名: 密码: 验证码:
球轴承疲劳剩余寿命分析与预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球轴承作为滚动轴承中的重要一类,广泛应用于各类机械产品中。作为易损件,球轴承也是机械产品的主要故障源之一,没有预知的球轴承失效不仅影响维修策略的制定,而且可能造成灾难性事故。因此,有效地预测球轴承的疲劳剩余寿命有助于了解机械产品健康状态并制定优化的维修策略。传统的球轴承疲劳寿命预测方法多是基于概率统计的总体寿命预测方法,而基于过程数据的疲劳寿命预测方法虽然可用于个体球轴承疲劳剩余寿命的预测,但是该方法主要依赖于球轴承的状态信息,缺乏对失效机理的研究,使得现有模型在预测球轴承疲劳剩余寿命时的准确性和可信度存在不足。
     针对上述问题,本文在国家自然科学基金和部委级预研基金的资助下,以非线性动力学为基础研究球轴承缺陷生长机理,以改进的EMD方法作为球轴承性能退化特征量的提取手段,开展球轴承疲劳剩余寿命分析,并在缺陷微观失效模式检测分析的基础上,结合Paris疲劳剩余寿命预测理论,从失效机理出发研究个体球轴承的疲劳剩余寿命预测方法。论文主要研究内容如下:
     1.针对含有表面缺陷的球轴承复杂的非线性动力学关系,以滚珠为对象建立球轴承非线性动力学方程,引入用于描述轴承内外圈相对侧倾状态的伴随方程,完整描述个体球轴承的非线性动力学问题。在此基础上,通过引入分段函数和缺陷冲击函数,建立单表面缺陷球轴承非线性动力学方程,并得到相应的缺陷冲击计算公式,用解析的方法描述单表面缺陷球轴承的动力学特性,为提出疲劳剩余寿命预测方法提供理论支撑。
     2.为提高利用EMD方法提取球轴承性能退化特征量的准确性,针对EMD方法的端点效应和模态混淆等问题,分别采用镜像法和在模态混淆的IMFs中加入小幅均值为零的宽带白噪声后,再通过EMD进行分解的方法,解决端点效应和模态混淆的问题。在此基础上,结合EMD标准化过程,提出了改进的EMD方法,并用于提取球轴承性能退化特征量,利用灰色模型对球轴承性能退化特征量在疲劳剩余寿命预测中的应用进行了验证,结果表明:采用改进的EMD方法提取的性能退化特征量能有效地反映出球轴承的健康状态。
     3.依据缺陷微观失效模式,结合临界面法,提出了临界曲面的概念,将球轴承疲劳裂纹扩展问题从三维转化为二维进行分析,使得传统的Paris理论可用于预测球轴承的疲劳剩余寿命。在此基础上,将球轴承疲劳失效过程分为裂纹扩展和剥落点尺寸增大两部分,基于临界曲面的概念提出了改进的Paris球轴承疲劳剩余寿命预测模型,通过6205深沟球轴承试验数据验证了该模型的有效性。
     4.针对球轴承疲劳剩余寿命的在线预测问题,将振动信号数据分析与微观形貌检测相结合,提出球轴承疲劳剩余寿命在线预测模型。针对球轴承未出现异常信号时疲劳剩余寿命的预测问题,将历史疲劳寿命数据的统计特征量作为先验知识,以权重函数的方式引入预测模型中,实现对个体球轴承疲劳寿命和疲劳剩余寿命的在线预测,并通过试验验证了上述两种模型的有效性。
     总之,本文基于非线性动力学深入分析球轴承缺陷的生长机理,通过改进的EMD方法提取球轴承性能退化特征量,并给出了疲劳寿命与缺陷生长过程之间的关系。在此基础上,充分利用球轴承宏观统计寿命特征,结合Paris理论可预测个体球轴承疲劳剩余寿命的特点,提出球轴承疲劳剩余寿命预测模型,实现个体球轴承疲劳剩余寿命的在线预测,对有效实施设备健康管理、故障诊断与视情维修具有重要的意义。
As an important category of rolling element bearing, ball bearing is widely used in mechineries. But as a vulnerable part, ball bearing is one of the primary sources of mechinery failure. The failure without precognition not only baffles the establishment of maintenance policy, but also may bring about catastrophic accidents. So the residual fatigue life prediction of ball bearing is helpful in cognizing the health of mechanics and optimizing the maintenance policy of mechanical system. Most traditional methods of residual fatigue life prediction of ball bearings are probability-based prognosis techniques which only can estimate the overall life of ball bearings. However, methods of data-driven prognosis can predict the life of a single ball bearing, but these methods are mainly dependent on state signals not faults themselves. So the accuracy and reliability of existing models are not competent when these models are used to predict the residual fatigue life of ball bearing.
     In accordance with these problems, supported by the National Natural Science Foundation of China and the Ministerial-Level Pre-Research Fund, based on nonlinear dynamics of ball bearings as the basis of failure analysis, improved EMD method as the mean of fault feature extraction, the fatigue life of ball bearing is analyzed. Together with microscopy failure modes of faults, combined with the contributions of fatigue life prediction theory based on Paris, this paper is devoted to research the residual fatigue life prediction of single ball bearing in the origin of failure mechanism. The main contributions of this dissertation are summarized as follows:
     1. Aiming at complex relationships in nonlinear dynamics of ball bearing with defects, nonlinear dynamic equations of ball bearing are established on the basis of balls as the objects and the adjoint equation which is used to describe the lean of inner ring to the outer ring is inducted. Together they can describe the dynamic characteristics of the single ball bearing perfectly. Then subsection functions and the defect impulse function are inducted and nonlinear dynamic equations of ball bearing with a single surface defect are proposed on the basis of proposed nonlinear dynamic equations of ball bearing and the impact energy equations are enduced. Then nonlinear dynamic characteristics of ball bearing with a single surface defect can be described by analytical methods and it provides a theoretical basis for investigating fatigue failure mechanism in depth.
     2. In order to improve the accurance of performance degenerate values of ball bearings extracted by Empirical Mode Decomposition (EMD), aiming at problems of boundary effect and modal confusion of EMD, mirror method and adding a small broadband white noise with zero mean into Intrinsic Mode Functions (IMFs) with modal confusion and then decomposed by EMD again are used to solve these problems. On this basis, combining with the improved EMD standardization process, an improved EMD method to improve the accuracy of performance degenerate values of ball bearings is proposed. Finally, the improved EMD method is applied to extract the performance degenerate values of ball bearings, together with grey model, a residual fatigue life prediction model is proposed and is verified by historial data of 6205 deep groove ball bearing. Based on this, the application of performance degenerate values in residual fatigue life prediction is analyzed and it shows that the performance degenerate values extracted by improved EMD can describe the health of ball bearing.
     3. According to micro-morphology of fatigue spalling, based on critical plane, the concept of critical surface is presented, then the three-dimensional crack propagation of ball bearings is transformed into two-dimensional and this enables the traditional method can be applied in them. Based on this, the fatigue life of ball bearings is divided into two parts: fatigue crack growth and fatigue spalling propagation. Then a residual fatigue life prediction model of ball bearing is proposed based on improved Paris law and its efficiency is verified by historical lives of 6205 deep groove ball bearings.
     4. Aiming at residual fatigue life prediction of ball bearings on line, by combining data analysis of vibration signals with investigation of micro-morphology observation and analysis of fatigue spalling, the on-line prediction of residual fatigue life of ball bearing is proposed. Aiming at the life prediction in the phase before the appearance of detectable exceptional signals, history life data is treated as a prior knowledge and introduced into the proposed prediction model as a weighting function and then a prediction model which can predict the fatigue life and residual fatigue life of ball bearing on line is proposed. Then the validity of the model is verified by experimental data.
     In summary, this paper launched the study on defect growth mechanism based on nonlinear dynamics theory of fault ball bearings and fault feature extraction by the improved EMD method. Based on this, the relationship between fatigue life and defect growth process is investigated. On the basis of this, utilizing the macroscopical statistics of fatigue life evaluated by traditional fatigue life prediction, combining with the advantage of Paris law which can predict the residual fatigue life of the single ball bearing, a residual fatigue life prediction model is proposed. The model can be used to predict the residual fatigue life and fatigue life of the single ball bearing on line. This fills the blank of on-line prediction methods of the single ball bearing and it is helpful for health management, failure diagnosis and condition-based maintainance.
引文
[1] Liu C. Fault detection of rolling element bearings[D]. University of Washington, 2005.
    [2] Cheung M, Li W. Probabilistic Fatigue and Fracture Analysis of Steel Bridges[J]. Journal of Structural Safety. 2003, 23: 245-262.
    [3] Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division. Fatigue Reliability 1-4[J]. Journal of Structural Division. 1982: 3-88.
    [4] Carpinteri A. Handbook of Fatigue Crack Propagation in Metallic Structures[M]. Amsterdam: Elsevier, 1994.
    [5]刘泽九,贺士荃,李兴林.滚动轴承应用手册(第2版)[M].北京:机械工业出版社, 2006.
    [6] Harris T A, Kotzalas M N. Advanced Concepts of Bearing Technology(Rolling Bearing Analysis, 5th Edition)[M]. New York: Taylor & Francis, 2006.
    [7] Harris T A, Kotzalas M N. Essential Concepts of Bearing Technology(Rolling Bearing Analysis, 5th Edition)[M]. London New York: Taylor & Francis Group, 2006.
    [8]李兴林.滚动轴承疲劳寿命及可靠性强化试验技术现状及发展[J].轴承, 2007, 31(2): 1-6.
    [9] Harnoy A. Bearing Design in Machinery: Engineering Tribology and Lubrication[M]. Marcel Dekker, Inc, 2003.
    [10]冈本纯三.球轴承的设计计算[M].北京:机械工业出版社, 2003: 1-11.
    [11] Gere J M. Mechanics of Materials(5th Edition)[M]. Brooks/Cole Publishing Company, 2002.
    [12] Budynas R G. Advanced Strength and Applied Stress Analysis(Second Edition)[M]. McGraw-Hill, 2001.
    [13]万长森.滚动轴承的分析方法[M].北京:机械工业出版社, 1985: 45-50.
    [14] Sunnersjo C S. Varying compliance vibrations of rolling bearings[J]. Journal of Sound and Vibration. 1978, 58(3): 363-373.
    [15] Tiwari M, Gupta K, Prakash O. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor[J]. Journal of Sound and Vibration. 2000, 238(5): 723-756.
    [16] Perret-Liaudet J, Rigaud E. Experiments and Numerical Results on Non-linear Vibrations of an Impacting Hertzian Contact. Part 2: Random Excitation[J]. Journal of Sound and Vibration. 2002, 263(2003): 309-327.
    [17] Fulata S, Gad E H, Kondou T, et al. On the radial vibrations of ball bearings(computer simulation)[J]. Bulletin of the JSME. 1985, 28(1985): 899-904.
    [18] Harsha S P. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings[J]. Journal of Sound and Vibration. 2006, 290(2006): 65-100.
    [19] Harsha S P. Nonlinear dynamic analysis of rolling element bearings due to cage run-out and number of balls[J]. Journal of Sound and Vibration. 2006, 289(2006): 360-381.
    [20] Harsha S P. Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect[J]. Mechanism andMachine Theory. 2006, 41(2006): 688-706.
    [21] Harsha S P. Nonlinear dynamic analysis of an unbalanced rotor supported by roller bearing[J]. Chaos, Solitons & Fractals. 2005, 26(2005): 47-66.
    [22] Harsha S P. Non-linear dynamic response of a balanced rotor supported on rolling element bearings[J]. Mechanical Systems and Signal Processing. 2005, 19(2005): 551-578.
    [23] Harsha S P, Kankar P K. Stability analysis of a rotor bearing system due to surface waviness and number of balls[J]. International Journal of Mechanical Sciences. 2004, 46(2004): 1057-1081.
    [24] Harsha S P, Sandeep K, Prakash R. Nonlinear dynamic behaviors of rolling element bearings due to surface waviness[J]. Journal of Sound and Vibration. 2004, 272(2004): 557-580.
    [25] Tallian T E, Gustafsson O G. Progress in rolling bearing vibration research and control[J]. ASLE Transactions. 1965, 8(3): 195-207.
    [26] Farshid S, Behrooz J, Trevor S S, et al. A review of rolling contact fatigue[J]. ASME Journal of Tribology. 2009, 131: 1-15.
    [27] Akturk N. The effect of waviness on vibrations associated with ball bearings[J]. Transactions of the ASME—Journal of Tribology. 1999, 121(1999): 667-677.
    [28] Wardle F P. Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearings—part I: theory[J]. Proceedings of the Institution of Mechanical Engineers C—Journal of Mechanical Engineering Science. 1988, 202(C5): 305-312.
    [29] Lynagh N, Rahnejat H, Ebrahimi M, et al. Bearing induced vibration in precision high speed spindles[J]. International Journal of Machine Tool Design and Research. 2000, 40(2000): 561-577.
    [30] Mcfadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration. 1984, 96(1): 69-82.
    [31] Mcfadden P D, Smith J D. The vibration produced by multiple point defect in a rolling element bearing[J]. Journal of Sound and Vibration. 1985, 98(2): 263-273.
    [32] Zoladz T, Earhart E, Fiorucci T. Bearing defect signature analysis using advanced nonlinear signal analysis in a controlled environment[J]. NASA Technical Memorandum. 1995: 108491.
    [33] Tandon N, Choudhury A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect[J]. Journal of Sound and Vibration. 1997, 205(3): 275-292.
    [34] Sopanen J, Mikola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects—part 2: implementation and results[J]. Proceedings of the Institution of Mechanical Engineers K—Journal Multi-body Dynamics. 2003, 217(2003): 213-223.
    [35] Sopanen J, Mikola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects—part I:theory[J]. Proceedings of the Institution of Mechanical Engineers K—Journal of Multi-body Dynamics. 2003, 217(2003): 201-211.
    [36] Cao M, Xiao A. A comprehensive dynamic model of double-row spherical roller bearing—model development and case studies on surface defects, preloads, andradial clearance[J]. Mechanical Systems and Signal Processing. 2007, 22(2007): 467-489.
    [37] Rafsanjani A, Abbasion S, Farshidianfar A. Nonlinear dynamic modeling of surface defects in rolling element bearing systems[J]. Journal of Sound and Vibration. 2009, 319(2009): 1150-1174.
    [38] Bathe K J. Finite Element Procedures in Engineering Analysis[J]. Prentice-Hall, Englewood Cliffs, NJ. 1982.
    [39] Purushotham V, Narayanan S, Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition[J]. NDT&E International. 2005, 38(8): 654-664.
    [40] Ocak H, Choudhury K A. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data[J]. Mechanical Systems and Signal Processing. 2004, 18(2004): 515-533.
    [41] Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults[J]. Proceedings of the Institution of Mechanical Engineers C—Journal of Mechanical Engineering Science. 2001, 215(2001): 1065-1074.
    [42]任玥.基于Hilbert-Huang变换的滚动轴承智能诊断方法研究[D].成都:西南交通大学, 2007.
    [43] Gustantsson O G, Tallian T. Detection of damage in assembled rolling bearing[J]. Transactions of the ASLE. 1962, 5: 197-209.
    [44] Koizumi T, Kiso M, Taniguchi R. Preventive maintenance for roller and Journal bearings of introduction motor based on the diagnostic signature analysis[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design. 1986, 108(1): 26-31.
    [45] Wheeler T G. Bearing analysis equipment keeps down time[J]. Plant Engineering. 1968, 25: 87-89.
    [46] Dyer D, Stewart R M. Detection of rolling element bearing damage by statistical vibration analysis[J]. Journal of Mechanical Design. 1978, 100(4): 229-235.
    [47] Zheng G T, Wang W J. A new cepstral analysis procedure of recovering excitations for transient components of vibration signals and applications to rotating machinery condition monitoring[J]. Journal of Vibration and Acoustics. 2001, 123(2): 222-229.
    [48] Mcfadden P D, Smith J D. Vibration monitoring of rolling element bearings by the high frequency resonance technique—a review[J]. International Journal of Tribology. 1984, 17(1): 3-10.
    [49]汪世益,高波.轴承故障诊断的二次FFT分析法[J].振动、测试与诊断. 1998, 18(2): 125-128.
    [50] Gersch W, Bortherton T, Braun S. Nearest neighbor-time series analysis classification of faults in rotating machinery[J]. Journal of Vibration, Acoustics, Stress and Relability in Design. 1983, 105: 178-184.
    [51] Bailie D C, Mathew J. A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing. 1996, 10(1): 1-17.
    [52] Altmann J, Mathew J. Multiple band-pass autoregressive demodulation for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing. 2001, 15(5): 963-977.
    [53] Wang W J, Chen J, Wu X K. The application of some non-linear methods in rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing. 2001, 15(4): 697-705.
    [54] Logan D, Mathew J. Using the correlation dimension for vibration fault diagnosis of rolling element bearing—I: Basic concepts[J]. Mechanical Systems and Signal Processing. 1996, 10(3): 241-250.
    [55]吕志民,徐金梧,翟绪圣.分形维数及其在滚动轴承故障诊断中的应用[J].机械工程学报. 1999, 35(2): 88-91.
    [56] Mori K, Kasashima N, Yonhioka T. Prediction of spalling on a ball bearing by applying the discrete wavelet transform to vibration signals[J]. Wear. 1996, 195(1-2): 163-168.
    [57]傅勤毅,章易程,应力军, et al.滚动轴承故障特征的小波提取方法[J].机械工程学报. 2001, 37(2): 30-33.
    [58]张中民,卢文祥,杨叔子, et al.基于小波系数包络谱的滚动轴承故障诊断[J].振动工程学报. 1998, 11(1): 65-69.
    [59] Sheen Y T, Kung C K. Constructing a wavelet-based envelope function for vibration signal analysis[J]. Mechanical Systems and Signal Processing. 2004, 18(1): 119-126.
    [60]钟掘,卓志红,扬平, et al.包络-小波分析法用于滚动轴承故障诊断的研究[J].中国有色金属学报. 1996, 6(4): 163-165.
    [61]于德介,程军圣,杨宇. Hilbert-Huang变换在滚动轴承故障诊断中的应用[J].中国机械工程. 2003, 14(24): 2140-2142.
    [62]于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报. 2005, 41(1): 140-144.
    [63] Cheng J S, De Yu J, Yang Y. Research on the intrinsic mode function (IMF) criterion in EMD method[J]. Mechanical Systems and Signal Processing. 2006, 20(4): 817-824.
    [64] Norden E H, Zheng S, Steven R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. 1998.
    [65] Norden E H, Wu Z H, Steven R W. On Instantaneous Frequency[J]. Mechanical Signal System Processing. 2006: 1-40.
    [66] Palmgren A. Die Lebensdauer von Kugellargern[J]. Z Vereines duetsher Ing. 1924, 68(4): 339-341.
    [67] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics. 1945, 12(3): 159-164.
    [68] Weibull W. A statistical theory of the strength of materials[J]. IVA, Handlingar. 1939: 151.
    [69] Tallian T. Weibull distribution of rolling contact fatigue life and deviations there from[J]. ASLE Trans. 1962, 5(1).
    [70] Shimizu S, Sharma C S, Shirai T. Life prediction for linear rolling element bearing—a new approach to reliable life assessment[J]. ASME Journal of Tribology. 2002, 124(2002): 121-128.
    [71] Shimizu S, Shimoda H, Tosha K. Study on the life distribution and reliability of roller-based linear bearing[J]. STLE, Tribology Transactions. 2008, 51(2008): 446-453.
    [72] Lundberg G, Palmgren A. Dynamic Capacity of Rolling Bearings[J]. Acta Polytechnica. 1947, 3(7).
    [73] Lundberg G, Palmgren A. Dynamic capacity of roller bearings[J]. Acta Polytechnica Scandinavica—Mechanical Engineering Series. 1952, 2(4): 96-127.
    [74] Barnsby Chair R. Life ratings for modern rolling bearings—a design guide for the application of international standard ISO 281/2[M]. New York: ASME International and Co-published with STLE, 2003.
    [75] Iso281. Rolling bearings—dynamic load ratings and rating life, 2nd ed[S]. 281 R N I, 2007.
    [76]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社, 2000.
    [77]高镇同.疲劳应用统计学[M].北京:国防工业出版社, 1986.
    [78]谢里阳,王正.随机恒幅循环载荷疲劳可靠度异量纲干涉模型[J].机械工程学报. 2008, 44(1): 1-6.
    [79]熊峻江,刘文珽,高镇同.疲劳裂纹扩展速率实验数据的可靠性分析模型[J].强度与环境. 1997(4): 6-10.
    [80] Xiong J J, Wu Z, Gao Z T. The randomization method of deterministic equation for probability fracture mechanics[J]. Chinese Journal of Aeronautics. 1999, 12(3): 148-153.
    [81]熊峻江,武哲,高镇同.疲劳可靠性设计中的γ-p-Sa-Sm-N曲面理论与二维可靠性Miner公式[J].应用数学与力学. 1999, 20(7): 707-712.
    [82] Xiong J J, Wu Z, Gao Z T. Generalized fatigue constant life curve and two-dimensional probability distribution of fatigue limit[J]. Applied Mathematics and Mechanics. 2002, 23(10): 1188-1193.
    [83] Shimizu S. P-S-N curves model for rolling contact machine elements[C]. Nagasaki, III JAST: 2000.
    [84] Palmgren A. Om kullagrens barformaga och livslangd(on the carrying capacity and life of ball bearings)[J]. Teknisk Tidskrift, Mek 1936, h, 2, (in Swedish). Ball Bearing Journal. 1937, 3: 34-44.
    [85] Ioannides E, Harris T E. A new fatigue life model for rolling bearings[J]. ASME Journal of Tribology. 1985, 107(3): 367-378.
    [86] Zaretsky E V. A palmgren revisited - a basis for bearing life prediction[J]. STLE Journal of Lubrication Engineering. 1998: 18-24.
    [87] Zaretsky E V, Poplawski J V, Miller C R. Rolling bearing life prediction—past, present and future[C]. Nagasaki, I, JAST, Tokyo, Japan: 2000.
    [88] Zaretsky E V, Poplawski J V, Root L E. Reexamination of ball-race conformity effects on ball bearing life[J]. STLE, Tribology Transactions. 2007.
    [89] Sakai M. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[C]. 2007.
    [90] Yung-Li L, Jwo P, Hathaway R, et al. Fatigue testing and analysis(theory and practice)[M]. USA: Elsevier, 2005: 103-181.
    [91] Jsme S 002-1994/1981. Standard method of statistical fatigue testing[S]. Jsme, 1994.
    [92] Jsms-Sd-6-04. Standard evaluation method of fatigue reliability for metallic materials - standard regression method of S-N curves[S]. Committee On Fatigue Of Jsms, 2004.
    [93] Shimizu S. P-F-L/P-S-N curve approach using 3-parameter Weibull distribution for life and fatigue analysis of structural and rolling contact component[J]. STLE,Tribology Transactions. 2005, 48: 576-582.
    [94] Tosha K, Ueda D, Shimoda H, et al. A study on P-S-N curve for rotating bending fatigue test for bearing steel[J]. STLE, Tribology Transactions. 2008, 51(2): 166-172.
    [95] Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Trans. ASME, J. Basic. Eng. 1963(D85): 528-534.
    [96] Keer L M, Bryant M D. A pitting model for rolling contact fatigue[J]. ASME Journal of Lubrication Technology. 1983, 105: 198-205.
    [97] Tallian T E. Simplified contact fatigue life prediction model—Part I: review of published models[J]. ASME Journal of Tribology. 1992, 114: 207-213.
    [98] Tallian T E. Simplified contact fatigue life prediction model—Part II: New model[J]. ASME Journal of Tribology. 1992, 114: 214-222.
    [99] Li Y, Kurfess T R, Liang S Y. Stochastic prognostics for rolling element bearings[J]. Mechanical Systems and Signal Processing. 2000, 14: 747-762.
    [100] Li Y, Billington S, Zhang C, et al. Adaptive prognostics for rolling element bearing condition[J]. Mechanical Systems and Signal Processing. 1999, 13: 103-113.
    [101] Cheng W, Cheng H S, Mura T, et al. Micromechanics modeling of crack initiation under contact fatigue[J]. ASME Journal of Tribology. 1994, 116: 2-8.
    [102] Cheng W, Cheng H S. Semi-analytical modeling of crack initiation dominant contact fatigue for roller bearings[C]. Orlando, FL: 1995.
    [103] Vincent A, Lormand G, Lamagnere P, et al. From white etching areas formed around inclusions to crack nucleation in bearing steels under rolling contact[R]. Bearing Steels: Into the 21st Century, ASTM STP No.1327, J Hoo And W. Green eds., ASTM Special Technical Publication, West Conshohocken, PA: , 1998.
    [104] Lormand G, Meynaud G, Vincent A, et al. From cleanliness to rolling fatigue life of bearings—A new approach[R]. Bearing Steels: Into the 21st Century, ASTM STP No.1327, J Hoo And W. Green eds., ASTM Special Technical Publication, West Conshohocken, PA: , 1998.
    [105] Lormand G, Piot D, Vincent A, et al. Application of a new physically based model to determine the influence of inclusion population and loading conditions on distribution of bearing lives[C]. 2002.
    [106] Girodin D, Dudragne G, Courbon J, et al. Statistical analysis of nonmetallic inclusions for the estimation of rolling contact fatigue range and quality control of bearing steel[J]. Journal of ASTM International. 2006, 3: 1-16.
    [107] Zhou R S, Cheng H S, Mura T. Micropitting in rolling and sliding contact under mixed lubrication[J]. ASME Journal of Tribology. 1989, 111: 605-613.
    [108] Zhou R S. Surface topography and fatigue life of rolling contact bearings[J]. Tribology Transactions. 1993, 36: 329-340.
    [109] Xu G, Sadeghi F. Spall initiation and propagation due to debris denting[J]. Wear. 1996, 201: 106-116.
    [110] Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution[J]. International Journal of Fatigue. 2009, 31: 476-487.
    [111] Chen L, Chen Q, Shao E. Study on initiation and propagation angles of sub-surface cracks in GCr15 bearing steel under rolling contact[J]. Wear. 1989, 133: 205-218.
    [112] Chen Q, Shao E, Zhao D, et al. Measurement of the critical size of inclusionsinitiating contact fatigue cracks and its application in bearing steel[J]. Wear. 1991, 147: 285-294.
    [113] Yoshioka T. Detection of rolling contact subsurface fatigue cracks using acoustic emission technique[J]. Lubrication Engineering. 1993, 49: 303-308.
    [114]尚德广,王大康,李明,等.随机疲劳寿命预测的局部应力应变场强法[J].机械工程学报. 2002, 38(1): 67-70.
    [115]姚卫星,郭胜杰. LC4CS铝合金的超高周疲劳寿命分布[J].金属学报. 2007, 43(4): 399-403.
    [116] Shang D, Sun G, Deng J, et al. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach[J]. International Journal of Fatigue. 2007, 29: 2200-2207.
    [117]姚卫星.飞机结构疲劳寿命分析的一些特殊问题[J].南京航空航天大学学报. 2008, 40(4): 433-441.
    [118] Orsagh R F, Sheldon J, Klenke C J. Prognostics/diagnostics for gas turbine engine bearings[C]. 2003.
    [119] Orsagh R, Roemer M, Sheldon J. A comprehensive prognostics approach for predicting gas turbine engine bearing life[C]. New Orleans,LO: 2004.
    [120] Kacprzynski G J, Sarlashkar A, Roemer M J, et al. Predicting remaining life by fusing the physics of failure modeling with diagnostics[J]. JOM Journal of the Minerals, Metals and Materials Society. 2004, 56: 29-35.
    [121] Marble S, Morton B P. Predicting the remaining life of propulsion system bearings[C]. 2006.
    [122] Qiu J, Set B B, Liang S Y, et al. Damage mechanics approach for bearing lifetime prognostics[J]. Mechanical Systems and Signal Processing. 2002, 16: 817-829.
    [123] Yang J P, Chen S X. Vibration predictions and verifications of disk drive spindle system with ball bearings[J]. Computers & Structures. 2002, 20(2002): 1409-1418.
    [124] Rodrigues D J, Champneys A R, Friswell M I, et al. Automatic two-plance balancing for rigid rotors[J]. International Journal of Non-Linear Mechanics. 2008, 43(2008): 527-541.
    [125] Liu Y, Stratman B, Mahadevan S. Fatigue crack initiation life prediction of railroad wheels[J]. International Journal of Fatigue. 2006, 28: 747-756.
    [126] Liu Y, Mahadevan S. A unified multiaxial fatigue damage model for isotropic and anisotropic materials[J]. International Journal of Fatigue. 2007, 29: 347-359.
    [127]郭德勇,范金志,马世志, et al.煤与瓦斯突出预测层次分析-模糊综合评判方法[J].北京科技大学学报. 2007, 29(7): 660-664.
    [128]秦俊奇,曹立军,王兴贵,等.基于动态模糊综合评判的故障预测方法[J].计算机工程. 2005, 31(12): 172-174.
    [129]曹立军,秦俊奇,武彩岗,等.一种基于动态模糊综合评判的故障预测新方法[J].模糊系统与数学. 2005, 19(3): 151-156.
    [130] Zhang X, Xu R, Kwan C, et al. An integrated approach to bearing fault diagnostics and prognostics[C]. Portland, OR, USA: 2005.
    [131] Yang W Q, Qian M P. Detection of Exons with Deletions and Insertions by Hidden Markov Models[J]. Prog. Biochem. Biophys. 2002, 29(1): 56-59.
    [132] Dong M, He D. A segmental hidden semi-Markov model(HSMM)-based diagnostics and prognostics framework and methodology[J]. Mechanical Systems and Signal Processing. 2007, 21: 2248-2266.
    [133]曾庆虎.机械动力传动系统关键部件故障预测技术研究[D].长沙:国防科学技术大学, 2010.
    [134] Orchard M, Wu B, Vachtsevanos G. A particle filter framework for failure prognosis[C]. Washington, DC: 2005.
    [135]张磊,李行善,于劲松,等.一种基于二元估计与粒子滤波的故障预测方法[J].北京航空航天大学学报. 2008, 34(7): 798-802.
    [136]张磊,李行善,于劲松,等.基于混合系统粒子滤波和二元估计的故障预测算法[J].宇航学报. 2009, 30(7): 1277-1283.
    [137] Batko W. Prediction method in technical diagnostics[D]. Cracov Mining Academy, 1984.
    [138] Kazmierczak K. Application of autoregressive prognostic techniques in diagnostics[C]. Tuczno, Poland: 1983.
    [139]陈仲生,杨拥民,胡政,等.基于几乎周期时变AR模型的故障早期预报[J].机械工程学报. 2005, 41(1): 184-188.
    [140]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社, 2002.
    [141] Chen P Y, Jou J M. Adaptive arithmetic coding using fuzzy reasoning and grey prediction[J]. Fuzzy Sets and Systems. 2000, 114(2000): 239-254.
    [142]王旭亮,聂宏.基于灰色系统GM(1,1)模型的疲劳寿命预测方法[J].南京航空航天大学学报. 2008, 40(6).
    [143]江龙平,徐可君.疲劳裂纹三维动态扩展灰色系统预测[J].机械工程学报. 2006, 42(1): 86-89.
    [144] Zhang L B, Wang Z H, Zhao S X. Short-term fault prediction of mechanical rotating parts on the basis of fuzzy-grey optimising method[J]. Mechanical Systems and Signal Processing. 2007, 21(2007): 856-865.
    [145] Setiono R, Leow W K, Thong J Y L. Opening the neural network black box: An algorithm for extracting rules from function approximating artificial neural networks[C]. Brisbane, Australia: 2000.
    [146] Tickle A B, Andrews R, Golea M, et al. The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks[J]. IEEE Transactions on Neural Networks. 1998, 9: 1057-1068.
    [147] Lee J. A systematic approach for developing and deploying advanced prognostics technologies and tools: methodology and applications[C]. Harrogate, UK: 2007.
    [148] Tse P, Atherton D. Prediction of machine deterioration using vibration based fault trends and recurrent neural networks[J]. Transactions of the ASME: Journal of Vibration and Acoustics. 1999, 121: 355-362.
    [149] Joshi R, Reeves C. Beyond the Cox model: artifical neural networks for survival analysis part II[C]. 2006.
    [150] Bostwichk D G, Burke H B. Prediction of individual patient outcome in cancer[J]. Cancer Supplement. 2001, 91: 1643-1646.
    [151] Yam R C M, Tse P W, Li L, et al. Intelligent predictive decision support system for CBM[J]. The International Journal of Advanced Manufacturing Manufacturing. 2001, 15: 349-365.
    [152] Wang P, Vachtsevanos G. Fault prognostics using dynamic wavelet neural networks[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing. 2001, 15: 349-365.
    [153] Shao Y, Nezu K. Prognosis of remaining bearing life using neural networks[C]. 2000.
    [154] Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: A neural network approach[J]. IEEE Transactions on Industrial Electronics. 2004, 51: 694-700.
    [155] Huang R, Xi L, Li X, et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J]. Mechanical Systems and Signal Processing. 2007, 21: 193-207.
    [156]奚立峰,黄润青,李兴林,等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报. 2007, 43(10): 137-143.
    [157]张学工.关于统计学习理论与支持向量机[J].自动化学报. 2000, 26(1): 32-42.
    [158]马笑潇,黄席樾,柴毅.基于支持向量机的故障过程趋势预测研究[J].系统仿真学报. 2002, 14(11): 1548-1551.
    [159]徐晓燕,张斌.一种集成logistic回归与支持向量机的判别分析规则[J].系统工程理论与实践. 2007(4): 41-46.
    [160] Zhang S, Ma L, Sun Y, et al. Asset health reliability estimation based on condition data[C]. Harrogate, UK: 2007.
    [161] Xiang Z H, Deyun X I. Fault Diagnosis of Nonlinear Systems Using Multistep Prediction of Time Series Based on Neural Network[J]. CONTROL THEORY AND APPLICATIONS. 2000, 17(6): 803-808.
    [162] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995: 187.
    [163] Farmer J D, Sidorowich J J. Predicting Chaotic Dynamics, Dynamic Patterns in Complex Systems[M]. Singapore: World Scientific, 1998: 265-292.
    [164] Singh S. Noise Impact on Time-series Forecasting Using an Intelligent Pattern Matching Technique[J]. Pattern Recognition. 1999, 32: 1389-1398.
    [165] Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing. 2005, 19(2005): 259-270.
    [166]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社, 2006.
    [167]于德介,程军圣,杨宇. Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报. 2005, 41(6): 102-107.
    [168]于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报. 2004, 17(3): 332-335.
    [169]于德介,张嵬,程军圣,等.基于EMD的时频熵在齿轮故障诊断中的应用[J].振动与冲击. 2005, 24(5): 26-29.
    [170]钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报. 2002, 15(2): 233-238.
    [171]钟佑明,秦树人,汤宝平. Hilbert-Huang变换中的理论研究[J].振动与冲击. 2002, 21(4): 13-17.
    [172]沈国际.振动信号处理技术在直升机齿轮箱故障诊断中的应用[D].长沙:国防科技大学, 2005.
    [173]沈国际,陶利民,陈仲生.多频信号经验模态分解的理论研究及应用[J].振动工程学报. 2005, 18(1): 91-94.
    [174]沈国际,陶利民,陈仲生.减速器振动信号的经验模态分解[J].航空学报.2005, 26(1): 62-65.
    [175]于德介,程军圣,杨宇. Hilbert能量谱及其在齿轮故障诊断中的应用[J].湖南大学学报. 2003, 30(4): 47-50.
    [176]张郁山.希尔伯特-黄变换与地震的希尔伯特谱——方法与应用研究[D].北京:中国地震局地球物理研究所, 2003.
    [177] Deng Y J, Wang W. Boundary processing technique in EMD method and Hilbert transform[J]. Chinese Science Bullentin. 2001, 146(11): 257-263.
    [178]张郁山,梁建文,胡肇贤.应用自回归模型处理EMD方法中的边界问题[J].自然科学进展. 2003, 13(10): 1054-1059.
    [179] Gabriel R, Patrick F, Paulo G. On empirical mode decomposition and its algorithms[J]. International Journal of Nonlinear Mechanics. 2003: 903-955.
    [180]黄大吉,赵进平,苏纪兰.希尔伯特-黄变换的端点延拓[J].海洋学报. 2003, 25(1): 1-10.
    [181]龙思胜,张铁宝,龙峰.希尔伯特-黄变换中拟合过冲和端点飞翼的原因及解决方法[J].地震学报. 2005, 25(9): 561-568.
    [182]高强,杜小山,范虹.滚动轴承故障的EMD诊断方法研究[J].振动工程学报. 2007, 20(1): 15-18.
    [183] Xu D, Xu Y C, Chen X, et al. Life Cycle Vibration Analysis Based on EMD of Rolling Element Bearing under ALT by Constant Stress[C]. Chengdu,China: IEEE 8th International Conference on Reliability, Maintainability and Safety, 2009.
    [184]王自强,陈少华.高等断裂力学[M].北京:科学出版社, 2009.
    [185] Foreman R C, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic load structure[J]. Journal of Basic Engineering. 1967, 89: 454-464.
    [186] Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-Tt aluminum[C]. 1970.
    [187] Wheeler O E. Spectrum loading and crack growth[J]. Journal of Basic Engineering. 1972, D94: 181-186.
    [188] Willenborg J, Engle R M, Wood H A. A crack growth retardation model using and effective stress concept[R]. , 1971.
    [189]张行,崔德渝,孟庆春,等.断裂与损伤力学[M].北京:北京航空航天大学出版社, 2009.
    [190] Anderson T L. Fracture mechanics: fundamentals and applications[M]. Boca Raton: CRC Press, 1995.
    [191] Lankford J, Hudak S J. Relevance of the small crack problem to lifetime prediction in gas turbines[J]. International Journal of Fatigue. 1987, 9(2): 87-93.
    [192] Kaynak C, Ankara A, Baker T J. A comparison of short and long fatigue crack growth in steel[J]. International Journal of Fatigue. 1996, 18(1): 17-23.
    [193] Donnelly E, Nelson D. A study of small crack growth in aluminum alloy 7075-T6[J]. International Journal of Fatigue. 2002, 24(11): 1175-1189.
    [194] Potirniche G P, Daniewicz S R. Finite element modeling of microstructurally small cracks using single crystal plasticity[J]. International Journal of Fatigue. 2003, 25(9-11): 877-884.
    [195] Xue Y. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy[J]. International Journal of Fatigue. 2007, 29(4): 666-676.
    [196] Merati A, Eastaugh G. Determination of fatigue related discontinuity state of 7000series of aerospace aluminum alloys[J]. Engeering Failure Analysis. 2007, 14(4): 673-685.
    [197] Newman J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory[J]. International Journal of Fatigue. 1999, 21(2): 109-119.
    [198] Park J S. A microstructural model for prediction high cycle fatigue life of steels[J]. International Journal of Fatigue. 2005, 27(9): 1115-1123.
    [199] Kitagawa H, Takahashi S. Applicability of fracture mechanics tovary small cracks or cracks in early stage[C]. USA: 1976.
    [200] Ei Haddad M H, Topper T H, Smith K N. Prediction of nonpropagating cracks[J]. Engineering Fracture Mechanics. 1979, 11: 573-584.
    [201] Fawaz S A. Equivalent initial flaw size testing and analysis[M]. 2000.
    [202] Cross R, Makeev A, Armanios E. Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters[J]. International Journal of Fatigue. 2007, 29(8): 1510-1515.
    [203] Makeev A, Nikishkov Y, Armanios E. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models[J]. International Journal of Fatigue. 2007, 29(1): 141-145.
    [204] Maymon G. Probabilistic crack growth behavior of aluminum 2024-T351 alloy using the 'Unified' approach[J]. International Journal of Fatigue. 2005, 27(7): 828-834.
    [205] Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress and strain conditions[C]. 1973.
    [206] Lohr R D, Ellision G D. A simple theory for low cycle multiaxial fatigue[J]. Fatigue Fracture Engineering Material Structure. 1980, 3: 1-17.
    [207] Fatemi A, Socie D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue Engineering Material Structure. 1988, 11(3): 149-165.
    [208] Chahardehi A, Brennan F P, Han S K. Surface crack shape evolution modelling using an RMS SIF approach[J]. International Journal of Fatigue. 2010, 32(2010): 297-301.
    [209] Li W, Sakai T, Li Q, et al. Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel[J]. International Journal of Fatigue. 2010, 32(2010): 1096-1107.
    [210] Bearing Data Center: Seeded Fault Test Data[Z]. http://www.eecs.case.edu/laboratory/bearing/, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700