用户名: 密码: 验证码:
铝合金及其颗粒增强复合材料的SIMA半固态成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基复合材料具有高的比强度、比模量、耐高温、耐磨等特殊性能,早已成为当今世界范围内材料科学的一个重要主攻方向。
     成型方式是限制复合材料发展的一个关键难点。半固态成型中的应变诱发熔化激活(Strain Induced Melt Activation)法,简称SIMA法,是具有发展前景的方法。目前未见关于SIMA法半固态加工颗粒增强金属基复合材料部件的报导。
     本文针对铝合金及其复合材料的SIMA法半固态浆料制备方法展开研究,探讨SIMA半固态组织演变机理。为充分掌握基体材料的特性,基体材料采用了商用Al2024棒材和Al-3%Si两种材料,复合材料材料采用了SiC_p/Al-3%Si。
     本文提出了SIMA半固态浆料的球状晶粒的形成机理、半固态保温的晶粒合并物理模型、半固态保温晶内液相的形成机理、复合材料半固态保温过程增强颗粒对组织形成的影响。同时综合考虑了多向应力状态对组织形成的影响。采用有限元方法模拟了材料内部的热残余应力,模拟时综合考虑了颗粒的形状、大小、体积百分率及气孔的大小、分布对热残余应力的影响。
With the development of science and technology, especially the rapid development of the aviation and spaceflight and the appearance of new industries using atomic energy and developing ocean cosmically, more requirements for the structure materials are put forward. Traditional metals and alloys can not meet these demands. Compared with traditional metals and alloys, metal matrix composites (MMCs) are attached importance by material researchers in the world because of their high specific strength, high specific modulus, high temperature endurance, and wear resistance. This type of materials have been ranked as the focus of the new material development in 21st century by The United States, Japan and other developed countries. MMCs have become an important researching direction of the materials science in today's world.
     The difficulty restricting MMCs development is their forming method. Semi-solid forming (SSF) is a new method of the material forming. During SSF, the billets are heated to a temperature between solidus and liquidus, i.e., semisolid state, and then are formed by molds. During SSF, the fluidity of materials is good as casting, and the microstructure of products is compact as forging. The method of the strain induced melt activation (SIMA) is a promising method in SSF. The billets made from casting and rolling can be molded after being plasticly deformed and heated to the semisolid temperature. During forming with SIMA, the stirring process is not needed, and a forming process with little or without waste can be achived. Now, SIMA is widely used for alloys with low and high melting point. But, the report aoubt SIMA application on MMCs is not found.
     The properties of the product made by SSF are affected direct by the preparation of the semi-solid slurry. In this thesis, the research on the preparation of the semi-solid slurry of alluminium alloy and its particles reinforced composites by SIMA was carried out. The evolution mechanism of the semi-solid structure was studied in order to provide the theoretical basis for the SIMA semi-solid forming of particles reinforced aluminium alloy composites. This is significant to extend the application of MMCs reinforced by paticles.
     The researches in this dissertation were divided into the following aspects:
     Firstly, the researches for the SIMA semisolid forming of aluminium alloys were carried out. In order to fully grasp the characteristics of the matrix material, commercial A12024 bar and Al-3%Si alloy were used as the matrix materials. The results are as follows:
     1. The SIMA semisolid microstructure after heating deformed plastically A12024 alloy is globular. When the plastic strain is from 0.1 to 0.8, the grain size decreases from 76μm to 52μm, i.e., the grain size decreases with inceasing level of the plastic deformation.
     2. For as cast Al-3%Si alloy holding at 630°C, the microstructure changes from big dendritic crystal to small grain, and finally to sphere.
     3. For single direction compressed Al-3%Si alloy, with increasing amount of the deformation, the non-directional as cast dendritic structures are elongated, the degree of fracture of dendritic grains increases, the orientation of the microstructure increases gradually, the defects between crystals increase, and the deformation energy storage increases.
     4. When Al-3%Si alloy with different compressed deformation is held at 630°C, with the increase in holding time, the diameter of grains inceases. The change of the grain size is minimum when the holding time is between 30 min and 60 min. The roundness of grains inceases with holding time. After the temperature is held for 60 min, the roundness does not change on the whole. When the ratio of deformation is 50%, the maximum grain size increases with the holding time. And when the ratio of deformation is 20%, the maximum grain size changes very little with the holding time. When the level of deformation is low, the degree of the grain fracture is small, and there are big grains not breaked up.
     5. It is similar to A12024, when Al-3%Si alloy with different compressed deformation is held at 630°C, the grain size decreases with increasing level of deformation. When the ratio of the deformation is less than 20%, the grain size decreases sharply with increasing level of deformation. When the ratio of the deformation is 50% or 70%, the grain sizes decrese gently. With the increase of the level of the deformation, the roundness increases. The more the amount of the deformation is, the better the roundness is, and the easier the globular structure is obtained. The evolution process of the microstructure is: the polygonal grains with different shape and size→the even grains→the globular grains→the coarse grains.
     Secondly, the evolution mechanism of the SIMA semisolid microstruture was studied from the point of view of thermodynamics and dynamics on the basis of the study on the matrix SIMA semisolid microstructure. The results are as follows:
     1. The evolution mechanism of the SIMA semi-solid globular grains was presented for the first time. The main idea is: the slippage inside the dendritic grain→the grain slide and rotation→the melting of the grain boundary→the melting of the sharp angle of grains. On the basis of the study on the SIMA semisolid microstructure by single- and multi-directional compression, the law of the effect of the hydrostatic stress on the SIMA semisolid grain size was obtained. The hydrostatic stress restrains the slippage inside a grain. The bigger the hydrostatic stress is, the more the restraining effect is, and the bigger the grain size by SIMA is.
     2. A physical model of the coalition of two grains is presented for the first time. The crystal boundary between the contacted grains with small orientation difference dispears during being held at a semi-solid temperature. The coalition of grains is a spontaneous process. The mechanisms of the grain coalition during being held at a semi-solid temperature include two aspects: one is that two grains or one of two grains turn under force; the other is the movement of atoms.
     3. The static shapes of liquid in a grain are presented for the first time. During being held at a semi-solid temperature, the static shape of liquid in a grain is ellipsoid or sphere.
     4. The mechanism of the spheroidization and growth of solid in semi-solid state is presented for the first time. For a grain with different positive curvature, the position with big radius will grow, and the radius will decrease; the position with small radius will melt, and the radius will increase; the evolution process of the grain is to dig the high position and to fill the low position. For a grain with positive and negative curvature at the same time, the place with positive curvature will melt, and the place with negative curvature will grow; the grain evolution is to dig the high place and to fill the vacancy. When a globular grain is near a grain with small curvature radius, the grain sizes will be polarized.
     Thirdly, the researches on SIMA semisolid forming of SiCp/Al-3%Si composites were carried out. On the basis of the investigation on matrix SIMA semisolid forming, the effets of the reinforcement in the composites were taken into account. The results are as follows:
     1. Through the study on the SIMA semisolid microstrcture of SiCp/Al-3%Si composites, the SIMA semisolid microstructure feature of the composites was discovered. For SiCp/Al-3%Si composites held at semisolid states, the reinforcement SiC particles will be in the liquid. The solid growth is restricted by reinforcement or other solids.
     2. The results of the composites with different level of compression are similar to the matrix alloy. With the increase of the holding time at semi-solid temperature, the grain size of the matrix increases, the roundness increases, and the fractal dimension of the grain decreases.
     3. For the same holding time, with increasing level of deformation, the grain size increases, the roundness increases, and the fractal dimension decreases.
     4. For the same volume fraction, the bigger the reinforcement size is, the more irregular the solid grains are, the bigger the fractal dimensions are, the smaller the roundness is, and the bigger the grain size is.
     5. For the same reinforcement size, the bigger the volume fraction of reinforcement is, the more uniform the solid grains are, the bigger the grain size is, the bigger roundness is, and the smaller the fractal dimentions are.
     Fouthly, the thermal stress of the composites was analysed by three dimensional elastic-plastic finite element method (FEM). The effects of the pore and reinforcement were taken into account to analyse the resisual stress for the first time. The resuls are as follows:
     1. For different size of the globlar reinforcements, the matrix of the composites yields in different degree. The place of the maximum stress of matrix is at the surface contacting with reinforcement. With the increase of the distance to reinforcement, the stress of matrix decreases at different degree. The smaller the grain size is, the more rapidly the stress decreases. For the same size of the reinforcement, the bigger the volume fraction of the reinforcement is, the bigger the residual stress is, and the bigger the variation scope of the stress between two particles is. For the same reinforcement size, the bigger the angle between two sides of the polygon is, the more severe the stress concentration is, and the level of the stress increases in different degree.
     2. For the models of different pore diameter and different distance between pore and reinforcement, the matrix yields at the surface contacting with reinforcement and pore. The stress state is compressive on the surface contacting with reinforcement, and is tensile on the surface contacting with pore. The elasitic area appears between reinforcement and pore. The matrix yields at the point of pore surface at which the distance to reinforcement is minimum. With the increase of the distance to reinforcement, the stress decreases to elasitic state. With the increase of the pore diameter, the minimum stress of Mises decreases.
引文
[1]吉田康敏.21世纪の新素材调查しボ,ト[J].工业材料,1988,4:12-16.
    [2] COVAULT C, RICHAR G O, et al. U.S. Space Program: Struglling to Recover [J]. Aviation Week, 1987,127(6): 18.
    [3]郝斌,等.颗粒增强金属基复合材料制备工艺评述[J].热加工工艺,2005,4:62-66.
    [4]王俊,等.SiC颗粒增强锌基复合材料的制备及其性能[J].复合材料学报,1995,1:56-60.
    [5] XU JIUHUA, ZUO DUNWEN, YANG MINGDA. Machining of metal matrix composites [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 1995, 12(2): 161-167.
    [6]冷金凤,武高辉.SiC_p/Al基复合材料的切削加工研究现状[J].宇航材料工艺,2007,2:6-9.
    [7]谢水生,潘洪平,等.半固态金属加工技术研究现状与应用现状[J].塑性工程学报,2002,9(2):1-10.
    [8] LEE J C, SEOK H K, LEE H I. Alloy design of thixoformable wrought SiC/Al alloycomposites [J]. Mater. Res. Bull, 1999, 34(1): 35-42.
    [9] MCLELLAND A R A, ATKINSON H V, ANDERSON P R G. Thixoforming of anovel layered metal matrix composite [J]. MATER SCI TECH-LOND 1999, 15 (8):939-945.
    [10] ZHANG H, WANG J N. Thixoforming of spray-formed 6066Al/SiCp composites [J].Compos. Sci. Technol., 2001, 61 (9): 1233-1238.
    [11] YOUNG K P, KYONKA C P, COURTOIS J A. Fine grained metal composition: US,4,415,374 [P], 1983.
    [12]陈体军,郝远,陆松,许广济.ZA27合金在SIMA处理过程中形变量和等温温度对组织的影响[J].金属热处理学报,2000,21(1):18-21.
    [13] LUO SHOUJING, TIAN WENTONG, ZHANG GUANGAN. Structural evolution ofLC4 alloy in making thixotropic billet by SIMA method [J]. Trans. Nonferrous Met.Soc. China, 2001, 11(4): 547-550.
    [14] LIU CHANGMING, ZOU MAOHUA. Effects of compressing and remelting inSIMA processing on semisolid structure evolution of an Al-Zn wrought alloy [J].Rare Metals, 2003, 22(3): 185-191.
    [15] JIANG HAITAO, LI XIAOLI, XIONG AIMING, et al. Fabrication andmicrostructure evolution of semi-solid LY11 alloy by SIMA [J]. J. Mater. Eng.Perform, 2003, 12(3): 249-253.
    [16] GUO H M, YANG X J. Preparation of semi-solid slurry containing fine and globularparticles for wrought aluminum alloy 2024 [J].Transactions of Nonferrous MetalsSociety of China, 2007, 17: 799-804.
    [17] SPENCER D B, FLEMINGS M C. Rheocasting [J]. Materrals Science & Engineering,1976,25: 103-107.
    [18] FLEMINGS M C. Behavior of metal alloys in the semisolid state [J]. MetallurgicalTransactions B, 1991, 22B: 269-293.
    [19] OGINO Y, SHEN B L, YAMASAKI T. Semi-solid plasticity of nanocrystallineCu-Mg-TiC aAlloy prepared by mechanical alloying [J]. Materials Science Forum,1999,312: 599-606.
    [20] SHEN BAOLONG, YAMASAKI TOHRU, OGINO YOSHIKIYO. Semi-solidplasticity and diffusion bounding of nanocrystalline Cu-Mg-TiC alloys [J]. Journal ofthe Japan Soiety of Powder and Powder Metallurgy, 1999, 46(12): 1315-1320.
    [21] LEHUY H, BLAIN J, BATA G L, MASOUNAVE J. Compression of semisoliddendritic and non-dendritic Zn-Al alloys at low strain rates [J]. Materials Science andEngineering, 1984, 67(2): 29-32..
    [22] CHARREYRON P O, FLEMINGS M C. Rheology of semi-solid dendritic Sn-Pballoys at low strain rate: application to forming process [J]. International Journal ofMechanical Science, 1985, 27(11-12): 781-791..
    [23] LI J Y, SUGIYAMA S M, YANAGIMOTO J. Microstructural evolution and flowstress of semi-solid type 304 stainless steel [J]. Journal of Materials ProcessingTechnology, 2005, 16(3): 396-406.
    [24] BRAMANN H, FEHLBIER M, SAHM P R, BUHRIG-POLACZEK A. Casting of acold work steel alloy in semi-solid state [J]. Journal of Materials ProcessingTechnology, 2004, 155-156: 1357-1364.
    [25] KOPP R, KALLWEIT J, MOLLER T, SEIDL I. Forming and joining of commercialsteel grades in the semi-solid state [J]. Journal of Materials Processing Technology,2002, 130-131: 562-568.
    [26] FLEMINGS M C, et al. Casting semisolid metals [C]. Trans. Int. Foundry Congress,Moscow, American Foundrymen's Soc, 1973, 81: 81-88.
    [27] FLEMINGS M C, et al. Yearbook of science and technology [M]. McGraw Hill BookCompany, New York, NY, 1978: 49-58.
    [28] KENNEY M P, COURTOIS J A, et al. Metals handbook [M]. 9thed AMSINTERNATIONAL, Metals Park, OH, 1988, 15: 327-338.
    [29] YOUNG K P, TYLER D E, et al. Process and apparatus for constinuous slurrycasting. US 4,482,012 [P], 1984.
    [30] NAKADA M, SHIOHARA Y, Flemings M C. Modification of solidificationstructures by pulse electric discharging [J]. Iron Steel Inst. Jpn. Int.. 1990, 30(1):27-33.
    [31] BROOK G B. Improving the quality of aliminium diecastings by novel techniques [J].Materials & Design. 1982, 3(5): 547-551.
    [32] ANTONA R L, MOSCHINI R. New foundry process for production of light-metal ina semi-liquid doughy state [J]. Foundry Trade Journal International. 1987, 10(36):176-178.
    [33] JACOB SON D M, OGILVY A J W. Spray-deposited Al-Si(Osprey CE) alloy andtheir properties [J]. Material Wissenschaf und Werkstofftechnik, 2003, 34: 381-384.
    [34] FREDERICK P S. Thixomolding of magnesium alloys [C]. DGM Conference onMagnesium Alloys and Their Applications, 1992: 69-75.
    [35] FLEMINGS M C. Solidification processing [M]. McGraw-Hill Book Company, NewYork, NY. 1974.
    [36] KIUCHI M, KOPP R. Mushy/semi-solid metal forming technology-present andfuture[J]. CIRP Annals-Manufacturing Technology. 2002, 51: 653-670.
    [37] MIDSON S P. The commercial status of semi-solid casting in the USA [C]. Proc ofthe 4th Int. Conf. on Semi-Solid Processing of Alloys and Composites, University ofSheffeld, 1996:251-255.
    [38] THE ENGINEERING STAFF OF ALUMAX ENGINEERED METAL PROCESSESINC.. Semi-solid forging at Alumax[J]. Light Metal Age, 1994, 52(9-10): 32-34.
    [39] NICHOLAS N H, TRICHKA M R AND YOUNG K P. Application of semi-solidmetal forming to the production of small components [C]. Proc. of the 5th Int. Conf.on Semi-solid Processing of Alloys and Compositions, Golden, Colorado, June 23-25,1998: 79-86.
    [40] NUSSBAUM A I. Semi-Solid Forming of aluminum and magnesium [J]. Light MetalAge, 1994, 54(5-6): 6-22.
    [41] GIORDANO P, BOERO FHIARMETTA G Thixformed space-frames for seriesvehicles, study, development and applications [C]. Proc. of 6th Int. Conference,Semi-solid Processing of Alloys and Composites, Turin, Italy, 2000: 29-34.
    [42] GARAT M, BLAIS S, PLUCHON C, et al. Aluminium semi-solid processing: fromthe billet to the finished part [C]. Proc of the 5th Int. Conf. on Semi-solid Processingof Alloys and Composites, Golden, Colorado, June 23~25, 1998: 199-213.
    [43]毛卫民,钟友雪.半固态金属成形技术[M].机械工业出版社,2004,6:364-365.
    [44]毛卫民,赵爱民,钟雪友,等.非枝晶半固态ZL101合金的电磁搅拌及触变成型研究[J].铸造,1999(2):5-8.
    [45]毛卫民,赵爱民,崔成林,等.AlSi7合金半固态连铸坯料和组织形成研究[J].金属学报,2000,36(5):539-544.
    [46]崔成林,毛卫民,李述刚,等.非枝晶AlSi7Mg合金半固态触变成形研究[J].材料科学与工艺,2001,9(2):122-125.
    [47]张奎,刘国均,张景新,等.铝合金半固态加工技术应用[J].中国有色金属学报,2000,10(增刊1):135-140.
    [48]王羽,胡建华,龙安.半固态成形技术及其应用.中国机械工程,2006,17:322-325.
    [49]赵祖德,罗守靖.半固态成形应用现状与未来.锻压技术,2006,6:1-3.
    [50]谢水生.金属半固态加工技术的发展及应用.特种铸造[J],2007,S_1:20-28.
    [51]刘洪伟,郭成,程羽.半固态技术在材料连接和复合材料制备中的应用[J].焊接,2006(1):17-20
    [52] MORTENSEN A. On the influence of coarsening on microsegregation [J].Metallurgical Transactions A, 1989, 20A(2): 247-253.
    [53] KATTAMIS T Z, FLEMINGS M C. Structure of undercolled Ni-Sn eutectic [J]. Met.Trans, 1970, 1(5): 1449-1451.
    [54] JONES H.. Status of rapid solidification of alloys in research and application [J].Journa of Materials Science, 1984, 19(4): 1043-1076.
    [55] KATTAMIS.T Z. A model for isothremal dendritic coarsening [J]. ScriptaMetallurgies 1971, 5: 53-58.
    [56] SPENCER D B, MEHRABIAN R, FLEMINGS M C. Theological behavior ofSn-15%/Pb in the crystallization range [J]. Metall.Trans., 1972, 3: 1925-1932.
    [57] METZ S A, FLEMINGS M C. Fundamental study of hot tearing [J]. Trans. Amer.Foundrymen's Soc, 1970, 78: 453-460.
    [58] CLYNE T W, DAVIES G J. Solidification and casting of metals [M]. The MetalsSociety, London, 1979: 275-278.
    [59] MIYAZAWA K, SCHWERDTFEGER K. Macrosegregation in continuously caststeel slabs:prelimnary theoretical investigtion on the effect of steady state bulging [J].Comput Graphics(ACM), 1981, 52(11): 415-422.
    [60] RICHARDS R S, ROSTOKER W. The influence of vibration on the solidification ofaluminum alloy [J]. Trans. ASM, 1956, 48: 884-903.
    [61] SCHMID G, ROLL A. Die wirkung intensiven schalls auf metallschmelzen. Z.Elektrochem., 1939, 45: 769-775.
    [62] SOUTHIN R T. The influence of low-frequency vibration on nucleation of solidifyingmetals [J]. J. Inst. Met., 1966, 94: 401-407.
    [63] UHLMANN D R, SEWARDIII T P, CHALMERS B. The effect of magnetic fieldson the structure of metal alloy castings [J]. Trans. AIME, 1966, 236: 527-531.
    [64] BOWER T F, FLEMINGS M C. Formation of chill zone in ingot solidification [J].Trans. AIME, 1967, 239: 216-219.
    [65] SPENCER D B. Rheology of liquid-solid metallic alloys [D]. Massachusetts Instituteof Technology & Cambridge University, 1971.
    [66] JOLY P A. Rheology of a partially solid alloy [D]. Cambridge : MassachusettsInstitute of Technology, 1974.
    [67] JOLY P A, MEHRABIAN R J. Rheology of a partially solid alloy [J]. Journal ofMater. Sci.. 1976, 11(8): 1393-1418.
    [68] MOON H K, CORNIE J A, FLEMINGS M C. Rheological behavior of SiCparticulate-(Al-6.5wt.%Si) composite slurries at temperatures above the liquidus andwithin the liquid+solid region of the matrix [J]. Materials Science & Engineering A,1991, A144(l-2): 253-265.
    [69] FLEMINGS M C RHEOCASTING. Proceedings of the Workshop on Rheocasting,Army Materials and Mechnics Rsearch Center, Watertown, MA, Feb. 3-4, 1977 [C]:33-39.
    [70] KATTAMIS T Z, PICCONE T J. Rheology of semislid Al-4.5%Mg alloy [J].Materials Science & Engineering A, 1991, A131(2): 265-272.
    [71] LOUE W R, SUERY M, QUERBES J L. Microstructure and rheology of patiallyremelted AlSi-alloy [C]. Proc. 2nd Int. Conf. Proc. SemiSolid Alloys Compos, 1993:266-275.
    [72] SHIBUTANI A, ARIHARA K, NAKAMURA Y. Measurement of apparent viscosityof ferrous and non-ferrous alloys in liquid/solid coexisting state em dash Fe-C, Sn-Pb,Al-Cu and Fe-Cr-Ni-C alloys [J]. Tetsu-to-Haganel Journal of the Iron and SteelIinstitute of Japan, 1980, 66(10): 1550-1556.
    [73] MIWA K, ICHIKAWA R. Apparent viscosity and structure in Al-Si alloys partiallysolidified under stirring [J]. Journal of the Japan Institute of Metals, 1981, 45(8):853-859.
    [74] LIU W, XING S, BAO P, ZHANG M, XIAO L. Energy dissipation and apparentviscosity of semi-solid metal during rheological processes part II: Apparent Viscosity[J]. Journal of Materials Science and Technology, 2007, 23(6): 801-805.
    [75] ICHIKAWA R, MIWA.K Apparent Viscosity and structure in partially solidifiedhyper-eutectic Al-Mn alloy under stirring [J]. Journal of the Japan Institute of Metals.1981,45(2): 189-193.
    [76] MORI N, OGI K, MATSUDA K. On the apparent viscosity and structure of pariallysolidified Al-Cu alloys under stirring [J]. Journa of the Japan Institute of Metals,1984, 48(9): 936-944.
    [77] ICHKAWA K, ISHIZUKA S. Production of Al-Pb alloys by rheocasting.Transactions of the Japan Institutte of Metals [J]. 1987,28(2): 145-153.
    [78] ICHIKAWA K, ISHIZUKA S, KINOSHITA Y. Modification of hypoeutectic Al-Cu,Al-Si and Al-Ni alloys by rheocasting [J]. Transaction of the Japan Institute of Metal.1988, 29(7): 598-607.
    [79] ICHIKAWA K, ISHIZUKA S, KINOSHITA Y. Stirring conditions and grainrefinement in Al-Cu alloys by rheocasting [ J]. Transactions of the Japan Institute ofMetals, 1987, 28(2): 135-144.
    [80] TITTMANN B R, HUANG M, HUANG C, NIESSNER A. Ultrasolic sensordevelopment for the semi-solid metal working process [C]. Proceedings-IEEEUltrasonic Sumposium, 2005 IEEE Ultrasonic Symposium, 2005(2): 1266-1269.
    [81] LEHUY H, MASOUNAVE J, BLAIN. J. Rheological behaviour and microstructureof stir-casting Zinc-Alluminium alloys [J]. Journal of Materials Science, 1985, 20(1):105-113.
    [82] LEE H I, LEE H J, KIM M J. Fromation of spherical primary silicon crystals duringsemi-solid processing of hypereutectic Al-15.5we%Si alloy [J]. Scripta MetallurgicaMaterialia, 1995, 32(12): 1945-1949.
    [83] ZHANG F Q, LI X F, CUI H T, CHEN Z H. Microstructure of ZA12 alloy preparedby mixed solid liquid casting [J]. Journal of Hunan University Natural Sciences,2008, 35(4): 66-67.
    [84] QUAAK C J, KOOL W H. SUERY. Assessment of semi-solid-state forming of AlMMC's-part I: rheology [J]. Transactioins of the American Foundymen's Soiety,1995(103): 421-426.
    [85] RAMES H A, HUTTON J F, WATTERS K. An introduction to rheology [M].Elsevier Science Publishers, New York, NY, 1989.
    [86] LAXMANAN V, FLEMINGS M C. Deformation of semi-solid Sn-15 pet Pb alloy[J]. Metallugical Transaction A, 1980, 11A(12): 1927-1937.
    [87] BROWN S B. Exploiging and characterizing the fundamental fheology of semi-solidmaterials [C]. Proc. 2nd Int. Conf. Semi-Solid Alloys Compos., 1993: 183-192.
    [88] ILEGBUSI O J, SZEKELY J. Matherematical representation of the velocity ,temperature and solid fraction in an electromagnetically stirred solidification melt [J].Iron Steel Inst. Jpn. International, 1990, 30(5): 372-380.
    [89] FLEMINGS M C, et al. Machine casting of ferrous alloys [R]. Interim TechnicalReport, ARPA Contract No. DAAG46-73.C0110. Dec. 1973.
    [90] FLEMINGS M C, et al. Machine casting of ferrous alloys [R]. Interim TechnicalReport, ARPA Contract No. DAAG46-73.C0110. Dec. 1974.
    [91] FLEMINGS M C, et al. Machine casting of ferrous alloys [R]. Interim TechnicalReport, ARPA Contract No. DAAG46-73.C0110. June. 1975.
    [92] FLEMINGS M C, et al. Machine casting of ferrous alloys [R]. Interim TechnicalReport, ARPA Contract No. DAAG46-73.C0110. Dec. 1975.
    [93] FLEMINGS M C, et al. Machine casting of ferrous alloys [R]. Interim TechnicalReport, ARPA Contract No. DAAG46-73.C0110. June. 1976.
    [94] FLEMINGS M C, et al. Machine casting of ferrous alloys [R]. Interim TechnicalReport, ARPA Contract No. DAAG46-73.C0110. June. 1977.
    [95] FLEMINGS M C, et al. Thixocasting steel parts [R]. Final Technical Report,ARPA'Contract No. DAAG46-77-C-0033, Sept. 1978.
    [96] KLEINER S, BEFFORT O, WAHLEN A, UGGOWITZER P J. Microstructure andmechanical properties of squeeze cast and semi-solid cast Mg-Al alloys [J]. Journalof Light Metal, 2002, 2( 4): 277-280.
    [97] CZETWINSKI F. The Generation of Mg-Al-Zn alloys by semisolid state mixing ofparticulate precursors [J]. Acta Materialia, 2004, 52(17): 5057-5069.
    [98] WANG J G, LU P, WANG H Y, JIANG Q C. Effect of predeforming on thesemisolid microstructure of Mg-9Al-0.6Zn alloy [J]. Materials Letters, 2004, 58(30):3852-3856.
    [99] F. CZERWINSKI, A. ZIELINSKA-LIPIEC. The Microstruture evolution duringsemisolid molding of a creep-resistant Mg-5Al-2Si alloy [J]. Acta Materialia, 2005,53(12): 3433-3444.
    [100] JI S, ROBERTS K, FAN Z. Isothermal coarsening of fine and spherical particles insemisolid slurry of Mg-9Al-lZn alloy under low shear [J]. Scripta Materialia, 2006,55(11): 971-974.
    [101]袁森.形变镁合金半固态加热过程中的再结晶及晶粒球状化[J].材料热处理学报,2004(3):62~65.
    [102]陆萍.SIMA法AZ91D镁合金半固态坯料的制备[D].长春:吉林大学,2005.
    [103]王金国.应变诱发法镁合金AZ91D半固态组织演变机制[D].长春:吉林大学,2006.
    [104]吉泽升.应变诱发AZ91D镁合金半固态组织形态及形成机理[J].中国有色金属学报,2003(5):1156-1160.
    [105]王武孝.AZ91D镁合金的压缩形变组织及半固态等温组织演变[J].金属热处理,2005(7):21-25.
    [106]姚亮宇.SIMA法压缩形变镁合金半固态组织的研究[D].西安:西安理工,2004.
    [107]张元好,曾大新.颗粒增强金属基复合材料的制备及应用[J].湖北汽车工业学院学报,2002,12(4):24-28.
    [108]吴人洁.复合材料[M].天津大学出版社,2000.
    [109]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002(06):3-6.
    [110]华林.汽车新材料与先进制造技术[J].汽车工艺与材料,1999,4:7-9.
    [111]田丁华,严学华.新材料在汽车工业中的应用[J].铸造设备研究,2001,(3):46-48.
    [112]陈体军,郝远.预变形SiCp/ZA27复合材料在半固态等温热处理过程中组织的扫描电镜观察[J].铸造,2003,52(3):180-184.
    [113]王斌,易丹青,李洪武,刘会群.半固态挤压亚微米SiC/2014复合材料的组织性能研究[J].Hot Working Technology,2005(7):26-28.
    [114]祖丽君,罗守靖.SiC_p/2024铝合金复合材料粉末混合半固态挤压法制备[J].中国有色金属学报,2002(10):179-183.
    [115] WATT D F, XU X Q, LLOYD D J. Effects of particle morphology and spacing on thestrain fields in a plastically deforming matrix [J]. Acta Mater. , 1996, 44: 789-799.
    [116] SHEN Y L, FINOT M, NEEDLEMAN A, Suresh S. Effective elastic response oftwo-phase composites [J]. ActaMetall Mater., 1994, 42: 77-97.
    [117] BROCKENBROUGH J R, SURESH S, WIENECKE H A. Deformation ofmetal-matrix composites with continuous fibers: geometrical effects of fiberdistribution and shape [J]. Acta Metall Mater., 1991, 39: 739-752.
    [118] HO S, SAIGAL A. Three-dimensional modeling of shermal residual stresses andmechanical behavior of cast SiC/Al particulate composites [ J]. Acta Metall Mater. ,1994, 42: 3253-3262.
    [119] LLOYD D J. Aspects of fracture in particulate reinforced metal matrix composites [J].Acta Metall Mater., 1991, 39: 59-71.
    [120] MANOHARAN M, LEWANDOWSKI J J. Crack iinitiation and growth toughness ofan aluminum metal-matrix composite [J]. ActaMetall Mater., 1990, 38: 489-496.
    [121] FINOT M, SHEN Y L, NEEDLEMAN A AND SURRESH S. Micromechanicalmodeling of reinforcement fracture in particle-reinforced metal-matrix composite [ J].Metall. Mater. Trans., 1994, 25A: 2403-2420.
    [122] FLOM Y, ARSENAULT R J. Interfacial bond strength in an aluminium alloy 6061-SiC composite [J]. Mater. Sci. Eng., 1986, 77: 191-197.
    [123] DOWNES T J, KING J E. The effect of microstructure on the fracture toughness of ametal-matrix composite [J]. Composites, 1993, 24: 276-280.
    [124] KNOWLES D M, DOWNES T J, KING J E. Crack closure and residual stress effectsin fatigue of a particle-reinforced metal matrix composite [ J]. Acta Metall . Mater. ,1993,41: 1189~1196.
    [125] CHRISTMAN J F. Deformation in metal-ceramic composites [J]. Acta Metall.Mater., 1989, 37(10): 3030-3035.
    [126] POVIRK G L, STOUT M G AND BOURKE M, et al. Thermally and mechanicallyinduced residual strains in Al-SiC composites [J]. Acta. Metall., 1992, 40(9):2391-2412.
    [127] MEIJER G, ELLYIN F, XIA Z. Aspects of residual thermal stress/strain in particlereinforced metal matrix composites [J]. Composites Part B-Engineering, 2000, 31(1):29-37.
    [128] SONG S G, SHI N, GRAYIII G T AND ROBERTS J A. Thermal residual stress infunctionally graded and layered 6061 Al/SiC materials [J]. Metall. Mater. Trans.,1996, 27A: 3241-3249.
    [129] POVIRK G L, STOUT M G, BOURKE M, et al. Mechanically induced residualstresses in Al/SiC composites [J]. Scripta. Metall. Mater., 1991, 25: 1883-1888.
    [130] GUPTA M., LAI M O, BOON M S, et al. Regarding the SiC particulates sizeassociated microstructural characteristics on the aging behavior of Al-4.5 Cu metallicmatrix [J]. Mater. Res. Bull ., 1998, 33: 199-209.
    [131] ARSENAULT R J. The Strengthening of aluminum alloy 6061 by fiber and plateletsilicon carbide [J]. Mater . Sci. Eng., 1984, 64: 171-181.
    [132] CORBIN S, WILKINSON D. The influence of particle distribution on the mechanicalresponse of a particulate metal matrix composite [J]. Acta. Metall. Mater., 1994,42: 1311-1318.
    [133] ARSENAULT R J, WANG L, FENG C R. Strengthening of composites due tomicrostructural changes in the matrix [J]. Acta. Metall. Mater., 1991, 39: 47-57.
    [134] KIM Y H, LEE S AND KIM N. Fracture mechanisms of a 2124 aluminum matrixcomposite reinforced with SiC whisker [J]. Metall. trans., 1992, 23: 2589-2596.
    [135] TAYA M, LULAY K, LLOYD D. Strengthening of a particulate metal matrixcomposite by quenching [J]. Acta. Metall. Mater., 1991, 39: 73-87.
    [136] WANG Z, CHEN T, LLOYD D. Stress distribution in particulate reinforcedmetal-matrix composites subjected to external load [J]. Metall. Trans., 1993, A24:197-207.
    [137]韩嫒嫒,李凤珍等.颗粒形状对铝基复合材料热残余应力影响的有限元分析[J].哈尔滨理工大学学报,2()()3,8(5):83-87.
    [138] LEWANDOWSKI J J, LIU C, HUNT JR W H. Effects of matrix microstructure andparticle distribution on fracture of an aluminum metal matrix composite [J]. Mater .Sci . Eng., 1989 A, 107: 241-255.
    [139] SHI N, ARSENAULT R J. Influence of Thermally induced plasticity on thedeformation of SiC/Al composites under tensile or compressive loading [J]. Scripta.Metall. Mater., 1993, 28: 623-628.
    [140] DAVISON D L. Tensile deformation and fracture toughness of 2014 + 15vol pet SiCparticulate composite [J]. Metall. Trans., 1991, A22: 113-123.
    [141] CHRISTMAN T, NEEDLEMAN A, SURESH S. Experimental and numerical studyof deformation in metal-ceramic composites [J]. Acta Metallurgies 1989, 37(11):3029-3050.
    [142] ARSENAULT R J, SHI N, FENG C R, WANG L. Localized deformation of SiC-Alcomposites [J]. Mater. Sci. Eng., 1991 A, 131: 55-68.
    [143] MCHUGH P E, ASARO R J, SHIH C F. Computational modeling of metal matrixcomposite materials-isothermal deformation patterns in ideal microstructures [J]. Acta.Metall. Mater. , 1993, 41: 1461-1476.
    [144] CORBIN S F, WILKINSON D S. The influence of particle distribution on themechanical response of a particulate metal matrix composite [J]. Acta. Metall. Mater.,1994,42: 1311-1318.
    [145] LEVY A, PAPAZIAN J M. Tensile properties of short fiber-reinforced SiC/Alcomposites: part II. Finite-Element Analysis [J]. Metall. Trans. A, 1990, 21: 411-420.
    [146]陈威.硅线石颗粒/铝半固态复合液锻连挤成型工艺的研究[D].哈尔滨:哈尔滨工业大学硕士论文,1994,14-25.
    [147] NAGY EI-KADDAH, CHANG K E. On the dispension of SiC-Al slurries in rotatingflows [J]. Mater. Sci.Eng., 1991, A144: 221-227.
    [148] RANA F, DHINDAW B K, STEFANESCU D M. Optimization of SiC particle dispestion in aluminium metal-matrix composite [J]. AFS Trans., 1989, 41: 255-264.
    [149] JAE CHAN CHOI, HYUNG JIN PARK. Microstructural characteristics of aluminum 2024 by cold working in the SIMA process. Mater [J]. Proc. Technol.. 1998, 82: 107-116.
    [150]汪大年.金属塑性成形原理[M].北京:机械工业出版社.1984:173-181.
    [151]刘全坤.材料成形基本原理[M].北京:机械工业出版社,2004,10.
    [152] DONALD R. ASKELAND. The science and engineering of materials [M]. Boston: PSW Publishing Company, 1994.
    [153]胡汉起.金属凝固[M].冶金工业出版社,1985年.
    [154]汪江涛.SIMA制备半固态LY11合金的工艺研究[J].锻压技术,2003(3):37-39.
    [155]毛卫民.金属的再结晶与晶粒长大[M].冶金工业出版社.1994.
    [156]刘正兴,孙雁,王国庆.计算固体力学[M].上海交通大学出版社,2000.
    [157] LI H, LI J B, SUN L Z, LI S X, WANG Z G. Effect of low temperature treatment regime on residual stress state near interface in bonded SiC/6061A1 compounds [J]. Mater. Sci. Eng., 1996, A221: 179-186.
    [158]HO S, SAIGAL A. Three-dimensional modeling of thermal residual stresses and mechanical behavior of cast SiC/Al particulate composites [J]. Acta Metall Mater., 1994,42: 3253-3262.
    [159]王秀芳,武高辉,姜龙涛,耿洪滨.冷热循环处理对SiC_p/2024Al尺寸稳定性的影响[J].材料热处理学报,2006,1:23-27.
    [160]廖利,D.Lai M.Clavel.CMM_p复合材料热残余应力的计算模型[J].武汉城市建设学院学报,1997,2:10-14.
    [161]胡赓祥,钱苗根.金属学[M].上海科学出版社,1980.
    [162]胡赓祥,蔡殉,戎咏华.材料科学基础[M].上海交通大学,2006.
    [163]MARY VOGELSANG, ARSENAULT R J, FISHER R M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composite[J]. Metall. trans., 1986, 17A: 379-389.
    [164]杨维琴.浅析铸造铝活塞针孔、气孔的产生及防治[J].山西科技2005,6:126-127.
    [165]梁涛,张明晶,刘勇兵,费翠萍.压铸铝硅合金中气孔形成及影响因素[J].汽车工艺与材料2000,2:8-11.
    [166]HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model [J]. Composites Part A, 2001, 32(2): 143-172.
    [167]HUANG Z M, RAMAKRISHNA S. Towards automatic designing of 2D biaxial woven and braided fabric reinforced composites [J]. Comp. Mater., 2002, 36(13): 1541-1579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700