用户名: 密码: 验证码:
C_f/SiC复合材料用玻璃陶瓷系抗氧化涂层的设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强碳化硅(C_f/SiC)复合材料是航空航天用热结构部件极具竞争力的候选材料,高温下易被氧化的特性是影响其应用化进程的关键因素之一。本文在研究先驱体浸渍—裂解(PIP)法制备的C_f/SiC复合材料的氧化性质和氧化机理基础上,提出理想抗氧化涂层材料的基本性能要求:高致密度、匹配的热膨胀系数、工作温区合适的粘流特性、与复合材料强结合,以此为依据选择三种用于不同温区的材料体系:MgO-Al_2O_3-SiO_2(MAS)玻璃陶瓷、BaO-Al_2O_3-SiO_2(BAS)玻璃陶瓷和硅酸钇,测试各材料的热膨胀系数、自愈合温区和烧结致密度等性能,针对各自的优缺点设计制备出五种不同的涂层结构体系。以玻璃粉体为主要原料,采用微波技术首次在C_f/SiC复合材料表面原位烧结玻璃陶瓷涂层,研究了1000~1500℃范围不同使用条件下涂层复合材料的静态氧化和热冲击氧化性能。
     用热重法研究了C_f/SiC复合材料在600~1500℃范围内的等温氧化特性和非等温氧化特性。结果表明,复合材料的氧化以转化率70%为界,可分为线性阶段和非线性阶段。低温区(600~800℃),线性氧化阶段和非线性氧化阶段的表观活化能分别为135.08kJ/mol和164.95kJ/mol;中温区(900~1100℃),复合材料的表观活化能大大降低,线性氧化阶段和非线性氧化阶段的表观活化能分别为36.64kJ/mol和58.79kJ/mol。低温区内不同温度下氧化时复合材料的最大失重率Xmax数值接近。高温区(1100~1500℃),Xmax随着氧化温度的升高而逐渐减小;氧化后复合材料的强度保留率随氧化温度的升高而降低。采用无模式函数法计算C_f/SiC复合材料的非等温氧化动力学,结果表明Friedman-Reich-Levi法为较好的分析方法,随着氧化过程进行,氧化温度升高,活化能逐渐减小。
     通过熔盐热歧化反应,在C_f/SiC复合材料表面制备了厚度为6~10μm的钛金属化层。金属化层中与复合材料的结合良好,有封孔作用和阻碳作用,在1000℃具有一定的抗氧化能力。以钛金属化层为过渡层,设计并制备了适用温区为1000~1200℃的Ti/MAS1双层涂层。涂层复合材料在1000℃氧化720min后,失重率为0.95%,强度保留率为99.3%,抗氧化性能良好。在1200℃的温度下,涂层复合材料仍具有较好的长时抗氧化能力,但是在更高温度下,MAS1玻璃陶瓷的粘度过小,出现明显的流淌和气孔现象。
     设计并制备了在1350℃附近自愈合能力较好的BAS_2/BAS1双层涂层。作为C_f/SiC复合材料用涂层材料,BAS系玻璃陶瓷的热膨胀系数稍大,使涂层内部热应力较大,但高温烧结时BAS_2涂层元素向复合材料扩散形成的过渡层,可提高涂层与复合材料的结合强度,改善二者的相容性。BAS_2玻璃陶瓷的优化烧结温度为1050℃,该温度下烧结的涂层结晶度最高。BAS_2/BAS1涂层由内而外具有梯度渐变的热膨胀系数,且BAS1外层愈合能力较强,有利于保证涂层的致密性。涂层复合材料在1350℃经过96次热冲击960min氧化后,失重率为5.04%,表面只有少量小尺寸微裂纹出现,具有较好的抗氧化性能和一定的抗热冲击性能。
     在BAS_2玻璃中加入Y_2O_3,制备了BAS_2-Y_2O_3涂层。BAS_2玻璃与Y_2O_3在1327℃下反应生成高熔点、低热膨胀系数的硅酸钇,在冷却过程中BAS熔体析出六方钡长石,因此BAS_2-Y_2O_3涂层的耐温性能较好,热膨胀系数较低。微波烧结法能有效提高BAS_2-Y_2O_3涂层材料的烧结致密度,Ar-H2保护气氛下烧结可提高涂层元素的扩散能力,改善涂层与复合材料的结合。对于Si:Y为1:1的BAS_2-Y_2O_3涂层,优化烧结工艺为:烧结温度1500℃,烧结时间30min,随炉冷却。优化工艺得到的BAS_2-Y_2O_3涂层复合材料在1400℃下300min氧化后失重率为1.08%;由于涂层材料热膨胀系数的限制,涂层的抗热冲击性能一般。
     微波烧结制备了BAS_2-Y_2O_3/SiO2-Y_2O_3双层涂层,内层为六方钡长石-Y2SiO5复合相,外层为Y2Si2O7。内层与复合材料和外层均有较好结合。Y_2O_3与SiO2在1500℃下常规烧结时,硅酸钇合成反应难以进行;微波烧结Y_2O_3:SiO2为1:2的涂层得到Y2Si2O7。BAS_2-Y_2O_3/SiO2-Y_2O_3双层涂层复合材料在1400℃下经过15次热冲击150min氧化后失重率为1.22%。氧化实验后涂层愈加致密,没有微裂纹生成,具有良好的抗热冲击性能。
     以BAS_2玻璃为烧结助剂,制备了BAS_2玻璃含量梯度渐变的B-50/B-10/B-0硅酸钇涂层,使用温区为1400~1500℃。BAS_2玻璃将硅酸钇生成温度降低到1350℃,并显著促进块体烧结致密化。B-50/B-10/B-0三层涂层在烧结过程中由内而外逐步软化,使致密度提高。烧结涂层主晶相为Y2Si2O7,还有少量分布着板条状钡长石晶体颗粒的BAS相。B-50/B-10/B-0涂层在1400~1500℃下具有优异的抗热冲击性能和良好的抗氧化性能,随着氧化时间的延长,涂层复合材料失重率近似线性增大,热冲击对氧化速率影响很小。1400℃下经过11次热冲击110min氧化后,涂层复合材料的失重率仅为0.87%;1500℃下经过11次热冲击110min氧化后,涂层复合材料的失重率为2.45%,两个样品的强度保留率均大于70%。
     研究表明,玻璃陶瓷是复合材料抗氧化涂层的理想选材。其中,高熔点、低热膨胀系数的晶体相维持涂层的高温完整性,实现涂层与复合材料热匹配;特定温区内软化粘流的玻璃相具有较好的愈合能力,在制备过程中封填复合材料表面缺陷以提高涂层结合力,在使用过程中保证涂层的致密性。两相互相配合,使玻璃陶瓷涂层具有良好的抗氧化性能。
Carbon fiber reinforced silicon carbide matrix (C_f/SiC) composite is an attractive candidate for thermal structural components. Meanwhile, it is easy to be oxidized above 400℃in oxidizing atmosphere, which is a key obstacle for its application. In this dissertation, based on the study of oxidation kinetics for C_f/SiC composite fabricated by precursor infiltration and pyrolysis (PIP) process, four basic requirements for oxidation resistant coating were proposed. They are high density, appropriate coefficient of thermal expansion (CTE), proper viscosity at working temperatures and excellent binding with C_f/SiC composite. Three kinds of materials, which were MgO-Al_2O_3-SiO_2(MAS)glass-ceramic, BaO-Al_2O_3-SiO(2BAS)glass-ceramic and yttrium silicate, were chosen to prepare oxidation resistant coating. Some properties of them, such as CTE, self-sealing temperatures and sintering density, were characterized. Based on the properties, five effective coating systems used at different temperatures were designed and prepared. Microwave was adopted to firstly sinter coatings on the surface of C_f/SiC composite. Using glass as staring materials, glass-ceramic coatings were prepared by in situ sintering method. The performance of different coated C_f/SiC composites was tested in static state or under thermal shocks at 1000~1500℃in air.
     Kinetics of isothermal oxidation and non-isothermal oxidation of C_f/SiC composite was characterized by thermogravimetry at 600~1500℃. The results show that the oxditaion of C_f/SiC composite can be divided into linear stage and non-linear stage by the transition ratio of 70%. The apparent activation energies, at linear and non-linear oxidation stages at lower temperatures (600~800℃), are 135.08kJ/mol and 164.95kJ/mol, respectively. Whereas at medium temperatures (800~1100℃), those greatly decrease to 36.64kJ/mol and 58.79kJ/mol, respectively. At lower temperatures, the maximal weight losses (Xmax) of C_f/SiC composites are closer to each other at different temperatures, while Xmax decreases with the increasing of temperature at higher temperatures (1100~1500℃). The residual strength of C_f/SiC composite after oxidation debases with the increasing of oxidation temperature at temperatures above 1100℃. Model-free method was used to calculate isothermal oxidation kinetic of C_f/SiC composite. The results show that Friedman-Reich-Levi is an appropriate method for C_f/SiC composite. With the progress of oxidation, the oxidation temperature increases gradually and the activation energy of C_f/SiC composite decreases sharply.
     By disproportionation reaction in molten salt, titanium coating with 6~10μm in thickness can be fabricated on the surface of C_f/SiC composite. The titanium coating, binding tightly with the composite, can seal the defects on the surface of the composite and prevent the diffusion of carbon. Therefore, titanium coated composite can be protected from oxidation for certain duration at 1000℃. Using titanium coating as a transition layer, Ti/MAS1 coating was designed and prepared to prevent C_f/SiC composite from being oxidized at 1000~1200℃. The weight loss of the coated sample was 0.95% after oxidation at 1000℃for 720min, and the residual strength ratio was 99.3%. The coated sample was effective for long time at 1200℃in oxidizing atmosphere, while it receded above 1200℃for the low viscosity of MAS1 glass.
     BAS_2/BAS1 coating with good self-sealing ability at 1350℃was designed and prepared. The CTE of BAS glass is higher than that of C_f/SiC composite. Consequently, great thermal stress is induced in BAS coating during cooling process and the compatibility between the coating and the composite is not very good. However, a graded transition layer, formed by the elements diffusion of BAS glass into the composite at high temperatures, can enhance the binding strength between the coating and the composite, and improve the compatibility between them. The crystallinity of BAS_2 glass-ceramic coating sintered at optimized sintering temperature of 1050℃is the highest. The CTE of BAS_2/BAS1 coating decreases gradually from the outer layer to the inner layer, and the outer layer has better sealing ability. As a result, the weight loss of the BAS_2/BAS1 coated sample was 5.04% and little micro-cracks appeared after oxidition at 1350℃for 960 min and thermal shocks for 96 times.
     By adding Y_2O_3 to BAS_2 glass, a novel BAS_2-Y_2O_3 coating was fabricated. The reaction between Y_2O_3 and BAS_2 fusion and the influences on oxidation resistant capability were studied. The results show that yttrium silicate with higher melting point and lower CTE than BAS_2 glass-ceramic is produced in BAS_2-Y_2O_3 at 1327℃, then hexacelsian crystallizes from BAS fusion during cooling process. Consequently, BAS_2-Y_2O_3 coating with lower CTE can be used at higher temperatures. The densification of BAS_2-Y_2O_3 coating can be improved by microwave sintering. The diffusion capability of coating elements is enhanced in Ar-H2 atmosphere; thereby the binding between the coating and the composite is improved. For BAS_2-Y_2O_3 coating with Si:Y =1:1, the optimized technological conditions are: sintering at 1500℃for 30min and furnace cooling. After oxidation at 1400℃for 300min, the weight loss of BAS_2-Y_2O_3 coated composite was 1.08%. Because of higher CTE of the coating materials than that of the composite, the thermal shock resistance of the coating can not meet the requirements well.
     BAS_2-Y_2O_3/SiO2-Y_2O_3 double layered coating was designed and prepared. After sintering, the main phases of the inner layer are hexacelsian and Y2SiO5, and the main phase of the outer layer is Y2Si2O7. Little yttrium silicate is obtained in SiO2-Y_2O_3 sintered at 1500℃by the traditional method. Meanwhile, Y2Si2O7 was produced in the coating with Y_2O_3:SiO2=1:2 sintered by microwave. After thermal shocks of 15 times and oxidation for 150min at 1400℃, the weight loss of BAS_2-Y_2O_3/SiO2-Y_2O_3 coated composite was 1.22%. The coating became denser and crack-free during thermal shocks, which indicated that the coating should have good thermal shock resistance.
     Using BAS_2 as sintering addition, a graded B-50/B-10/B-0 yttrium silicate coating was prepared, which was effective at 1400~1500℃. The reaction temperature of Y_2O_3 and SiO2 is decreased to 1350℃because of BAS_2 glass, and the densification is also improved. During sintering, BAS glass diffuses from the inner layer to the outer layer, and B-50/B-10/B-0 coating is softened from the inner layer to the outer layer, thereby the coating becomes denser. The main phases of the sintered coating are Y2Si2O7 and BAS glass with some hexacelsian crystals. The thermal shock and oxidation resistance of B-50/B-10/B-0 coating is excellent. With the increase of oxidation time, the weight loss of the coated sample increased in linear. Thermal shock slightly influences the coating. After thermal shocks of 11 times and oxidation for 110min at 1400℃, the weight loss of coated sample was only 0.87%, while that was 2.45% at 1500℃. The residual strength of both samples was higher than 70%.
     Glass-ceramic is a promising candidate for oxidation resistant coating for C_f/SiC composite. Crystals with high melting points and low CTE keep the integrity of coating at high temperatures and the thermal matching between the coating and the composite. Glass softened at given temperatures has good sealing capability. On one hand, glass can seal the defects in the surface of the composite and improve the bond between them. On the other hand, the density of the coating is ensured by the softened glass at high temperatures. These two phases act together to endow good oxidation resistance for glass-ceramic coating.
引文
[1]张立同,成来飞,徐永东,等.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报, 2006, 26(3): 226-231.
    [2] J. Aveston. In Properties of Fiber Composite, National Physical Laboratory Conference Proceeding[M]. Guildford, England: IPC Science and Technology Press, 1971.
    [3]曹英斌.先驱体转化-热压工艺制备Cf/SiC复合材料工艺、结构、性能研究[博士学位论文].长沙:国防科学技术大学, 2001.
    [4] K. Kobayashi,K. Miyazaki,I. Ogawa,et al. Carbon/ceramics composites - preparation and properties[J]. Mater. Des., 1988, 9(1): 10-21.
    [5]朱时珍,李俊红,于晓东.连续碳纤维增强碳化硅复合材料的制备与性能研究[J].北京理工大学学报, 2002, 22(4): 422-424.
    [6] J.F. Despres,M. Monthioux. Mechanical properties of C/SiC composites as explained from their interfacial features[J]. J. Eur. Ceram. Soc., 1995, 15(3): 209-224.
    [7]张桂环.碳/碳化硅复合材料的结构与性能[J].炭素, 1989(2): 30-33,36.
    [8] R. Naslain. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview[J]. Compos. Sci. Technol., 2004, 64(2): 155-170.
    [9]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术, 2003(1): 24-32.
    [10]赵渠森.先进复合材料手册[M].北京:机械工业出版社, 2003.
    [11]邹武.三维编织C/SiC复合材料的制备及其性能研究[博士学位论文].西安:西北工业大学, 2001.
    [12]姜广鹏.反应熔体浸渗法制备C/SiC摩阻材料的结构与性能[硕士学位论文].西安:西北工业大学, 2005.
    [13] Y.D. Xu,L.F. Cheng,L.T. Zhang,et al. Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J]. Carbon, 1999, 37(8): 1179-1187.
    [14] R. Naslain, CVI composites, in Ceramic-Matrix Composites[M], W. R, Editor.New York: Chapma Hall, 1992: 199-244.
    [15]朱时珍,李俊红,于晓东.连续碳纤维增强碳化硅复合材料的制备与性能研究[J].北京理工大学学报, 2002, 22(4): 422-424.
    [16]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社, 2004.
    [17]张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科学技术大学出版社, 2000.
    [18] Q.Y. Tong,L.F. Cheng. Liquid infiltration joining of 2D C/SiC composite[J]. Sci. Eng. Compos. Mater. , 2006, 13(1): 31-36.
    [19]所俊,陈朝辉,韩卫敏.硅树脂高温转化陶瓷结合层连接陶瓷材料[J].硅酸盐学报, 2005, 33(3): 386-390.
    [20] J.T. Xiong,J.L. Li,F.S. Zhang,et al. Joining of 3D C/SiC composites to niobium alloy[J]. Scripta Mater., 2006, 55(2): 151-154.
    [21]张勇. C/SiC复合材料与高温合金的高温钎焊研究[博士学位论文].北京:钢铁研究总院, 2006.
    [22] A.G. Odeshi,H. Mucha,B. Wielage. Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite[J]. Carbon, 2006, 44(10): 1994-2001.
    [23]张青.碳/碳化硅复合材料热膨胀行为研究[硕士学位论文].西安:西北工业大学, 2004.
    [24]王建方,陈朝辉,郑文伟.热压工艺在Cf/SiC复合材料制备中的应用[J].航空材料学报, 2002, 22(3): 22-25.
    [25]张绪虎,汪翔,贾中华,等.小推力姿控轨控火箭发动机材料技术研究现状[J].导弹与航天运载技术, 2005, 279(6): 32-37.
    [26]殷小玮,成来飞,张立同. 3-D C/SiC复合材料的氧化行为[J].航空学报, 1999, 20(6): 569-572.
    [27] R. Naslain,A. Guette,F. Rebillat,et al. Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents[J]. J. Mater. Sci., 2004, 39(24): 7303-7316.
    [28]殷小玮. 3D C/SiC复合材料的环境氧化行为[博士学位论文].西北工业大学, 2001.
    [29] F. Raether,J. Meinhardt,A. Kienzle. Oxidation behaviour of carbon short fibre reinforced C/SiC composites[J]. J. Eur. Ceram. Soc., 2007, 27(2-3): 1217-1221.
    [30] C. Vix-Guterl,C. Grotzinger,J. Dentzer,et al. Reactivity of a C/SiC composite in water vapour[J]. J. Eur. Ceram. Soc., 2001, 21(3): 315-323.
    [31] F. Lamouroux,X. Bourrat,R. Naslain,et al. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: 1, experimental approach[J]. J. Am. Ceram. Soc., 1994, 77(8): 2048-2057.
    [32] F. Lamouroux,S. Bertrand,R. Pailler,et al. Oxidation resistant carbon fiber reinforced ceramic matrix composites[J]. Compos. Sci. Technol., 1999, 59(7): 1073-1085.
    [33] F. Lamouroux,X. Bourrat,R. Naslain,et al. Silicon carbide infiltration of porous C/C composites for improving oxidation resistance[J]. Carbon, 1995, 33(4): 525-535.
    [34] M.C. Halbig,D.N. Brewer, Degradation of continuous fiber ceramic matrix composites under constant-load conditions[R]. NASA/TM-2000-20968.
    [35] X.G. Luan,L.F. Cheng,Y.D. Xu,et al. Stressed oxidation behaviors of SiC matrix composites in combustion environments[J]. Mater. Lett., 2007, 61(19-20): 4114-4116.
    [36] F. Lamouroux,G. Camus. Oxidation effects on the mechanical properties of 2D woven C/SiC composites[J]. J. Eur. Ceram. Soc., 1994, 14(2): 177-188.
    [37] F. Lamouroux,R. Naslain,J.M. Jouin. Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: II, theoretical approach[J]. J. Am. Ceram. Soc., 1994, 77(8): 2058-2068.
    [38] R.M. Sullivan. A model for the oxidation of carbon silicon carbide composite structures[J]. Carbon, 2005, 43(2): 275-285.
    [39] M.C. Halbig. Oxidation kinetics and strength degradation of carbon fibers in a cracked ceramic matrix composite[M]. 2004. Cocoa Beach, FL, United States: American Ceramic Society, Westerville, OH 43086-6136, United States.
    [40] A. J. Echer,J. D. Cawley,T.A. Parthasarathy. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix[J]. J. Am. Ceram. Soc., 1995, 78(4): 972-980.
    [41]武七德,童元丰.碳化硅材料的氧化及抗氧化研究[J].陶瓷科学与艺术, 2002(1).
    [42] X. Wei,L.F. Cheng,L.T. Zhang,et al. Modeling the effects of reactor wall reaction on isothermal CVI process of C/SiC composites[J]. Comput. Mater. Sci., 2007, 38(4): 702-706.
    [43] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments[J]. Carbon, 2000, 38(15): 2103-2108.
    [44]殷小玮,成来飞,张立同,等. 3D C/SiC复合材料在燃气中的氧化行为[J].兵器材料科学与工程, 2000, 23(5): 3-7.
    [45] X.W. Yin,L.F. Cheng,L.T. Zhang,et al. Oxidation behaviors of C/SiC in the oxidizing environments containing water vapor[J]. Mater. Sci. Eng., A, 2003, 348(1-2): 47-53.
    [46] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Effect of coating defects on oxidation behavior of three dimensional C/SiC composites from room temperature to 1500°C[J]. J. Mater. Sci., 2002, 37(24): 5339-5344.
    [47]闫志巧,熊翔,肖鹏,等. MSI工艺制备C/SiC复合材料的氧化动力学和机理[J].无机材料学报, 2007, 22(6): 1151-1158.
    [48]闫志巧,熊翔,肖鹏,等.熔硅浸渗工艺快速制备C/SiC复合材料的非等温氧化行为[J].中国有色金属学报, 2007, 17(10): 1597-1603.
    [49] M. Aparicio,A. Durán. Infiltration of C/SiC composites with silica sol-gel solutions: Part II. Infiltration under isostatic pressure and oxidation resistance[J]. Mater. Res. Soc., 1999, 14(11): 4239-4245.
    [50] C.Q. Tong,L.F. Cheng,X.W. Yin,et al. Oxidation behavior of 2D C/SiC composite modified by SiB4 particles in inter-bundle pores[J]. Compos. Sci. Technol., 2008, 68(3-4): 602-607.
    [51] X.W. Yin,L.F. Cheng,L.T. Zhang,et al. Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated with chromium silicide[J]. Mater. Sci. Eng., A, 2000, 290(1-2): 89-94.
    [52] B. Valerie,G. Paul,M. Erik. Carbon fiber reinforced (YMAS) glass-ceramic matrix composites. IV. Thermal residual stresses and fiber/matrix interfaces[J]. Compos. Sci. Technol., 1998, 58: 409-418.
    [53]尹洪峰,徐永东,成来飞.界面相对碳纤维增韧碳化硅复合材料性能的影响[J].硅酸盐学报, 2000, 28(1): 1-5.
    [54] F. Lamouroux,X. Bourrat,R. Nasalain,et al. Structure/oxidation behavior relationship in the carbonaceous constituents of 2D-C/PyC/SiC composites[J]. Carbon, 1993, 31(8): 1273-1288.
    [55] M. Kuntz,B. Meier,G. Grathwohl. Residual stresses in fiber-reinforced ceramics due to thermal expansion mismatch[J]. J. Am. Ceram. Soc., 1993, 76(10): 2607-2612.
    [56] R. Naslain. The concept of layered interphases in SiC/SiC. in High Temperature Ceramic Matrix Composites II[M]. 1995: Ceram. Trans.
    [57] H.T. Lin,P.F. Becher. Effect of fiber coating on lifetime of Nicalon fiber-silicon carbide composites in air[J]. Mater. Sci. Eng., A, 1997, 231(1-2): 143-150.
    [58] K.L. Luthra. Oxidation resistant fiber coatings for non-oxide ceramic composites[J]. J. Am. Ceram. Soc., 1997, 80(12): 3253-3257.
    [59] F.Heurtevent. (PyC-SiC) Nanoscale-multilayered materials: application to interphases in the most mctural composites[Ph D. Thesis]. France: Univ. Bordeaux, 1996.
    [60] M.B. Theodore,R.K. Elizabeth,L.C. Edgar,et al. Ceramic composites with multilayer interface coatings[J]. J. Am. Ceram. Soc., 2000, 83(12): 3014-20.
    [61] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Oxidation behavior from room temperature to 1500°C of 3D-C/SiC composites with different coatings[J]. J. Am. Ceram. Soc., 2002, 85(4): 989-991.
    [62]李春华,黄可龙,李效东,等.炭材料高温抗氧化研究进展[J].材料导报, 2004, 18(2): 56-58.
    [63]杨星,崔红,闫联生. C/C复合材料抗氧化涂层研究进展[J].炭素, 2006(4): 16-22.
    [64] S.J. Wu,L.F. Cheng,L.T. Zhang,et al. Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating[J]. Surf. Coat. Technol., 2006, 200(14-15): 4489-4492.
    [65] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Thermal expansion and oxidation of 3D C/SiC composites with different coatings from room temperature to 1400°C[J]. Sci. Eng. Compos. Mater., 2002, 10(5): 377-382.
    [66] S.J. Wu,L.F. Cheng,L.T. Zhang,et al. Effect of CVD SiC coatings on oxidation behaviors of three dimensional C/SiC composites[J]. J. Inorg. Mater., 2005, 20(1): 251-256.
    [67] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites[J]. Carbon, 2002, 40(12): 2229-2234.
    [68]索相波,陈朝辉,王松,等.聚硅氧烷封孔处理对Cf/SiC复合材料抗氧化性能的影响[J].航空材料学报, 2004, 24(6): 34-37.
    [69] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon, 2001, 39(8): 1127-1133.
    [70] Y.S. Liu,L.F. Cheng,L.T. Zhang,et al. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite[J]. Mater. Sci. Eng., A, 2007, 466(1-2): 172-177.
    [71] C. Courtois,J. Desmaison,H. Tawil. Protection against oxidation of C/SiC composites by chemical vapour deposition of titanium diboride : deposition kinetics and oxidation behaviour of films prepared from TiCl4/BCl3/H2 mixtures[J]. Le Journal de Physique IV, 1991, 2(2): 657.
    [72]邹世钦,张长瑞,周新贵,等. Cf/SiC复合材料抗氧化涂层的制备及性能[J].国防科技大学学报, 2004, 26(4): 57-61.
    [73] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500°C[J]. Mater. Sci. Eng., A, 2001, 300(1-2): 219-225.
    [74] Z.Q. Yan,X. Xiong,P. Xiao,et al. Oxidation behavior of oxidation protective coatings for C/C-SiC composites at 1500°C[J]. Trans. of Nonfer. Met. Soc. China, 2009, 19(1): 61-64.
    [75] Z.Q. Yan,X. Xiong,P. Xiao,et al. Si-Mo-SiO2 oxidation protective coatings prepared by slurry painting for C/C-SiC composites[J]. Surf. Coat. Technol., 2008, 202(19): 4734-4740.
    [76] Y.L. Zhang,H.J. Li,Q.G. Fu,et al. A Si-Mo oxidation protective coating for C/SiC coated carbon/carbon composites[J]. Carbon, 2007, 45(5): 1130-1133.
    [77] L.F. Cheng,Y.D. Xu,L.T. Zhang,et al. Oxidation behavior of C-SiC composites with a Si-W coating from room temperature to 1500°C[J]. Carbon, 2000, 38(15): 2133-2138.
    [78] Y.D. Xu,L.F. Cheng,L.T. Zhang,et al. Oxidation behavior and mechanical properties of C/SiC composites with Si-MoSi2 oxidation protection coating[J]. J. Mater. Sci., 1999, 34(24): 6009-6014.
    [79] O. Yamamoto,T. Sasamoto,M. Inagaki. Coating of SiC-gradient carbon material with mullite film and its oxidation resistance[J]. J. Ceram. Soc. Jpn., 1994, 102(2): 163-167.
    [80] O. Yamamoto,T. Sasamoto,M. Inagaki. Effect of mullite coating film on oxidation resistance of carbon materials with SiC-gradient[J]. J. Mater. Sci. Lett., 2000, 19(12): 1053-1055.
    [81] P. Lespade,N. Richet,P. Goursat. Oxidation resistance of HfB2-SiC composites for protection of carbon-based materials[J]. Acta Astronautica, 2007, 60(10-11): 858-864.
    [82] M. Pavese,P. Fino,C. Badini,et al. HfB2/SiC as a protective coating for 2D Cf/SiC composites: effect of high temperature oxidation on mechanical properties[J]. Surf. Coat. Technol., 2008, 202(10): 2059-2067.
    [83] M. Aparicio,A. Duran. Preparation and characterization of 50SiO2-50Y2O3 sol-gel coatings on glass and SiC(C/SiC) composites[J]. Ceram. Int., 2005, 31(4): 631-634.
    [84] M. Aparicio,A. Duran. Yttrium silicate coatings for oxidation protection of carbon-silicon carbide composites[J]. J. Am. Ceram. Soc., 2000, 83(6): 1351-1355.
    [85] M. Aparicio , A. Duran. Oxidation protection of SiC(C/SiC) composite material by combination of yttrium silicates and silica coatings[J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2001, 40(6): 441-445.
    [86] W. Yang,L. Zhang,L. Cheng,et al. Oxidation behavior of C/SiC composite with CVD SiC-B4C coating in a wet oxygen environment[J]. Appl. Compos. Mater., 2008: 1-10.
    [87] C. Isola,P. Appendino,F. Bosco,et al. Protective glass coating for carbon-carbon composites[J]. Carbon, 1998, 36(7-8): 1213-1218.
    [88] J.F. Huang.,L. Miao,W. Bo,et al. SiCn/SiC oxidation protective coating for carbon/carbon composites[J]. Carbon, 2009, 47(4): 1198-1201.
    [89] J.E. Sheehan. Oxidation protection for carbon fiber composites[J]. Carbon, 1989, 27(5): 709-715.
    [90] Y.C. Zhu,S. Ohtani,Y. Sato,et al. Formation of a functionally gradient (Si3N4+SiC)/C layer for the oxidation protection of carbon-carbon composites[J]. Carbon, 1999, 37(9): 1417-1423.
    [91] O.S. Kwon,S.H. Hong,K. Hwan. The improvement in oxidation resistance of carbon by a graded SiC/SiO2 coating[J]. J. Eur. Ceram. Soc., 2003, 23(6): 3119-3124.
    [92] J. Zhao,Q.G. Guo,J.l. Shi,et al. SiC/Si-MoSi2 oxidation protective coatings for carbon materials[J]. Surf. Coat. Technol., 2006, 201(3-4): 1861-1865.
    [93] S. Shimada,T. Sato. Preparation and high temperature oxidation of SiC compositionally graded graphite coated with HfO2[J]. Carbon, 2002, 40(13): 2469-2475.
    [94] H.J. Seifert,S. Wagner,O. Fabrichnaya,et al. Yttrium silicate coatings on chemical vapor deposition-SiC-precoated C/C-SiC: Thermodynamic assessment and high-temperature investigation[J]. J. Am. Ceram. Soc., 2005, 88(2): 424-430.
    [95] Y. Zhang,H.J. Li,Q.G. Fu,et al. SiC-Si-ZrSiO4 multiphase oxidation protective coating for carbon/carbon composites[J]. J. Mater. Sci. Technol., 2008, 24(6): 941-944.
    [96] K. Kobayashi,K. Maeda,H. Sano,et al. Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powders[J]. Carbon, 1995, 33(4): 397-403.
    [97] J. Li,R.Y. Luo,C. Lin,et al. Oxidation resistance of a gradient self-healing coating for carbon/carbon composites[J]. Carbon, 2007, 45(13): 2471-2478.
    [98] J. Schulte Fischedick,J. Schmidt,R. Tamme,et al. Oxidation behaviour of C/C-SiC coated with SiC-B4C-SiC-cordierite oxidation protection system[J]. Mater. Sci. Eng., A, 2004, 386(1-2): 428-434.
    [99] Q.G. Fu,H.J. Li,K.Z. Li,et al. SiC whisker-toughened MoSi2-SiC-Si coating to protect carbon/carbon composites against oxidation[J]. Carbon, 2006, 44(9): 1866-1869.
    [100] H. Xue,H.J. Li,Q.G. Fu,et al. Microstructure and antioxidation properties of SiC-MoSi2/SiC coating for C/C composites[J]. J. Solid Rocket Technol., 2008, 31(6): 638-641.
    [101] S.J. Hong,V. Viswanathan,K. Rea,et al. Plasma spray formed near-net-shape MoSi2-Si3N4 bulk nanocomposites--structure property evaluation[J]. Mater. Sci. Eng., A, 2005, 404(1-2): 165-172.
    [102] H.J. Li,L.T. Zhang,L.F. Cheng,et al. Oxidation analysis of 2D C/ZrC-SiC composites with different coating structures in CH4 combustion gas environment[J]. Ceram. Int., Corrected proof.
    [103]吴剑锋.低温烧结BaO-Al2O3-SiO2系微晶玻璃析晶特性及应用研究[硕士学位论文].长沙:国防科技大学, 2006.
    [104]芦玉峰,堵永国,肖加余,等. XRD法测定微晶玻璃晶相含量的研究[J].硅酸盐学报, 2005, 33: 1488-1493.
    [105]程金树,李宏,汤李缨,等.微晶玻璃[M].北京:化学工业出版社, 2006.
    [106] M. Ferraris,M. Salvo,C. Isola,et al. Glass-ceramic joining and coating of SiC/SiC for fusion applications[J]. J. Nucl. Mater., 1998, 258-263(2): 1546-1550.
    [107] T. Aoki,H. Hatta,T. Hitomi,et al. SiC/C multi-layered coating contributing to the antioxidation of C/C composites and the suppression of through-thickness cracks in the layer[J]. Carbon, 2001, 39(10): 1477-1483.
    [108]舒武炳,郭海明,乔生儒,等.化学气相沉积法制备TiC涂层的相组成和表面形貌[J].西北工业大学学报, 2000, 18(2): 229-232.
    [109] V. Wunder,N. Popovska,A. Wegner,et al. Multilayer coatings on CFC composites for high-temperature applications[J]. Surf. Coat. Technol., 1998, 100-101: 329-332.
    [110]黄剑锋,张玉涛,李贺军,等.国内碳/碳复合材料高温抗氧化涂层研究新进展[J].航空材料学报, 2007, 27(2): 74-78.
    [111] M. Ferraris , M. Montorsi , M. Salvo. Glass coating for SiCf/SiC composites for high-temperature application[J]. Acta Mater., 2000, 48(18-19): 4721-4724.
    [112] M. Ferraris,M. Salvo,F. Smeacetto. Cordierite-mullite coating for SiCf/SiC composites[J]. J. Eur. Ceram. Soc., 2002, 22(13): 2343-2347.
    [113] F. Smeacetto , M. Salvo , M. Ferraris. Oxidation protective multilayer coatings for carbon-carbon composites[J]. Carbon, 2002, 40(4): 583-587.
    [114] Z.M. Shi. Sintering additives to eliminate interphases in cordierite ceramics[J]. J. Am. Ceram. Soc., 2005, 88(5): 1297-1301.
    [115] W. Vogel,W. Hoeland. Development of bioglass ceramics for medical applications[J]. Angew. Chem., 1987, 26(6): 527-544.
    [116] A. Miyake. Effects of ionic size in the tetrahedral and octahedral sites on the thermal expansion of low-temperature cordierite[J]. J. Am. Ceram. Soc., 2005, 88(2): 362-366.
    [117]刘健,程继健.溶胶—凝胶法制备堇青石陶瓷[J].华东化工学院学报, 1992, 18(Suppl): 28-32.
    [118] N.P. Bansal,J.A. Setlock. Fabrication of fiber-reinforced celsian matrix composites[J]. Composites Part A, 2001, 32(8): 1021-1029.
    [119] N.P. Bansal. Celsian formation in fiber-reinforced barium aluminosilicate glass-ceramic matrix composites[J]. Mater. Sci. Eng., A, 2003, 342(1-2): 23-27.
    [120] J.S.M. Corral,A.G. Verduch. The solid solution of silicain celsian[J]. Trans. J. Br. Ceram. Soc., 1978, 77(2): 40-44.
    [121] D. Bahat. Kinetic study on the hexacelsian-celsian phase transformation[J]. J. Mater. Sci., 1970, 5(9): 805-810.
    [122] Z. Kovziridze,J. Aneli,G. Tabatadze,et al. Ceramics in the BaO-Al2O3-SiO2 system working in extreme conditions[C]. 2006. San Diego, CA, United States: Minerals, Metals and Materials Society, Warrendale, PA 15086, United States.
    [123] W.E. Lee,M. Chen,P.F. James. Crystallization of celsian (BaAl2Si2O8) glass[J]. J. Am. Ceram. Soc., 1995, 78(8): 2180.
    [124] C.H. Drummond III. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices[J]. Ceram. Eng. Sci. Proc., 1990, 11(7-8): 1072-1086.
    [125] J.C. Debsikdar. Gel to glass conversion and crystallization of alkoxy-derived barium aluminosilicate gel[J]. J. Non-Cryst. Solids, 1992, 144: 269-276.
    [126] K.T. Lee,P.B. Aswath. Role of mineralizers on the hexacelsian to celsian transformation in the barium aluminosilicate (BAS) system[J]. Mater. Sci. Eng., A, 2003, 352(1-2): 1-7.
    [127] F. Yu,N. Nagarajan,Y. Fang. Microstructural control of a 70% silicon nitride-30% barium aluminum silicate self-reinforced composite[J]. J. Am. Ceram. Soc., 2001, 84(1): 13-22.
    [128]殷小玮,成来飞,张立同,等. C纤维增强钡长石基复合材料的研究[J].材料科学与工程, 2000, 18(1): 74-76.
    [129]张波,张立同,周万城.溶胶—凝胶法合成钡长石及其结晶特性[J].西北工业大学学报, 1996, 14(3): 325-328.
    [130] E.L. Koetje,F.H. Simpson, Broadband high temperature radome apparatus[P]. 1987: US Patent.
    [131] I. Spitsberg,B.T. Hazel,C. Govern, Environmental barrier coating for silicon-containing substrates and process therefore[P]. 2005: US Patent.
    [132]E.M. Levin,C.R. Robbins,H.F. McMurdie. Phase diagrams for ceramists[C]. Columbus, Ohio: American Ceramic Society, 1964.
    [133] C. Cannas,A. Musinu,G. Piccaluga,et al. Advances in the structure and microstructure determination of yttrium silicates using the Rietveld method[J]. J. Solid State Chem., 2005, 178(5): 1526-1532.
    [134] K. Fukuda,H. Matsubara. Thermal expansion ofδ-yttrium disilicate[J]. J. Am. Ceram. Soc., 2004, 87(1): 89-92.
    [135]邓飞,黄剑锋,张玲,等.硅酸钇高温抗氧化涂层的研究进展[J].硅酸盐通报, 2007, 26(1): 101-105.
    [136] C. Argirusis,T. Damjanovic,G. Borchardt. Yttrium silicate coating system for oxidation protection of C/C-Si-SiC composites: Electrophoretic deposition and oxygen self-diffusion measurements[J]. J. Eur. Ceram. Soc., 2007, 27(2-3): 1303-1306.
    [137] Y. Ogura,M. Kondo,T. Mormoto. Y2SiO5 as oxidation-resistant coating for C /C composites. in Proceedings of the Tenth International Conference on Composite Materials[C]. 1995. Canada: A. Poursartip and K. Street. Woodhead Publishing Ltd.
    [138] J.D. Webster,M.E. Westwood,F.H. Hayers,et al. Oxidation protection coatings for C-SiC based on yttrium silicate[J]. J. Eur. Ceram. Soc., 1998, 18(16): 2345-2350.
    [139] J.F. Huang,H.J. Li,X.R. Zeng,et al. A new SiC/yttrium silicate/glass multi-layer oxidation protective coating for carbon/carbon composites[J]. Carbon, 2004, 42(11): 2356-2359.
    [140] J.F. Huang,X.R. Zeng,H.J. Li,et al. SiC/yttrium silicate multi-layer coating for oxidation protection of carbon/carbon composites[J]. J. Mater. Sci., 2004, 39(24): 7383-7385.
    [141] J.F. Huang,H.J. Li,X.R. Zeng,et al. Oxidation resistant yttrium silicates coating for carbon/carbon composites prepared by a novel in-situ formation method[J]. Ceram. Int., 2007, 33(5): 887-890.
    [142] J.F. Huang,F. Deng,L. Cao,et al. Novel hydrothermal electrodeposition technology for preparation of yttrium silicates coating on carbon/carbon composites[J]. Mater. Tech., 2006, 21(1): 15-17.
    [143] C. Argirusis,T. Damjanovic,M. Stojanovic,et al. Synthesis and electrophoretic deposition of an yttrium silicate coating system for oxidation protection of C/C-Si-SiC composites[M]. Zurich-Uetikon: Trans Tech Publications Ltd, 2005.
    [144] Sekigawa T,Takeda F,T. M. High temperature oxidation protection coating for C/C composites[C]. in Proceedings of the 8th Symposium on Performance Materials for severe Enviroments. 1997. Tokyo.
    [145]刘荣军,周新贵,张长瑞,等.包渗法制备Cf/SiC陶瓷基复合材料MoSi2-SiC-Si防氧化涂层[J].宇航材料工艺, 2000(3): 45-48.
    [146] N. Sato,I. Shiota,H. Hatta,et al., Oxidation-resistant SiC coating system of C/C composites[C], in Functionally Graded Materials 1996.Amsterdam: Elsevier Science B.V., 1997: 257-262.
    [147] Z.F. Chen,S.B. Li,Z.L. Liu. Morphology and growth mechanism of CVD alumina-silica[J]. Ceram. Int., 2005, 31(8): 1103-1107.
    [148] V. Liedtke,I.H. Olivares,M. Langer,et al. Manufacturing and performance testing of sol/gel based oxidation protection systems for re-usable space vehicles[J]. J. Eur. Ceram. Soc., 2007, 27(2-3): 1493-1502.
    [149] T. Damjanovic,C. Argirusis,G. Borchardt,et al. Oxidation protection of C/C-SiC composites by an electrophoretically deposited mullite precursor[J]. J. Eur. Ceram. Soc., 2005, 25(5): 577-587.
    [150] T. Damjanovic,C. Argirusis,B. Jokanovic,et al. Oxidation protection of C/C-SiC composites by an electrophoretically deposited mullite precursor: Cyclic thermogravimetric analysis[J]. J. Eur. Ceram. Soc., 2007, 27(2-3): 1299-1302.
    [151]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社, 2003.
    [152]张中伟,王俊山,许正辉,等. C/C复合材料1800°C抗氧化涂层探索研究[J].宇航材料工艺, 2005, 35(2): 42-46.
    [153] F.T. Lan,K.Z. Li,H.J. Li,et al. A cordierite–mullite anti-oxidation coating for carbon/carbon composites[J]. Carbon, 2007, 45(13): 2708-2710.
    [154] J.G.P. Binner,B. Vaidhyanathan. Microwave sintering of ceramics: What does it offer?[J]. Euro. Ceram. Viii, Pts 1-3, 2004, 264-268: 725-730.
    [155] S.G. Huang,L. Li,O. Van der Biest,et al. Microwave sintering of CeO2 and Y2O3 co-stabilised ZrO2 from stabiliser-coated nanopowders[J]. J. Eur. Ceram. Soc., 2007, 27(2-3): 689-693.
    [156] S. Das,A.K. Mukhopadhyay,S. Datta,et al. Novel method of developing oxide coating on aluminium using microwave heating[J]. J. Mater. Sci. Lett., 2003, 22: 1635-1637.
    [157] S. Das,A.K. Mukhopadhyay,S. Datta,et al. Aluminium oxide coating by microwave processing[J]. Trans. Ind. Ceram. Soc., 2006, 65: 105-110.
    [158] S. Das,A.K. Mukhopadhyay,S. Datta,et al. Hard glass-ceramic coating by microwave processing[J]. J. Eur. Ceram. Soc., 2008, 28(4): 729-738.
    [159]邹继兆,曾燮榕,熊信柏,等.炭纤维预制体的微波加热性能及其加热机理探讨[J].无机材料学报, 2007, 22(6): 1165-1168.
    [160]葛凯勇,王群,张晓宁,等.碳化硅吸波性能改进的研究[J].功能材料与器件学报, 2002, 8(3): 263-266.
    [161]肖汉宁,高朋召.高性能结构陶瓷及其应用[M].北京:化学工业出版社, 2006.
    [162] QB/T1642-1992.陶瓷坯体显气孔率、体积密度测试方法1993.
    [163]陈朝辉.先驱体结构陶瓷[M].长沙:国防科技大学出版社, 2003.
    [164]王松,陈朝辉,索相波. T300碳纤维热处理对Cf/SiC复合材料性能的影响[J].材料工程, 2004(12): 40-43.
    [165]魏玺. 3D C/SiC复合材料氧化机理分析及氧化动力学模型[硕士学位论文].西安:西北工业大学, 2004.
    [166]杨永岗,贺福,王茂章,等.炭纤维空气氧化动力学分析[J].炭素, 1998, (1): 2-7.
    [167]邹世钦,张长瑞,周新贵,等. PIP工艺制备的C/SiC复合材料的氧化行为[J].国防科技大学学报, 2005, 27(5): 107-112.
    [168]李贺军,曾燮榕,朱小旗,等.炭/炭复合材料抗氧化研究[J].炭素, 1999, (3).
    [169]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社, 1995.
    [170] W.M. Guo,H.N. Xiao. Mechanisms and modeling of oxidation of carbon felt/carbon composites[J]. Carbon, 2007, 45(5): 1058-1065.
    [171] P.Z. Gao,H.J. Wang,Z.H. Jin. Study of oxidation properties and decomposition kinetics of three-dimensional (3-D) braided carbon fiber[J]. Thermochim. Acta, 2004, 414(1): 59-63.
    [172] J.R. Opfermann , E. Kaisersberger , H.J. Flammersheim. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim[J]. Acta, 2002, 391(1-2): 119-127.
    [173] H. Tanaka. Thermal analysis and kinetics of solid-state reactions[J]. Thermochim. Acta, 1995, 267(1): 29-44.
    [174] T. Ozawa. Thermal analysis—review and prospect[J]. Thermochim. Acta, 2000, 355(1-2): 35-42.
    [175] Vyazovkin S,S. N. Estimating the activating energy for non-isothermal crystallization of polymer melts[J]. J. Therm. Anal. Calorim., 2003, 72(2): 681-686.
    [176]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社, 2006.
    [177]西北轻工业学院.玻璃工艺学[M].北京:中国轻工业出版社, 2004.
    [178]杨娟. LTCC基板用MgO-Al2O3-SiO2系微晶玻璃及其流延工艺研究[博士学位论文].长沙:国防科学技术大学, 2006.
    [179]芦玉峰.低温烧结BaO-Al2O3-SiO2系微晶玻璃的析晶特性及应用研究[博士学位论文].长沙:国防科学技术大学, 2007.
    [180]刘粤惠,刘平安. X射线衍射分析原理与应用[M].北京:化学工业出版社, 2003.
    [181] M.C. Guillem,C. Guillem. Kinetics and mechanism of formation of celsian from barium carbonate and kaolin[J]. Br. Ceram. Trans., 1984, 83(5): 150-154.
    [182]杨觉明,周万城,张立同.单斜钡长石作为晶种对BAS玻璃陶瓷相变的影响[J].西安工业学院学报, 1998, 18(1): 40-45.
    [183] K. Houjou,K. Ando,S.P. Liu,et al. Crack healing and oxidation behavior of silicon nitride ceramics[J]. J. Eur. Ceram. Soc., 2004, 24(8): 2329-2338.
    [184] K. Takahashi,H. Murase,S. Yoshida,et al. Improvement of static fatigue strength of Si3N4/SiC crack-healed under cyclic stress[J]. J. Eur. Ceram. Soc., 2005, 25(11): 1953-1959.
    [185] S.R. Choi,V. Tikare. Crack healing of alumina with a residual glassy phase: strength, fracture toughness and fatigue[J]. Mater. Sci. Eng., A, 1993, 171(1-2): 77-83.
    [186]郑治祥,吕珺,金志浩. Al2O3/SiCw复合材料表面裂纹的高温自愈合与氧的传输[J].硅酸盐学报, 2005, 33(2): 155-159.
    [187]吕珺,郑治祥,吴玉程,等.结构陶瓷氧化反应裂纹愈合动力学研究(II)模型验证: A12O3-TiCp结构陶瓷裂纹愈合动力学研究[J].无机材料学报, 2006, 21(2): 508-512.
    [188]吕珺,郑治祥,吴玉程,等.结构陶瓷氧化反应裂纹愈合动力学研究(III)模型验证与修正:Al2O3-SiCw陶瓷裂纹愈合动力学研究[J].无机材料学报, 2006, 21(3): 696-700.
    [189] W. Pan,J. Chen,Y. Huang,et al. Mechanism of titanium coating on Si3N4 ceramics by molten salt reactions[J]. Mater. Lett., 1997, 31(3-6): 359-362.
    [190]吴耀明,苏明忠,杜森林.熔融盐研究进展[J].化工进展, 1995, (5): 5-7,28.
    [191]朱素华,徐桦,郭进. NaF-NaCl和KF-KCl熔盐系统的分子动力学模拟[J].广西大学学报(自然科学版), 2002, 27(4): 321-324.
    [192] J. Li,B. Li. Preparation of the TiB2 coatings by electroplating in molten salts[J]. Mater. Lett., 2007, 61(6): 1274-1278.
    [193] T. Goto,M. Tada,Y. Ito. Electrochemical surface nitriding of titanium in molten salt system. Electrochim[J]. Acta, 1994, 39(8-9): 1107-1113.
    [194] V.I. Taranenko,I.V. Zarutskii,V.I. Shapoval,et al. Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts II[J]. Chloride-Fluoride electrolytes. Electrochim. Acta, 1992, 37(2): 263-268.
    [195] R.O. Suzuki,M. Ishikawa,K. Ono. MoSi2 coating on molybdenum using molten salt[J]. J. Alloys Compd., 2000, 306(1-2): 285-291.
    [196]吴玉庭,朱建坤,张丽娜,等.高温熔盐的制备与实验研究[J].北京工业大学学报, 2007, 33(1): 62-66.
    [197]李建强,潘伟,陈健,等.利用熔盐热析出反应法对AlN陶瓷表面金属化研究[J].无机材料学报, 2003, 18(5): 1086-1090.
    [198] G.L. Depoorter. Advances in high temperature chemistry[M]. L. Eyring: Academic Press, 1971.
    [199] Q.Q. Feng,S. Chockalingam,D.A. Earl. Microstructures of microwave-sintered silicon nitride with Zirconia as secondary particulates[J]. J. Am. Ceram. Soc., 2006, 89(12): 3770-3777.
    [200] R Vassen,X.Q. Cao. Zirconates as new materials for thermal barrier coatings[J]. J. Am. Ceram. Soc., 2000, 83(8): 2023-2028.
    [201] H.T. Zhang,J.S. Zhang,H.Y. Zhang. Microwave characteristics of SiC artificial crystal[J]. Mater. Res. Bull., 2006, 41(7): 1279-1286.
    [202] K.H. Brosnan,G.L. Messing,D.K. Agrawal. Microwave sintering of alumina at 2.45 GHz[J]. J. Am. Ceram. Soc., 2003, 86(8): 1307-1312.
    [203] S. Mei,J. Yang,J.M.F. Ferreira. The densification and morphology of cordierite-based glass-ceramics[J]. Mater. Lett., 2001, 47(4-5): 205-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700