用户名: 密码: 验证码:
油气管线光纤反射与散射结合的新型传感检测系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气工业自动化、信息化的发展,在石油工业输油气管线的管道在线检测和无损安全监控领域,分布式光纤传感技术以其抗电磁干扰、耐腐蚀、长期稳定并且抗高辐射特性的优势引起了人们极大关注。
     本文对准分布式光纤Bragg光栅温度、压力传感和分布式光纤瑞利背向散射传感进行了系统研究后,研究设计了一种适用于输油气管线的基于光纤反射和散射结合的全光纤新型传感检测网络,论文分别从理论和实验深入研究了全分布式光纤传感系统,主要内容如下:
     首先,分析了分布式和准分布式光纤传感发展现状及应用,研究了光纤光栅传感检测的基本原理和特性,在此基础上建立并优化了光纤光栅温度应变传感的理论模型。
     其次,重点对光纤光栅压力传感、温度传感和双参量同时区分传感进行了实验研究,并创新性研制出五种新颖的传感器结构。实验结果表明:光纤光栅温度压力传感有很好的线性度,重复性和无迟滞,可适用于输油气管线温度、压力检测。并在此基础上提出了一种单光纤光栅温度压强同时区分测量传感器的结构及封装模型。
     然后,分析了基于光纤瑞利背向散射光时域分析的原理和关键技术,研制了一种AD(150Mbps,12位)、RAM和FPGA三种高速可编程微控制器的有机组合的分布式光纤传感系统,设计了多功能数字化解调系统的硬件和软件,有效地提高了系统的解调和数据处理速度。
     最后,采用波分复用技术,拟定了基于光纤光栅和光纤的大动态范围、高灵敏度的分布式全光纤系统方案,该方案适用于长距离输油气管线的安全监控,并提出了进一步完善整个系统的方向。
With the automation and information development of oil and gas industry, distributedoptical fiber sensing technology aroused great concern in the non-destructive oil and gaspipeline safety monitoring tests due to its merit, such as anti-electromagnetic interference,corrosion resistance, long-term stability and resistance to high radiation.
     Based on systematically study of Fiber Bragg grating temperature, pressure sensing anddistributed fiber Rayleigh backscattering sensing, we proposed all fiber-optic pipelinedetection networks. This paper studied theoretically and experimentally in-depthly the fullydistributed fiber optic sensing system, the major elements are as follows:
     First of all, the development and application status of distributed and quasi-distributedoptical fiber sensing and their applications were summarized, the basic transmission principlesand characteristics in optical fiber and fiber grating were analyzed in-depthly, and FBGtemperature and strain sensing principle model was established.
     Second, fiber grating pressure sensor, temperature sensor and two-parametersimultaneous measurement techniques were studied,and five new innovative sensing devicewere developed. The results show that: fiber grating sensor devices have good temperature andpressure response linearity and repeatability, no significant hysteresis, applicable to pipelinetemperature and pressure testing. And on this basis,the theoretical model of a single fiberBragg grating simultaneous measurement of temperature and pressure was proposed.
     Then, the principles and key technologies of optical time domain based on fiber Rayleighbackscattering were analyzed; the new innovative optical time domain analysis based on threetypes of high-speed programmable micro-controller system of AD chips(150Mbps), RAM andFPGA was developed for the development of today's optical time domain analysis.Multi-function Digital demodulation hardware and software were designed, which effectivelyimprove the system of demodulation and data processing speed.
     Finally, high dynamic range and high sensitivity of all-fiber distributed system solutionswere developed by using WDM technology, which is suitable for long-distance oil and gaspipeline transportation safety monitoring. Further improve of system and the directions offuture work were proposed.
引文
[1][美]D.马库塞著杜柏林等译“光纤测量原理”,人民邮电出版社,1986.
    [2] Jiang Yi,Li Jianshu,Chen Weiminetal.Fiber optic Bragg gratingsensors[J].Piezoelectrics&Acoustooptics,1995,17(2):9~13.
    [3]姜德生,何伟,光纤光栅传感器的应用概况,光电子·激光,2002,l3(4):420~430.
    [4] P. Moyoa, J.M.W.Brownjohn, R. Sureshc, et al.. Development of fiber Bragg gratingsensors for monitoring civil infrastructure Engineering Structures.2005,27, pp.1828–1834.
    [5]周智.土木工程结构光纤光栅智能传感元件及其监测系统.【学位论文】.哈尔滨:哈尔滨工业大学,2003
    [6]文海家,张永兴,柳源.滑坡预报国内外研究动态及发展趋势.中国地质灾害与防治学报,2004,15(1):1--4
    [7] M.K.Barnoski,S.M.Jensen,Fiber waveguides:A novel technique for investigatingattenuation characteristics,Appl.Opt,vo1.15,no.9,pp.2112-2115,1976.
    [8] B.Culshaw J.Dakin.光纤传感器[J].2004,25(3):9-11.
    [9] Dragon A,Mroz Z.A continuum model for plastic brittle behavior of rock andconcrete.Int.J.Eng.Sci.,1979,17,121-137
    [10] Erlandsen, Siqurd. Vold, Gisle. Markin, G.D. World’s first multiple fiber-opticintelligent well [J]. World Oil,2003.10(1):29~32.
    [11]王惠文,江先进,赵长明等,光纤传感技术与应用,北京:国防工业出版社,2001,10-30.
    [12] Hui Li and Jinping Ou. Full implementations of structural health monitoringsystems for long-span bridges and large-span domes. Proc. SPIE,2006, Vol.6176, pp.61761B1-10.
    [13] Jose Miguel López-Higuera, César Jáuregui Misas, Antonio Quintela Incera, et al.,Fiber optic civil structure monitoring system. Opt. Eng., Vol.44, pp.044401-1-10,2005.
    [14] S. Sumitro, Y. Matsui, M. Kono, T. Okamoto, et al.. Long span bridge healthmonitoring system in Japan. Proc. SPIE Vol.4337pp.517-524,2001.
    [15] S.M. Melle, K. Liu, and R. M. Measures. A passive wavelength demodulationsystem for guided-wave Bragg grating sensors. IEEE Photon. Technol. Lett.1992,4(5), pp.517–518.
    [16] S. E. Watkins. Smart bridges with fiber-optic sensors. IEEE Instrum. Meas. Mag.,2003,6(2), pp.25-30.
    [17] D.Deriekso,“Fiber Optic Test and Measuerment”,Prentice Hall PTR(1998).
    [18] A.Whilshier,“digital time domain falut analysis teehniques”,in Proc.Int.Con.f onMeasuerments for elecommunication Transmission Systems1985,p70-73.
    [19]李川,张以谟,丁永奎,光纤智能结构的传感研究,飞通光电子技术,2001,1(4):193-197.
    [20] S.D.Personik,Photon probe-an optical-fiber time-domain reflectpmeter,Bell syst.Tech.J,vo1.56,no.3,pp.355-3661977.
    [21] E.Brinkmeyer,Backscattering in single-mode fibers, Electron. Lett, vo1.16, no.9,pp.329-330,1980.
    [22] A.H.Hartog,M.P.Gold,On the theory of backscattering in single-mode opticalfiber,J.Light Wave Techonl,vo1.LT-2,pp.76-82,1984.
    [23] Peter Healey Reviewof long wavelength single-mode Optical fiber reflectometry thetehniques,LightwaveTechnol,vol.LT-3,no.4,PP.876-886,1985.
    [24]王亚庆,张健.紫外写入光纤光栅的进展[J].吉林大学学报,1996,1(1):69~72.
    [25]陈根祥,葛璜.光纤的光敏性及光纤光栅紫外写入技术[J].电子学报,1997,25(8):73~77.
    [26]孙圣和,王廷云,徐颖.光纤测量与传感技术.黑龙江:哈尔滨工业大学出版社,2000
    [27] Limberger HG.Photosensitivity and Self-Organization in Optical Fibers andWaveguides.Proc SPIE,1993,2044:272
    [28] D.P.Hand,P.Russell.Photoinduced refractive-index changes in germanosilicate opticalfibers. Opt.Lett,1990,15(2):102~104
    [29] Gordier P,Doukhan J C,Ferterin E,etal.TEM characterization of structure changes inglass associated to Bragg grating inscription in germanosilicate optical fiberperform.Opt.Commun,1994,111(3/4):269~275
    [30] Niay P,Bermage P,Legoubin S,etal.Behavior of spectral transmission of Bragg gratingwritten in Germania-doped fibers: writing and erasing experiment using pulsed of CWUV exposure.Opt. Commun,1994,113(1/3):176~192
    [31] Attard A E.Fermi level shift in Bil2SiO20vis photon-induced trap leveloccupation.Journal of Applied Physics,1992,71:933~937
    [32] Payne F P.Photorefractive gratings in single-mode optical fibres. Electron.Letters,1989,25:498~499
    [33] Fermann M E.Characterisation techniques for special optical fibres.Ph.D.Dissertation,University of Southampton,United Kingdom,1988
    [34] Bagratashvili V N etal. Direct observation of ultraviolet laster induced photocurrent inoxygen deficient silica and germanosilicate glasses. Applied Physics Letters,1996,68:1616~1618
    [35] D.Wong,S.B.Poole,M.G.Sceats. Stress-birefringence reduction in elliptical-core fibersunder ultraviolet irradiation. Opt. Lett,1992,17(22):1773~1775
    [36] P.Y.Fonjallaz. Tension increase correlated to refractive-index change in fiberscontaining UV-written Bragg gratings. Opt. Lett,1995,20(17):1346~1348
    [37] R.M.Atkins,V.Mizrahi.Observations of changes in UV absorption bands of single modegermanosilicate core optical fibers on writing and thermally erasing refractive indexgratings. Electron.Lett,1992,28(20):1743~1744
    [38] C.Fiori,R.A.B.Devine. Evidence for a wide coinuum of polymorphs in a-Si02. PhysicalReview B,1986,33(17):2972~2974
    [39] C.Fiori, R.A.B.Devine.Ultraviolet irradiation induced compaction andphotoetching in amorphous thermal SiO2. Materials research society symposiumProceedings,1986,Vo1.61:187~195
    [40] M.Douay. Densification involved in the UV-based photosensitivity of silica glasses andoptical fibers[J].lightwave Technol,1997,15(7):1329~1342
    [41] B.Poumellec,P.Niay.The UV-induced refractive index grating in Ge:SiO2performs:additional CW.Experiments and the microscoptic origin of the change inindex.J.Appl.Phys,1996,29(8):1842~1856
    [42] E.M.Dianov. UV-irradiation induced structural transformation of germanosilicate glassfiber.Opt. Letter,1997,22(20):1754~1756
    [43] Riant, F.Haller.Study of the photosensitivity at193nm and comparison withphotosensitivity at240nm influence of fiber tension:type ⅡA aginging. IEEE Journal ofLightwave Tech.,1997.15(8):1464~1469
    [44] J.-L.Archambault,L.Reekie,P.St.J.Russell.100%reflectivity Bragg reflectors producedin optical fibres by single excimer laser pulse,Electron.Lett,1993,29(5):453~455
    [45] W.X.Xie, P.Niay, P.Bernage, M.Douay, etal. M.Monerie and B.Poumellec.Experimental evidence of two types of photorefractive effects occurring duringphotoinscriptions of Bragg gratings written within germanosilicate fiber. OpticsCommunications,1993,104:185~195
    [46] K.O.Hill. Photosensitivity in optical fibres Annu. Rev.mater.SCI,1993,23,125~157
    [47] GMeltz,M.M.Morey,W.H.Glenn.Formation of Bragg grating in optical fibers by atransverse holographic method[J]. opt.lett,1989,14(15):823~825
    [48] B.Malo,K.O.Hill,F.Bilodeau,etal. Point-by-Point Fabrication of Micro-Bragg Gratingsin Photosensitive Fiber Using Single Excimer Pulse Refractive Index ModificationTechniques. Electronics Letters,1993,29(18):1668~1669
    [49]饶云江,王义平,朱涛.光纤光栅原理及应用[M].科学出版社,2006,60~61
    [50]赵云辉.麦克斯韦方程组和电磁波方程微分形式的推导[J].邵阳师范高等专科学校学报,2002,24(2):92~95
    [51]廖延彪.光纤光学,北京:清华大学出版社,2000,198~204
    [52]廖帮全,赵启大,冯德军等.光纤耦合模理论及其在光纤布拉格光栅上的应用[J].光学学报,2002,22(11):1340~1344
    [52]贾宏志.光纤光栅传感器的理论和技术研究[D].西安:中国科学院西安光学精密机械研究所,2000.8:15~40
    [54] Ferreira, L.A. Araujo, Francisco M. et al. Simultaneous measurement of strain andtemperature using interferometrically interrogated fiber Bragg grating sensors [J]. OptEng,2000.39(8):2226~2234.
    [55]肖熙,周晓军.光纤光栅传感器温度和应变交叉敏感的研究现状[J].红外,2008.29(3):7~10.
    [56]刘云启,郭转运,刘志国等.光纤光栅传感测量中的交叉敏感机制及其解决方案[J].光电子激光,1999.10(2):179~182.
    [57]王宏亮,乔学光,周红等.压力与温度双参量传感优化系统的研制[J].光学学报,2005.25(7):875~880.
    [58]李丰丽,钟金钢,张永林.双FBG位移测量系统[J].传感器技术.2003.22(10):60~61.
    [59]廖帮全,冯德军等.光纤布拉格光栅电流传感的理论与实验研究[J].光学学报,2002.22(9):1092~1094.
    [60]信思金,柴伟.光纤Bragg光栅温度传感器封装方法研究[J].传感器技术,2004.23(4):10~12.
    [61] Xu, M.G. Geiger, H. Dakin, J.P. Fibre grating pressure sensor with enhanced sensitivityusing a glass-bubble housing [J]. Electronics Letters.1996.32(2):128~129.
    [62]戴锋,黄国君.一种布拉格光纤光栅加速度传感器[J].激光杂志,2005.26(1):26~27.
    [63]樊尚春.传感器技术及应用[M].北京航空航天大学出版社.2004.8:88~112.
    [64]郭子学,闫卫平等.光纤Bragg光栅温度补偿方法的研究[J].光电子技术,2006.26(1):48~52.
    [65]李科杰,吴三灵,安钢等.新编传感器技术手册[M].北京:国防工业出版社,2002,1:149
    [66]尉婷,乔学光等人,基于偶联剂技术的光纤光栅压力传感实验研究,光子学报,2006,35(8):1199~1202
    [67]刘鸿文.材料力学[M].北京:高等教育出版社,1998.33~35
    [68]尉婷,乔学光,贾振安等人。改善波形并增敏的光纤光栅温度传感技术,光子学报,2005,34(8):1209~1212
    [69]杜卫冲,谭华耀,戴务勤等.一种简单的增强光纤Bragg光栅温度灵敏度的方法.中国激光,1997,24(1):75~77
    [70]尉婷,乔学光等人。基于反射谱带宽展宽的FBG温度补偿压强传感,光电子·激光,2007,18(4):418~421
    [71] Xue Guofu, Liu Ruifu, Tian Dachao et al. Coulometric Electromotive EngineeringManual.[M]. Bei Jing: Mechanical engineering Press(机械工业出版社).1987,293~296(in Chinese)
    [72] Zhang W G,Kai G Y,Dong X Y.ACTA OPTICA SINICA,2003,23(Supplement):849~850
    [73] Chang Y J,Wang L K,Liu W F,etal.Temperature insensitive linear strain measurementusing two fiber Bragg gratings in a power detection scheme.Opt Commun,2001,197:327~330
    [74] V V Spirin,M G Shlyagin,S V Miridonov,et al.Temperature-insensitive strainmeasurement using different double Bragg grating technique[J].Optics&LaserTechnique,2001,33:43~46
    [75]万里冰,王殿富.基于参考光栅的光纤光栅应变传感器温度补偿[J].光电子激光,2006,17(1):50-53
    [76]彭保进,赵勇,万旭等.具有温度补偿的光纤光栅压力传感器.清华大学学报,2006,46(4):484~487
    [77]王洪亮,乔学光,尉婷等人.双光纤光栅双参量传感系统优化设计与研究,仪器仪表学报,2006,27(5):536~540
    [78]尉婷,乔学光,贾振安等.单光纤光栅实现位移、温度同时区分测量,传感技术学报,2005,18(2):358~362
    [79] Xu M G,Reekie L,Chow Y T,Dakin J P,Optical in-fiber grating high pressure sensor.Electron Lett,1993,29(4:398~399)
    [80]童峥嵘,黄勇林,蒙红云等。一种新颖的光纤光栅位移传感的研究。传感技术学报,2002,(1:10~13)。
    [81] Okada,“Baekscattering measuerment”,JARECT Optical Devices&Fibres,1982.
    [82] P.Healy and D.J.Malyon,“OTDR in single-mode fibre at1.55um using heetrodynedetection”,Eleerton.Lett.vol18p862-863,1982.
    [83]张晓洲.OTDR-光纤线路施工与维护的必备工具.电信网技术,2004,(9):69
    [84] Yoshito Ueno and Motoh shimizu,“Optical fibre fault location method”,Apple.Opt.vol15,p1385-1388,1986.
    [85]金盏恒,“基于分布式光纤传感技术的钢筋栓”,江苏大学硕士学位论文.
    [86] PHealey“Insturmentation Principle for Time Domain Reflectomntry”,J.Phys.E:seieniifieInsturm.,vol.19,pp.334-341,1986.
    [87][美]D.马库塞著杜伯林于耀明译“光纤测量原理”,人民邮电出版社,p57,1986.
    [88] M.Nazarathy,S.A.Newton,Complementary correlation OTDR with threecodewords,Electron.Lett,vol.26,no.1,pp.70-71,1990.
    [89]马正先,熊建文.OTDR在光纤测量中的应用.激光杂志vol20,NO.21-71999.
    [90]陈佳圭著,“微弱信号检测”,中央广播电视大学出版社,P152-163,1987
    [91] Wavetek. Guide to Fiber Optic Measurements.Wavetek Saint-Etienne,1997.3-1~4-5.
    [92]张新慧,彭丽芳等.利用重复采样技术提高OTDR中ADC量化精度[J].山东工程学院学报,2002,16(4),34-37.
    [93]胡广书,数字信号处理清华大学出版社,2003
    [94] Sanjit K.Mitra Digital Signal Processing.清华大学出版社2004,7
    [95]陆光华,张林让,谢智波。数字信号处理西安电子科技大学出版社2005,10
    [96]张洪渊,“FTTH发展及能够用展望”,2005中国光电产业高层论坛·论文集,p36o-p361,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700