用户名: 密码: 验证码:
重水淹稠油油藏蒸汽驱可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锦45块已进入吞吐开发后期,目前地层压力仅为2.91MPa,重水淹区单井平均日产油仅为1.0t/d,含水92.8%,回采水率高达200%,采油速度0.51%,可采储量采出程度达92.6%。重水淹区剩余油难以依靠蒸汽吞吐方式继续挖潜,转换开发方式迫在眉睫。重水淹区转蒸汽驱开发存在较大技术风险,推动边底水油藏蒸汽驱开发仍存在一定困难,需深入认识边水在油层的侵入特征,掌握边水入侵控制要素,合理有效规避汽驱开发风险,以确定水淹层蒸汽驱是否可行。
     本文首先进行重水淹区蒸汽驱数值模拟,再进行水侵制约要素可视化物模研究,数模与物模相结合,分析重水淹区蒸汽驱是否可行。
     利用Petrel软件建立两个试验井组的精细地质模型,利用CMG软件进行1985年1月1日到2011年9月1日期间的蒸汽吞吐开发历史拟合,在注采参数优化的基础上,进行蒸汽驱5年预测。模拟预测过程中,在模型周围设置了庞大的边底水水体。数值模拟结果表明:水侵规律以底水锥进为主,边水并非大面积侵入,通过管外窜槽形成的水淹情况严重;油层除于I35层和于I36层基本形成热联通,油层剩余油饱和度仍有45%,地层压力为2.91MPa;蒸汽驱注汽井连续注汽使地层压力的增加,可抑制水侵速度;重水淹区蒸汽驱可提高采出程度,历时五年,累积采出程度7.74%。
     开展物模实验,掌握水侵控制要素,正确解释油层水侵特征;进行水侵控制要素敏感性分析研究,提出控制边底水的保障技术。实验分析地层的非均质性、温度、压力、边水距离等对边底水水侵的敏感性。采用均质岩心模型,温度为45℃情况下,压差分别设置为0.035MPa、0.045MPa、0.055MPa;采用非均质岩心模型,温度为45℃情况下,压差分别设置为0.04MPa、0.06MPa、0.08MPa;采用均质岩心模型,压差为0.055MPa情况下,温度分别设置为45℃、60℃、75℃。将饱和充分的岩心模型进行水驱油实验,分别计量每口井的出液、出油和出水量。拟合瞬时水侵量和压差及温度的函数关系式。
     水侵可视化实验研究均在实验温度45℃条件下进行,采用均质岩心模型,饱和油温度80℃,压差分别设置为0.10、0.12、0.14MPa;采用非均质岩心模型,压差分别设置为0.10、0.12、0.14MPa。通过图像采集系统采集不同时期的水侵图片,分析边水水侵规律,建立不同压差下瞬时水侵量及累积水侵量与时间的关系。
     根据室内实验对井网部署中各井的产液分析,距离边水近的井受边水影响最大;与边水距离相等的两口井,产液量相差较大,不同压差下规律截然不同。可以说明,边水并非均匀侵入,而是具有各自的水侵通道且水侵通道的形成及扩大规律不尽相同;不同压差下,瞬时水侵量均表现为线性增加规律,通过拟合分析,瞬时水侵量与压差为指数函数关系。边水沿着高渗层侵入到生产井井底,在压差的作用下锥进至生产井。而距边水相等的两口井的产液不同,同样可以说明边水并非均匀侵入。通过综合分析,压差越大,区块内生产井的见水时间越提前;瞬时水侵量与时间为线性关系,温度越高,区块内各井见水的时间反而延后。通过水侵可视实验研究发现:当边水在压差作用下进入油层孔隙系统时,首先与束缚水混合,对于稠油,由于油水粘度差大,进入油层孔隙系统的水,一方面通过被束缚水占据的小孔隙流动,并首先进入较小的孔隙,然后再扩大到较大的孔隙;另一方面沿着被油饱和的较大孔隙壁上的水膜楔入,随着进入水量的增加边水前缘逐渐向前推进,水侵进一步加剧,水线一旦突破,水侵量会持续增加,后期趋于稳定。水侵规律分为三个阶段:水侵连通阶段、水侵阶段及水侵稳定阶段。
     综上,重水淹区由蒸汽吞吐转蒸汽驱,完善区块注采关系,地层能量可以得到及时补充,延缓边水推进速度,控制含水上升速度,改善区块开发效果。中部转驱、边部排水、可有效控制水侵。进行水淹规律的整体分析,确定水侵方向、水淹程度,指定水侵控制措施,合理有效规避汽驱开发风险。主要是一线水淹井作为重点实施对象,二线水淹井作为辅助实施对象,实现“一线排水、二线求产”的目的。故辽河油田锦45稠油重水淹实验区转蒸汽驱开发可行。
The steam stimulation of Jin-45Block where the geo-pressure is only2.91MPa for nowhas been wandering into anaphase. In the serious flooded area,the average daily oilproduction of single well is only1.0t/d, water cut is92.8%, recovery rate of water is up to200%, and the oil recovery rate is0.51%. The produced percentage of recoverable reserve is92.6%. The remaining oil in this water-flooded area can hardly be exploited by thedevelopment method of steam stimulation, which makes the transformation of this methodmore and more urgent. It is quite a risk to spread the development method of steamstimulation for the edge and bottom water reservoir. To conform the water-flooded layersteam flooding feasible needs to learn the invasion feature of the reservoir edge water, tohandle the controlling elements of the edge water invasion, also to avoid the risk of steamflooding development efficiently.
     In this paper, the numerical simulation of steam flooding in heavy water-flooded area hasbeen carried out first, and then comes the visual physical model research of the controllingelements of water invasion. Also we focus on the analysis of the steam flooding feasibility inwater-flooded area by combining the mathematical and physical models.
     Using Petrel we define a fine geological model for these two test well groups, then withCMG we carry a steam flooding forecast for5years on the basis of steam stimulation historyfitting during the period from Jan1st,1985to Sep1st,2011, and also the injection-productionparameters optimization. A huge body of edge and bottom water has been set around themodel during the simulation process. Numerical simulation results show that the invasion lawis given priority to with bottom water coning, while the edge water is not widespread, and thewater-flooded situation formed by outer channeling is serious. In addition to the Yu I35layerand Yu I36layer, Oil reservoirs have basically formed heat source. The remaining oilsaturation is still45%, and the geo-pressure is2.91MPa. The increasement of geo-pressurecaused by the continuously steam injection for the steam flooding wells may restrain thewater invasion speed. With5years’ steam flooding in the serious water-flooded area, therecovery degree can be improved, and the cumulative recovery degree reaches7.74%.
     Carrying out physical model experiments needs the invasion controlling elements tocorrect the characteristic interpretation of reservoir water invasion. We focus on the sensitivityanalysis of the invasion controlling elements, also come up with the security technology ofedge/bottom water controlling. The heterogeneity, temperature, pressure of geosphere, and thesensitivity of edge/bottom water invasion to the edge water distance are analyzed throughexperiments. For the homogeneous core model, the temperature is set to45℃, andrespectively differential pressures are set as0.035MPa,0.045MPa and0.045MPa. For theheterogeneous core model, of which the temperature is45℃, respectively differential pressures are0.04MPa,0.06MPa and0.06MPa. When it comes to the homogeneous modelwith a differential pressure of0.055MPa, the temperature are set to45℃,60℃,75℃respectively. The fluid, the oil and water produced quantities of each well are measuredseparately through the water flooding experiment with fully saturated core model, also thefunctional equations of instantaneous water invasion, differential pressure and temperaturesare taken shape.
     Visual experimental researches for water invasion are all taken under the conditions ofsaturated oil and80℃of experimental temperature. When using the homogeneous coremodel, the differential pressure is set as0.10MPa,0.12MPa and0.14MPa respectively. Forthe heterogeneous core model, they share the same differential pressures. Water invasionpictures during different periods are collected through the image acquisition system. With theanalysis of edge-water invasion laws, the functional equations of instantaneous water invasion,cumulative water invasion and time for these differential pressures are built.
     With laboratory experiments we analysis the produced fluid of each well in the pattern.We find the well closer to the edge-water gets bigger influence, while the fluid productions oftwo wells equidistant from the edge-water are quite different, the laws of which are alsodistinctly different under various differential pressures. That may explain the edge-waterinvasions are not evenly but have their very own encroachment channels, and the laws offormation and expansion are not the same. Under various differential pressures instantaneouswater invasions all shows linear increasement. Fitting instantaneous water invasions anddifferential pressures we can get exponential functions. Edge-water immerses along the highpermeability layer to the bottoms of production wells, and then under the differential pressuregets coning to production wells. The different fluid productions of two wells equidistant fromthe edge-water also show us the invasions are not evenly. Through comprehensive analysis wefind with the bigger differential pressure, the sooner water breakthrough in production wells.Instantaneous water influx shows linear relation with time, for the higher the temperature, thelater water breakthrough. Through the water-invasion visual experimental research, we realizethat after the edge-water immerses into the reservoir pore system under the action ofdifferential pressure, firstly it mixes with bound water, and then due to the great oil/waterviscosity difference of heavy oil it flows through mini-pores dominated by bound water, theninto small pores, and then into larger pores. On the other hand, it wedges along the walls oflarge pores saturated with oil, then with the water increase the front of edge-water movingahead gradually, the invasion would go further and further till the water breakthrough, andthen the water continues to increase until a stable state. Water invasion law is divided intothree phases: water connection, water invasion and stable water invasion.
     In conclusion, transforming the steam stimulation of serious water-flooded reservoir intosteam flooding, and improving the injection-production relation on blocks can get the layersenergy timely replenished, get the edge-water invasion suspended, get water cut increasingrate controlled, and get the block development effect improved. Transforming in central anddraining from the edge will effectively control water invasion. Through the overall analysis of the water-invasion laws we can get the water-invasion directions and the flooded degrees toavoid the risk of steam flooding development efficiently. The idea that serious water-floodedwells as the key implementation objects and peripheral water wells as auxiliaryimplementation objects, is helping to achieve "Line A for draining, Line B for producing".Therefore, transforming Jin-45Block serious water-flooded reservoirs of Liaohe oilfield tosteam flooding development is feasible.
引文
[1]姚远勤,曹维庚等.稠油热采技术论文集[M].北京:石油工业出版社,1993.
    [2]梁文杰.重质油化学[M].东营:石油大学出版社,2000.
    [3]洪. L. C.,岳清山等译.蒸汽驱油藏管理[M].北京:石油工业出版社,1996.
    [4] Kuo C H, Shain S A, and Phocas D M.Gravity Drainage Model for the Steam-soakProcess [J].SPE,1970:119-126.
    [5] S. M. Farouq Ali,R. F. Meldau.Current Steam Flood Technology [J].SPE,1996:1332-1341.
    [6]王宝权,柳文国,李伟.稠油水平井注蒸汽热采时加热深度的确定[J].特种油气藏,1996,3(2):37~39.
    [7]许心伟,张锐.稠油油藏蒸汽驱合理井网密度研究[J].石油勘探与开发,1998,25(4):45~48.
    [8]王仲军,赵斌.红浅稠油蒸汽驱开发技术研究[J].新疆石油学院学报,2000,12(2):25~28.
    [9] Cairo.Experimental Study of Surfactant Alkaline Steam Flood Through Vertical Wells[J].SPE2000,62562:1-10.
    [10]王卓飞,黄景龙,王力兴等.稠油油藏段塞蒸汽驱技术研究[J].新疆石油地质.2001,22(4):330~332.
    [11]周林,梁军,王婷等.稠油蒸汽驱高温化学技术研究及应用[J].新疆石油科技,2002,2(12):37~40.
    [12]Steven Schamsul.Role of Small-scale Variations in Water Saturation in Optimizationof Steam Flood Heavy Oil Recovery in the Midway-Sunset Field,California [J].SPE2003,83499:1-10.
    [13]刘立成.稠油油藏蒸汽驱特征曲线研究[J].特种油气藏.2008,15(6):64~66.
    [14]程忠钊,李春兰,黄世军.稠油油藏水平井蒸汽驱合理井网形式研究[J].特种油气藏,2009,16(3):55~58.
    [15]李艳玲.稠油油藏蒸汽驱地质影响因素研究[J].特种油气藏,2009,16(5):59~61.
    [16]李志强,刘先勇,孙宁等.段塞蒸汽驱提高超稠油油藏采收率技术及其应用[J].断块油气田,2010,17(2):246~249.
    [17]郑昕,崔艳红,赵鑫等.孤岛河道砂稠油油藏水淹层顶部水平井挖潜技术[J].石油天然气学报(江汉石油学院学报),2011,33(6):326~327.
    [18]赵吉成.中深层稠油蒸汽驱注采剖面调整工艺技术研究[J].中外能源,2011,6(16):47~49.
    [19]刘斌.稠油蒸汽驱动态规律研究[J].西安石油学院学报,1996,11(6):13~17.
    [20]唐清山,廖广志.高升油田深层稠油油藏蒸汽驱跟踪数值模拟研究[J].特种油气藏,1996,3(1):21~28.
    [21]黄鹉,凌建军.水平井蒸汽驱开采底水稠油油藏的室内比较分析[D].江汉石油学院,1997.
    [22]S.BAGCI, T.AYBAK, A.SHAMSUL.A Comparative Laboratory Analysis of Steamflooding with Horizontal Wells in Heavy Oil Reservoirs with Bottom Water Zone[J].Journal of Canadian Petroleum Technology,1999,38(13):1-8.
    [23]沈德煌,于立君,聂凌云.注水后期油藏转注蒸汽开采可行性研究[J].石油勘探与开发.
    [24]Al-Ain.Experimental Investigation of the Feasibility of Steam/Chemical SteamFlooding Processes through Horizontal Wells [J].SPE2001,68767:1-10.
    [25]左建志,李庆伟.稠油热采生产方式转换—蒸汽驱试验[J].河南油田年鉴,2001:161.
    [26]向祖平,张烈辉,冯国庆等.稠油油藏蒸汽驱方案优化研究[J].特种油气藏,2005,12(1):50~51.
    [27]柴利文.中深层块状稠油油藏蒸汽驱开发试验主要问题及对策研究[J].特种油气藏,2005,12(6):44~49.
    [28]李爱军.浅层特稠油油藏蒸汽驱驱替特征研究[J].新疆石油天然气,2007,3(1):60~62.
    [29]周运恒.提高深层稠油蒸汽驱排液能力技术研究[J].钻采工艺,2008,31(3):75~77.
    [30]中深层稠油蒸汽驱工艺技术[J],中国石油辽河油田公司年鉴,2008.
    [31]张宇焜,喻高明,朱健辉等.稠油蒸汽驱注采参数优化设计—以河南油田井楼油田三区稠油区块为例[J].石油天然气学报(江汉石油学院学报),2009,31(2):336~338.
    [32]Cheng Zan,Desheng Ma,Hongzhuang Wang.Experimental and Simulation Studiesof Steam Flooding Process in Shallow,Thin Extra-Heavy Oil Reservoirs [J].SPE2010,131942:1-15.
    [33]范耀,刘易非,茹婷等.稠油高温气体辅助蒸汽驱的可行性研究[J].新疆石油地质,2010,10(5):531~532.
    [34]冯玉.辽河油田中深层稠油油藏蒸汽驱驱替规律及技术对策探究[D].东北石油大学,2010.
    [35]张弦,刘永建,车洪昌等.辽河中深层稠油蒸汽驱油藏工程优化研究[J].复杂油气藏,2010,3(2):57~60.
    [36]陈雷,黑地庙稠油油藏蒸汽驱开发可行性研究[D].东北石油大学,2010.
    [37]尹金伟.欢喜岭油田齐40块稠油油藏蒸汽驱影响因素及其技术对策研究[J].内蒙古石油化工,2011,(8):266~267.
    [38]Olanrewaju M.Tiamiyu,Fathi Boukadi.Experimental and Simulation Study On UseOf Surfactant and De-Emulsifier Blend Additives In Steam Flood As EOR TechniqueIn Heavy Oil Reservoir [J].SPE2011,139582:1-25.
    [39]桂烈婷,锦45区块Ⅱ类稠油油藏蒸汽驱试验研究[D].东北石油大学,2011.
    [40]张弦,范英才,刘建英等.辽河中深层稠油油藏蒸汽驱后开发方式优化研究[J].复杂油气藏,2011,4(1):50~54.
    [41]谢俊远,郭恩常,毛艳华等.下二门油田气顶稠油油藏蒸汽驱可行性分析[J].石油地质与工程,2012,26(4):82~85.
    [42]Mehdi Bagheipour.Comparing the Performance and Recovery Mechanisms for SteamFlooding in Heavy and Light Oil Reservoirs[J].SPE2012,144797:1-9.
    [43]曹嫣镔,刘冬青,张仲平.胜利油田超稠油蒸汽驱汽窜控制技术[J].石油勘探与开发,2012,39(6):739~743.
    [44]相天章,赵洪岩,齐立明.稠油蒸汽驱阶段最佳采注比和最佳注汽速度确定方法的探讨[J].特种油气藏,1994,1(1):20~22.
    [45]王弥康,徐明海,张毅.筛选和评估稠油蒸汽驱的简易方法[J].石油大学学报,1994,18(1):120~123.
    [46]胡常忠,刘新福,宋振宇.井楼零区浅薄层稠油油藏蒸汽驱先导试验研究[J].石油勘探与开发,1996,23(3):68~71.
    [47]杜殿发,陈月明,封伯慰等.砂砾岩稠油油藏蒸汽驱数值模拟研究[J].油气采收率技术,1997,4(2):1~7.
    [48]由世江,周大胜,孟强等.超稠油水平裂缝辅助重力泄油蒸汽吞吐开采实验[J].特种油气藏,2000,7:42~44.
    [49]杨双虎,林平,刘庆等.辽河油田马家铺庙5块低渗稠油油藏蒸汽驱现场试验[J].西安石油学院学报(自然科学版),2000,15(3):7-~10.
    [50]汪畅,李彦平,张培洋等.特超稠油油藏加密吞吐后转蒸汽驱可行性及矿场试验[J].河南石油,2003,17(2):36~39.
    [51]Sedaee,Rashidi.Experimental Investigation of Steam/Methane Flooding in a HeavyOil Reservoir[J].SPE2002,91968:1-6.
    [52]李彦平,江谋勇,周永强.浅层特超稠油油藏蒸汽驱可行性及现场试验[D].中国石化河南油田分公司.
    [53]夏增翔.辽河油田中深层稠油蒸汽驱技术工业化推广与研究[J].中国石油和化工标准与质量,2006,3:35~36.
    [54]张方礼,张鹰,曹光胜等.辽河油区热采稠油Ⅱ、Ⅲ类储量蒸汽驱、SAGD长远规划及先导试验部署[J].特种油气藏,2007,14(6):12~14.
    [55]肖卫权,高孝田,张玉霞等.河南油田超稠油油藏蒸汽驱的可行性及先导性试验[J].石油天然气学报(江汉石油学院学报),2008,30(1):341~343.
    [56]Abdullah.Visualization of Steam Zone Advancement During Heavy Oil Recovery[J].SPE2008,120819.
    [57]战永平.超稠油蒸汽CO2复合吞吐实验研究[D].中国石油大学,2009.
    [58]Syed Zahoor Ullah,Syed Rehan Shah Bukhari.Geothermal Reservoirs:A RenewableSource of Energy and an Extention of Petroleum Engineering [J].SPE2008,114718:1-10.
    [59]W. Qin, A. K.Water Problems and Control Techniques in Heavy Oils With BottomAquifers[J].SPE2009,125414:12-17.
    [60]Mei Han, Ehsan S. Carrie, M. Fox, Ed J. Behm.Continued Development of MatureHeavy-Oil Field with Strong Water drive Using Mechanistic Reservoir Simulation[J].SPE2009,122087:1-7.
    [61]高明,王京通.稠油油藏蒸汽吞吐后蒸汽驱提高采收率试验[J].油气地质与采收率,2009,16(4):77~79.
    [62]王春生,崔海清,杨树人.Ⅱ类稠油油藏蒸汽驱先导试验研究[J].科学技术与工程,2010,10(11):2714~2715.
    [63]杨元亮,宋文芳,杨胜利等.单六东深层超稠油油藏蒸汽驱先导试验[J].石油地质与工程,2007,21(4):42~45.
    [64]关群丽.浅薄层特稠油过热蒸汽驱开发研究与试验[J].石油地质与工程,2011,25(2):76~78.
    [65]王弥康,徐明海,张毅.筛选和评估稠油蒸汽驱的简易方法[J].石油大学学报(自然科学版).1994,18(1):120~123
    [66]Rahim Masoudi. Evaluation of Steam Flooding and Cyclic Steam Stimulation(CSS)for a Fractured Carbonate Heavy Oil Reservoir [J].IPTC2011,15454:1-12.
    [67]J.J. van Dorp, R. H. Roach.Steam Management in Composite Mature Steam Floods,Midway Sunset Field [C].SPE1995,29658:417-432.
    [68]K.C. Hong.Effects of Gas Cap and Edge Water on Oil Recovery by Steam flooding ina Steeply Dipping Reservoir [J].SPE1990,20021:79-83.
    [69]左向军,时庚戌,吴成林.注蒸汽开发边底水活跃特稠油油藏的措施[J].石油勘探与开发,1996,23(1):59~63.
    [70]周英杰.用蒸汽驱改善边底水稠油油藏开采效果[J].油气采收率技术,1996,3(3):37~44.
    [71]张素宏.锦626块重水淹区水侵规律研究及应用[J].断块油气田,2008,15(2):70~71.
    [72]宋春红,赵长喜,吴荷香等.泌浅10断块蒸汽驱整体调剖堵窜技术应用研究[J].石油地质与工程,2010,24(1):101~104.
    [73]赵欣,贾娜,周百鸣.近临界蒸汽驱技术在低渗透油藏中的应用[J].特种油气藏,2011,18(6):76~79.
    [74]石晓渠,李胜彪,马道祥等.浅薄层特稠油油藏蒸汽驱现场应用效果[J].石油天然气学报,2011,33(5):249~251.
    [75]周林碧,李海亮,石磊等.油溶性降粘剂辅助蒸汽驱在稠油开采中的应用研究[J].石油化工应用,2012,31(11):21~23.
    [76]卢川,刘慧卿,杨云龙等.火用传递原理在稠油复合蒸汽驱方案优选中的应用[J].断块油气田,2012,19(5):616~617.
    [77]Charles R. Knopp, Mene Grande.Bottom-Water and Edge-Water Effects on LowGravity Oil Production [J].Journal Of Petrolum Technology,1960:47-51.
    [78]Yao Yuanqing,Zhou Yingjie,Li Xianmin.Study and Practice on Recovery by steamflood in Heavy Oil Reservoir with Edge and Bottom Water [J].SPE1995,30290:429-442.
    [79]Yongrong Gao,Shangqi Liu,Yitang Zhang.Implementing Steam Assisted GravityDrainage Through Combination of Vertical and Horizontal Wells in a Super-heavyCrude Reservoir With Top-Water [J].SPE2002,77798:1-10.
    [80]毛卫荣,李拥安,梁福元等.稠油油藏底边水治理技术研究与应用[J].油气田地面工程,2002,21(1):50~52.
    [81]周燕,赵红雨,李献民.改善非均质边底水稠油油藏开发效果的措施研究[J].特种油气藏,2003,10(5):44~48.
    [82]刘勇.冷41断块边底水稠油油藏油井出水判别方法浅析[J].特种油气藏,2003,10:50~53.
    [83]B. Ju,S. Dai,T. Fan.An Effective Method To Improve Recovery of Heavy OilReservoir With Bottom water drive [J].IPTC2005,10521:1-9.
    [84]陈瑞,周英杰,宋书君.薄层边底水稠油油藏开发方式优化研究[J].特种油气藏,1999,6(3):29~33.
    [85]杨光璐,唐震,王中元.底边水稠油油藏蒸汽驱助采系统优化研究[J].特种油气藏,2006,13(2):52~55.
    [86]Hongen Dou, Chuangchun Chen, Yuwen Chang, Xiaolin Wang.A New Method ofCalculating Water Invasion for Heavy-Oil Reservoir by Steam Injection [J].SPE2007,106233:1-6.
    [87]文凤余.底边水稠油油藏氮气调剖技术研究[D].中国石油大学,2005.
    [88]吴永彬,张义堂,李秀娈.边底水稠油油藏有限出砂冷采技术[J].钻采工艺,2007,30(4):56~58.
    [89]蔺玉秋,薛宗占,秦艳玲等.底边水非均质性稠油油藏蒸汽驱关键技术[J].特种油气藏,2007,14(1):63~65.
    [90]王炜.稠油油藏封堵底边水技术研究与应用[D].中国石油大学,2008.
    [91]贾文辉.单家寺油田稠油热采边底水侵入的综合治理[J].胜利油田职工大学学报,2008,22(3):58~59.
    [92]葛丽珍,李廷礼,李波.海上边底水稠油油藏大泵提液增产挖潜矿场试验研究[J].中国海上油气,2008,20(3):173~177.
    [93]李葵英,陈辉,杨东明等.底边水稠油油藏开发规律研究[J].西南石油大学学报,2008,30(3):94~96.
    [94]王平.太平边底水稠油油藏高效调整技术[J].科技资讯,2008,18:79~80.
    [95]曾祥平.边底水稠油油藏水侵预警分析与治理[J].油气地质与采收率,2008,15(1):80~84.
    [96]刘博,朱建伟,杨金华.底边水稠油油藏吞吐后期转驱研究[J].内蒙古石油化工,2009,23:109~111.
    [97]Huo Jin,Shi Guoxin,Lu Jianguo.Horizontal Well Production Technologies in theThin-Bedded,Bottom-Water Reservoirs in Luliang Oilfield,China [C].SPE2010,131890.
    [98]杜学盛,郭志强.冷家油田边底水驱稠油油藏选择性堵水实践与认识[J].应用技术,2010:113~116.
    [99]王志强,高宝国,姚寒梅等.水平井技术在义东油田沾四区边底水稠油油藏的应用[J].内蒙古石油化工,2011,2:154~155.
    [100]张传举.边底水稠油油藏整体堵调技术研究[D].中国石油大学,2011.
    [101]杨增森.底边水特超稠油油藏蒸汽吞吐中后期复合调堵技术研究[J].内蒙古石油化工,2012,14:97~98.
    [102]张连社,张萍,周玉龙.边底水稠油油藏营13断块开发技术与应用[J].石油地质与工程,2012,26(3):79~82.
    [103]徐玉霞,葛丽珍,廖新武.底边水稠油油藏单砂体水淹规律量化研究[J].科学技术与工程,2012,12(25):6301~6304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700