用户名: 密码: 验证码:
MgCl_2胁迫调控茂原链霉菌谷氨酰胺转氨酶合成及酶应用特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酰胺转氨酶(Transglutaminase,简称TGase,EC2.3.2.13,R-glutaminyl-peptide:amnie-γ-glutamyl-transferase)又名转谷氨酰胺酶,它通过催化蛋白质中谷氨酸残基上的甲酰胺与赖氨酸残基上的ε-氨基进行酰基转移反应,使蛋白质在分子内或分子间发生交联,从而改善蛋白质的乳化性、溶解性、凝胶性、热稳定性和流变性等性质,因此受到了广泛关注。但是目前食品级TGase来源单一、产量较低、价格昂贵,限制了其在食品工业上的应用。基于很多不利于菌体生长的条件可刺激链霉菌次级代谢产物合成的理论,研究了几种应激条件对Streptomyces mobaraensis菌体生长和TGase产量的影响,确定了其中最适宜提高TGase产量的条件;同时,对MgCl_2胁迫促进TGase产量的机制进行了初步探讨,并且研究了TGase的应用特性。
     通过研究热处理、向培养基中添加醇类、NaCl对TGase产量和菌体生长的影响,发现这些应激条件在不同程度上促进了TGase的合成。采用响应面设计的方法研究这三个因素对TGase产量的交互作用,结果发现它们的交互作用效果不显著,盐胁迫是提高TGase产量的最显著因素。为了更好地研究盐胁迫作用,分别将8种不同的中性盐(NaCl、Na_2SO_4、C_6H_5O_7Na_3、MgCl_2、CaCl_2、CH3COONa、KCl和Na_3PO_4)添加到培养基中,结果发现MgCl_2的促进作用最强。为了进一步研究MgCl_2胁迫对TGase产量的影响,对MgCl_2在培养基中的添加量进行了优化,同时研究了MgCl_2对菌体生长、产酶周期和蛋白酶产量的影响。结果发现当培养基中MgCl_2浓度为0.1mol/L时,茂原链霉菌的产酶高峰期比在初始培养基中提前24h,并且TGase活力达4.3U/mL,为初始发酵培养基的2.1倍。Western-blot结果表明,MgCl_2胁迫抑制了TGase酶原(Pro-TGase)的合成,促进了成熟酶的合成。MgCl_2胁迫使发酵液中的总蛋白酶、金属蛋白酶和丝氨酸蛋白的产量均提高了一倍。这些结果表明,MgCl_2胁迫促进了参与Pro-TGase激活的蛋白酶合成,从而促进了Pro-TGase向成熟酶的转化,最终提高了TGase产量。另外,为了确定Pro-TGase激活的最关键酶,本研究分别在发酵不同时期向初始培养基和MgCl_2培养基中添加金属蛋白酶抑制剂EDTA和丝氨酸蛋白酶抑制剂PMSF,检测发酵过程中酶活力变化情况,结果表明影响Pro-TGase激活的最关键酶为金属蛋白酶。
     本文系统地研究了茂原链霉菌在初始培养基和MgCl_2培养基发酵过程中菌体活力、形态分化和DNA断裂情况。通过激光共聚焦显微镜观察菌体活力变化,发现在发酵起始时MgCl_2胁迫抑制了菌体生长和菌球体形成;随着发酵时间延长,MgCl_2胁迫促进了菌体程序性死亡。通过扫描电镜观察菌体在两种培养基中形态变化,发现生长在MgCl_2培养基中的菌体更早地出现弯曲、分枝状和淀粉样化的现象,并且在发酵末期出现了初始培养基中不曾出现的菌毛和孢子,这表明MgCl_2胁迫促进了菌丝分裂。通过对比两种培养基中菌体DNA变化,发现MgCl_2胁迫促进了菌体DNA的裂解。这些结果表明,MgCl_2胁迫刺激了菌体的分化和程序性死亡,从而缩短了发酵周期。
     通过PDQuest软件分析了初始培养基和MgCl_2培养基中培养24h的菌体蛋白双向电泳图谱,得到53个差异蛋白点,将质谱鉴定成功的50个差异蛋白质与KEGG数据库中的信息进行比对,分析了这些蛋白质的生理功能。结果表明,菌体受到MgCl_2胁迫后,参与初级代谢,如糖代谢、氨基酸代谢、核苷酸代谢的酶均受抑制,而参与次级代谢的酶、压力应激蛋白以及能量代谢相关的酶合成量升高。这说明MgCl_2胁迫抑制了菌体的初级代谢,使菌体合成速率下降,同时促进了应激蛋白、参与次级代谢或合成次级代谢产物前体蛋白质/酶的合成,另外它还促进了合成TGase限制性氨基酸的生成,因此TGase提前合成,并且产量升高。
     通过超滤浓缩MgCl_2发酵液后利用凝胶层析和离子交换层析相结合的方法对MgCl_2发酵液中的TGase进行纯化,利用液相色谱串联质谱对纯化的蛋白质进行了鉴定,结果表明纯化得到的酶与S. mobaraensis合成的AAN01353是同一蛋白质。酶学性质研究发现纯酶比已知报道的酶具有更强的热稳定性和pH稳定性。将纯酶应用到脱脂和全脂酸奶中,发现脂肪能够影响TGase对蛋白质的交联。另外,它可以通过交联牦牛酸奶中的蛋白质,使其质地变得细腻、感观更易接受,为开发牦牛乳产品奠定基础。
Transglutaminase (shorten as TGase, EC2.3.2.13, protein-glutamine: amineγ-glutamyltransferase) is a family of enzymes that can catalyze the cross-linking ofproteins to high molecular weight aggregates by transfer reaction betweenappropriate glutamine and lysine residues. It attacts a great interest, since it modifysthe functional properties of protein such as solubility, hydration ability, rheologicaland emulsifying properties as well as heat stability in model systems. However,scarcely sources, low yield and expensive price of TGase limit its application in thefood industry. Based on the theory that Streptomyces cell growth in disadvantageconditions are benefit to the synthesis of secondary metabolites, this paper aimed atimproving TGase production by stress methods. The most suitable condition wasfound. Furthermore, mechanism of enhancement of TGase production was studied.Meanwhile, TGase from MgCl_2media was purified and characterized, and appliedinto yogurt.
     Effects of heat treatment, supplementation alcohol or NaCl on the TGaseproduction and cell growth of Streptomyces mobaraensis showed that stress methodsimproved the TGase production in varying extent. Response of surface design ofheat treatment, addition alcohol and/or NaCl to media was used to estimate theirinteraction effects on TGase production. Results showed that the interaction effectwas not significant and salt stress was the best way to improve TGase production. Inorder to find better condition for TGase production, eight kinds of different neutralsalts (NaCl, Na_2SO_4, C_6H_5O_7Na_3, MgCl_2, CaCl_2, CH3COONa, KCl and Na_3PO_4)were added into the media. Results showed that the optimal salt for TGaseproduction was MgCl_2. In order to study the enhancement of TGase production byMgCl_2stress, effects of MgCl_2concentration on cell growth, period of TGasebiosynthesis and proteases production were studied. The highest yield of TGase wasobserved at96h of incubation (4.3U/ml), when a basic medium was supplementedof0.1mol/l MgCl_2, compared with the basic media (2.1U/ml) by120h.Western-blot analysis showed faster transformation of pro-TGase into the matureenzyme in MgCl_2medium vs. the control medium. Total protease, metalloproteaseand serine protease were also biosynthesized in a fast rate in the media containingMgCl_2. The results demonstrated that the MgCl_2stress improved the production of key proteases involved in the activation of Pro-TGase. Furthermore, in order todetermine the key enzyme for Pro-TGase activation, the inhibitors formetalloprotease (EDTA) and serine protease (PMSF) were added into two kinds ofmedia separately, and TGase activities were determined during fermentation. Resultsshowed that the key enzyme for TGase production was metalloprotease.
     Strain viability, morphological differentiation and DNA fragment of S.mobaraensis during fermentation in the control media and MgCl_2media werecompared. MgCl_2inhibited cell growth and the formation of strain sphere. With theextension of the fermentation time, MgCl_2promoted the bacterial programmed celldeath. According to bacterial morphological differentiation in both kinds of media, itwas found that S. mobaraensis in MgCl_2media appeared bent, branched and amyloidearlier than in the control media; as well as, fimbriae and spores appeared in MgCl_2media, not in the control. These results suggested that the MgCl_2promotedmycelium differentiation. Comparing S. mobaraensis DNA changes in two kinds ofmedia, it was found that MgCl_2promote bacterial DNA cleavage, which indicatedthat MgCl_2stimulated morphological differentiation and programmed cell death,thus shortened the fermentation period.
     Comparing two dimensional gel electrophoresis of the bacterial cell protein incontrol medium and MgCl_2medium cultured for24h by PDQuest, fifty-threedifferentially expressed proteins were found and50proteins was identifiedsuccessfully by mass spectrometry. Their physiological functions were analyzedaccording to KEGG data. Results showed that proteins involved in primarymetabolism, such as sugar metabolism, amino acid metabolism, nucleotidemetabolism were inhibited by MgCl_2stress, while those involved in secondarymetabolism, pressure stress protein and energy metabolism-related enzymes wereincreased. These results showed that MgCl_2stress inhibited the primary metabolismof Streptomyces, decreased bacterial cell growth rates. However, it promotedproteins involved in secondary metabolism or synthesis of secondary metabolitesprecursors. Thus, TGase was biosynthesized earlier with high yields and myceliaprogrammed cell death was promoted.
     In order to purify TGase from high-salt media, gel filtration and ion exchangechromatography method were combined after concentrating fermentation liquid byultrafiltration. Using liquid chromatography/tandem mass spectrometryidentification and the protein database comparison, the purified enzyme showed high homology with AAN01353from S. mobaraensis. Characterization of purifiedenzyme showed higher heat and pH stability. Application of the pure enzyme intoskim and whole milk yogurt showed that it could improve the functional propertiesof yogurt, but the excessive cross-linking caused the oversize of yogurt gel particlesand the course texture. In addition, milk fat affected the protein cross-linking and thetexture of the yogurt. Furthermore, TGase was used to cross-link yak yogurt protein.Results showed that the texture of cross-linking yak yogurt was more delicate andacceptable. It provided the foundation for the development of yak milk products.
引文
[1] Serafini-Fracassini D, Del Duca S, Beninati S. Plant transglutaminases[J].Phytochemistry,1995,40(2):355-365.
    [2] Ragkousi K, Setlow P. Transglutaminase-Mediated Cross-Linking of GerQ in theCoats of Bacillus subtilis Spores[J]. Journal of Bacteriology,2004,186(17):5567-5575.
    [3] Zilh o R, Isticato R, Martins L O, Steil L, et al. Assembly and Function of aSpore Coat-Associated Transglutaminase of Bacillus subtilis[J]. Journal ofBacteriology,2005,187(22):7753-7764.
    [4] Mosher D F. Cross-linking of plasma and cellular fibronectin by plasmatransglutaminase[J]. Annals of the New York Academy of Sciences,1978,312(1):38-42.
    [5] Fesus L, Piacentini M. Transglutaminase2: an enigmatic enzyme with diversefunctions[J]. Trends in Biochemical Sciences,2002,27(10):534-539.
    [6] ANDRINGA G, LAM K Y, CHEGARY M, WANG X, et al. Tissuetransglutaminase catalyzes the formation of alpha-synuclein crosslinks inParkinson’s disease[J]. The FASEB Journal,2004,18(7):932-934.
    [7] Ikura K, Okumura K, Yoshikawa M, Sasaki R, Chiba H. Incorporation oflysyldipeptides into food protein by transglutaminase[J]. Agricultural andBiological Chemistry,1985,49(6):1877-1878.
    [8] Sun X D, Arntfield S D. Gelation properties of myofibrillar/pea protein mixturesinduced by transglutaminase crosslinking[J]. Food Hydrocolloids,2012,27(2):394-400.
    [9] Sun X D, Arntfield S D. Gelation properties of salt-extracted pea protein isolatecatalyzed by microbial transglutaminase cross-linking[J]. Food Hydrocolloids,2011,25(1):25-31.
    [10] Sun X D, Arntfield S D. Gelation properties of chicken myofibrillar proteininduced by transglutaminase crosslinking[J]. Journal of Food Engineering,2011,107(2):226-233.
    [11] Damodaran S, Agyare K K. Effect of microbial transglutaminase treatment onthermal stability and pH-solubility of heat-shocked whey protein isolate[J].Food Hydrocolloids,2013,30(1):12-18.
    [12] Hu X, Ren J, Zhao M, Cui C, He P. Emulsifying properties of thetransglutaminase-treated crosslinked product between peanut protein and fish(Decapterus maruadsi) protein hydrolysates[J]. Journal of the Science of Foodand Agriculture,2011,91(3):578-585.
    [13] Tang C-H, Chen L, Foegeding E A. Mechanical and Water-Holding Propertiesand Microstructures of Soy Protein Isolate Emulsion Gels Induced by CaCl2,Glucono-δ-lactone (GDL), and Transglutaminase: Influence of ThermalTreatments before and/or after Emulsification[J]. Journal of Agricultural andFood Chemistry,2011,59(8):4071-4077.
    [14] Ando H, Adachi M, Umeda K, Matsuura A, et al. Purification andcharacteristics of a novel transglutaminase derived from microorganisms[J].Agricultural and Biological Chemistry,1989,53(10):2613-2617.
    [15] Wu J-W, Tsai G-J, Jiang S-T. Screening the microorganism and some factorsfor the production of transglutaminase[J]. Journal of the Chinese ChemicalSociety,1996,34(2):228-240.
    [16] Lin Y S, Chao M L, Liu C H, Chu W S. Cloning and expression of thetransglutaminase gene from Streptoverticillium ladakanum in Streptomyceslividans[J]. Process Biochemistry,2004,39(5):591-598.
    [17] F rgemand M, Qvist K B. Transglutaminase: effect on rheological properties,microstructure and permeability of set style acid skim milk gel[J]. FoodHydrocolloids,1997,11(3):287-292.
    [18] F rgemand M, Otte J, Qvist K B. Emulsifying Properties of Milk ProteinsCross-linked with Microbial Transglutaminase[J]. International Dairy Journal,1998,8(8):715-723.
    [19] Zhu Y, Rinzema A, Tramper J, de Bruin E, Bol J. Fed-batch fermentationdealing with nitrogen limitation in microbial transglutaminase production byStreptoverticillium mobaraensis[J]. Applied Microbiology and Biotechnology,1998,49(3):251-257.
    [20] Junqua M, Duran R, Gancet C, Goulas P. Optimization of microbialtransglutaminase production using experimental designs[J]. AppliedMicrobiology and Biotechnology,1997,48(6):730-734.
    [21] Pasternack R, Dorsch S, Otterbach J T, Robenek I R, et al. Bacterialpro-transglutaminase from Streptoverticillium mobaraensis-Purification,characterisation and sequence of the zymogen[J]. European Journal ofBiochemistry,1998,257(3):570-576.
    [22] Moore M M, Heinbockel M, Dockery P, Ulmer H M, Arendt E K. Networkformation in gluten-free bread with application of transglutaminase[J]. CerealChemistry,2006,83(1):28-36.
    [23] Macedo J A, Sette L D, Sato H H. Optimization of medium composition fortransglutaminase production by a Brazilian soil Streptomyces sp[J]. ElectronicJournal of Biotechnology,2007,10(4):618-626.
    [24] Macedo J A, Sette L D, Sato H H. A Comparative Biochemical Characterizationof Microbial Transglutaminases: Commercial vs. a Newly Isolated Enzymefrom Streptomyces Sp[J]. Food and Bioprocess Technology,2010,3(2):308-314.
    [25] Yu Y J, Wu S C, Chan H H, Chen Y C, et al. Overproduction of solublerecombinant transglutaminase from Streptomyces netropsis in Escherichiacoli[J]. Applied Microbiology and Biotechnology,2008,81(3):523-532.
    [26] Yokoyama K, Nakamura N, Seguro K, Kubota K. Overproduction of microbialtransglutaminase in Escherichia coli, in vitro refolding, and characterization ofthe refolded form[J]. Bioscience Biotechnology and Biochemistry,2000,64(6):1263-1270.
    [27] Date M, Yokoyama K I, Umezawa Y, Matsui H, Kikuchi Y. Highlevelexpression of Streptomyces mobaraensis transglutaminase in Corynebacteriumglutamicum using a chimeric pro-region from Streptomyces cinnamoneustransglutaminase[J]. Journal of Biotechnology,2004,110(3):219-226.
    [28] Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H. Secretion ofactive-form Streptoverticillium mobaraensis transglutaminase byCorynebacterium glutamicum: Processing of the pro-transglutaminase by acosecreted subtilisin-like protease from Streptomyces albogriseolus[J]. Appliedand Environmental Microbiology,2003,69(1):358-366.
    [29] Lin Y S, Chao M L, Liu C H, Tseng M, Chu W S. Cloning of the gene codingfor transglutaminase from Streptomyces platensis and its expression inStreptomyces lividans[J]. Process Biochemistry,2006,41(3):519-524.
    [30] Kim H S, Jung S H, Lee I S, Yu T S. Production and characterization of a novelmicrobial transglutaminase from Actinomadura sp T-2[J]. Journal ofMicrobiology and Biotechnology,2000,10(2):187-194.
    [31] Klein J D, Guzman E, Kuehn G D. Purification and partial characterization oftransglutaminase from Physarum-polycephalum[J]. Journal of Bacteriology,1992,174(8):2599-2605.
    [32] De Barros Soares L H, Assmann F, Záchia Ayub M A. Purification andproperties of a transglutaminase produced by a Bacillus circulans strainisolated from the Amazon environment[J]. Biotechnology and AppliedBiochemistry,2003,37(3):295-299.
    [33]王璋,王灼维.微生物谷氨酰胺转胺酶高产菌株的诱变选育[J].食品科学,2003(05):62-67.
    [34]王璋,刘新征,王亮,王灼维.链霉菌WZFF.L-M1搭载“神舟”四号飞船的空间育种效果[J].食品工业科技,2003(08):17-20.
    [35]微生物谷氨酰胺转胺酶生产菌搭载“神舟”五号载人飞船再次进行微生物空间诱变育种研究[J].食品与发酵工业,2003(10):69.
    [36]一种谷氨酰胺转胺酶高产菌及其筛选方法和用该菌株发酵法生产谷氨酰胺转胺酶[P].
    [37]祖海珍,陆兆新,陈义华.转谷氨酰胺酶产生菌的筛选和鉴定[J].淮海工学院学报(自然科学版),2001(02):44-46.
    [38] Zhu Y, Rinzema A, Tramper J, Bol J. Medium design based on stoichiometricanalysis of microbial transglutaminase production by Streptoverticilliummobaraensis[J]. Biotechnology and Bioengineering,1996,50(3):291-298.
    [39] Zheng M Y, Du G C, Guo W F, Chen J. A temperature-shift strategy in batchmicrobial transglutaminase fermentation[J]. Process Biochemistry,2001,36(6):525-530.
    [40] Zotzel J, Keller P, Fuchsbauer H L. Transglutaminase from Streptomycesmobaraensis is activated by an endogenous metalloprotease[J]. EuropeanJournal of Biochemistry,2003,270(15):3214-3222.
    [41] Zotzel J, Pasternack R, Pelzer C, Ziegert D, et al. Activated transglutaminasefrom Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase inthe final step[J]. European Journal of Biochemistry,2003,270(20):4149-4155.
    [42] Washizu K, Ando K, Koikeda S, Hirose S, et al. Molecular-cloning of the genefor microbial transglutaminase from Streptoverticillium and its expression inStreptomyces-lividans[J]. Bioscience Biotechnology and Biochemistry,1994,58(1):82-87.
    [43] Takehana S, Washizu K, Ando K, Koikeda S, et al. Chemical synthesis of thegene for microbial transglutaminase from Streptoverticillium and its expressionin Escherichia-coli[J]. Bioscience Biotechnology and Biochemistry,1994,58(1):88-92.
    [44] Zheng M, Du G, Chen J, Lun S. Modelling of temperature effects on batchmicrobial transglutaminase fermentation with Streptoverticilliummobaraensis[J]. World Journal of Microbiology and Biotechnology,2002,18(8):767-771.
    [45] Zheng M Y, Du G C, Chen J, Lun S Y. Modelling of temperature effects onbatch microbial transglutaminase fermentation with Streptoverticilliummobaraensis[J]. World Journal of Microbiology&Biotechnology,2002,18(8):767-771.
    [46] Tellez-Luis S J, Gonzalez-Cabriales J J, Ramirez J A, Vazquez M. Productionof transglutaminase by Streptoverticillium ladakanum NRRL-3191grown onmedia made from hydrolysates of sorghum straw[J]. Food Technology andBiotechnology,2004,42(1):1-4.
    [47] Tellez-Luis S J, Ramirez J A, Vazquez M. Production of transglutaminase byStreptoverticillium ladakanum NRRL-3191using glycerol as carbon source[J].Food Technology and Biotechnology,2004,42(2):75-81.
    [48] Yan G L, Du G C, Li Y, Chen J, Zhong J J. Enhancement of microbialtransglutaminase production by Streptoverticillium mobaraensis: application ofa two-stage agitation speed control strategy[J]. Process Biochemistry,2005,40(2):963-968.
    [49] de Souza C F V, Flores S H, Ayub M A Z. Optimization of mediumcomposition for the production of transglutaminase by Bacillus circulans BL32using statistical experimental methods[J]. Process Biochemistry,2006,41(5):1186-1192.
    [50] Liu X Q, Yang X Q, Xie F H, Qian S J. Cloning of transglutaminase gene fromStreptomyces fradiae and its enhanced expression in the original strain[J].Biotechnology Letters,2006,28(17):1319-1325.
    [51] Cui L, Du G, Zhang D, Liu H, Chen J. Purification and characterization oftransglutaminase from a newly isolated Streptomyces hygroscopicus[J]. FoodChemistry,2007,105(2):612-618.
    [52] Macedo J A, Sette L D, Sato H H. Optimization Studies for the Production ofMicrobial Transglutaminase from a Newly Isolated Strain of Streptomycessp[J]. Food Science and Biotechnology,2008,17(5):904-911.
    [53] Zhang D X, Wang M, Wu J, Cui L, et al. Two different proteases fromStreptomyces hygroscopicus are involved in transglutaminase activation[J].Journal of Agricultural and Food Chemistry,2008,56(21):10261-10264.
    [54] Portilla-Rivera O M, Tellez-Luis S J, de Leon J A R, Vazquez M. Production ofmicrobial transglutaminase on media made from sugar cane molasses andglycerol[J]. Food Technology and Biotechnology,2009,47(1):19-26.
    [55]程力,张东旭,堵国成,陈坚.添加CTAB促进吸水链霉菌产谷氨酰胺转胺酶[J].生物工程学报,2007(03):497-501.
    [56] Fesus L, Thomazy V, Falus A. Induction and activation of tissuetransglutaminase during programmed cell death[J]. FEBS Letters,1987,224(1):104-108.
    [57] Griffin M, Casadio R, Bergamini C M. Transglutaminases: Nature's biologicalglues[J]. Biochemical Journal,2002,368:377-396.
    [58] Griffin M, Verderio E. Tissue transglutaminase in cell death[J]. Symposia of theSociety for Experimental Biology,2000,52:223-240.
    [59] McCormick J R, Fl rdh K. Signals and regulators that govern Streptomycesdevelopment[J]. FEMS Microbiology Reviews,2012,36(1):206-231.
    [60] Ohnishi Y, Yamazaki H, Kato J Y, Tomono A, Horinouchi S. AdpA, a centraltranscriptional regulator in the A-factor regulatory cascade that leads tomorphological development and secondary metabolism in Streptomycesgriseus[J]. Bioscience Biotechnology and Biochemistry,2005,69(3):431-439.
    [61] Haiser H J, Yousef M R, Elliot M A. Cell Wall Hydrolases Affect Germination,Vegetative Growth, and Sporulation in Streptomyces coelicolor[J]. Journal ofBacteriology,2009,191(21):6501-6512.
    [62] Joshi A P, Deshmukh S S. Streptomyces nucleases[J]. Critical Reviews inMicrobiology,2011,37(3):227-236.
    [63] Flardh K, Buttner M J. Streptomyces morphogenetics: dissecting differentiationin a filamentous bacterium[J]. Nature Reviews Microbiology,2009,7(1):36-49.
    [64] Kobayashi K, Suzuki S, Izawa Y, Yokozeki K, et al. Transglutaminase insporulating cells of Bacillus subtilis[J]. Journal of General and AppliedMicrobiology,1998,44(1):85-91.
    [65] Iranzo M, Aguado C, Pallotti C, Canizares J V, Mormeneo S. Transglutaminaseactivity is involved in Saccharomyces cerevisiae wall construction[J].Microbiology-Sgm,2002,148:1329-1334.
    [66] Swinbanks D. Government backs proteome proposal[J]. Nature,1995,378(6558):653-653.
    [67] Bobek J, Halada P, Angelis J, Vohradsky J, Mikulík K. Activation andexpression of proteins during synchronous germination of aerial spores ofStreptomyces granaticolor[J]. Proteomics,2004,4(12):3864-3880.
    [68] Novotna J, Vohradsky J, Berndt P, Gramajo H, et al. Proteomic studies ofdiauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal aregulatory network of stress-induced proteins and central metabolic enzymes[J].Molecular Microbiology,2003,48(5):1289-1303.
    [69] Manteca A, M der U, Connolly B A, Sanchez J. A proteomic analysis ofStreptomyces coelicolor programmed cell death[J]. Proteomics,2006,6(22):6008-6022.
    [70] Hesketh A R, Chandra G, Shaw A D, Rowland J J, et al. Primary and secondarymetabolism, and post-translational protein modifications, as portrayed byproteomic analysis of Streptomyces coelicolor[J]. Molecular Microbiology,2002,46(4):917-932.
    [71] Chi W-J, Lee S-Y, Lee J. Functional analysis of SGR4635-inducedenhancement of pigmented antibiotic production in Streptomyces lividans[J].The Journal of Microbiology,2011,49(5):828-833.
    [72] Manteca A, Sanchez J, Jung H R, Schw mmle V, Jensen O N. Quantitativeproteomics analysis of Streptomyces coelicolor development demonstrates thatonset of secondary metabolism coincides with hypha differentiation[J].Molecular&Cellular Proteomics,2010,9(7):1423-1436.
    [73] Vohradsky J, Branny P, Li X-M, Thompson C J. Effect of protein degradationon spot Mr distribution in2-D gels–a case study of proteolysis duringdevelopment of Streptomyces coelicolor cultures[J]. Proteomics,2008,8(12):2371-2375.
    [74] Hobbs G, Frazer C M, Gardner D C J, Flett F, Oliver S G. Pigmented antibioticproduction by Streptomyces-coelicolor A3(2)-kinetics and the influence ofnutrients[J]. Journal of General Microbiology,1990,136:2291-2296.
    [75] Thakur D, Bora T C, Bordoloi G N, Mazumdar S. Influence of nutrition andculturing conditions for optimum growth and antimicrobial metaboliteproduction by Streptomyces sp201[J]. Journal De Mycologie Medicale,2009,19(3):161-167.
    [76] Jia B, Jin Z H, Mei L H. Medium optimization based on statisticalmethodologies for pristinamycins production by Streptomycespristinaespiralis[J]. Applied Biochemistry and Biotechnology,2008,144(2):133-143.
    [77] Martín J F, Sola-Landa A, Santos-Beneit F, Fernández-Martínez L T, et al.Cross-talk of global nutritional regulators in the control of primary andsecondary metabolism in Streptomyces[J]. Microbial Biotechnology,2011,4(2):165-174.
    [78] Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín J F.Genome-wide transcriptomic and proteomic analysis of the primary response tophosphate limitation in Streptomyces coelicolor M145and in a ΔphoPmutant[J]. Proteomics,2007,7(14):2410-2429.
    [79] Karandikar A, Sharples G P, Hobbs G. Differentiation of Streptomycescoelicolor A3(2) under nitrate-limited conditions[J]. Microbiology-Uk,1997,143:3581-3590.
    [80] Voelker F, Altaba S. Nitrogen source governs the patterns of growth andpristinamycin production in Streptomyces pristinaespiralis[J].Microbiology-Sgm,2001,147:2447-2459.
    [81] Merrick M J, Edwards R A. Nitrogen control in bacteria[J]. MicrobiologicalReviews,1995,59(4):604-&.
    [82] Reitzer L, Schneider B L. Metabolic context and possible physiological themesof sigma(54)-dependent genes in Escherichia coli[J]. Microbiology andMolecular Biology Reviews,2001,65(3):422-+.
    [83] Tiffert Y, Franz-Wachtel M, Fladerer C, Nordheim A, et al. Proteomic analysisof the GlnR-mediated response to nitrogen limitation in Streptomycescoelicolor M145[J]. Applied Microbiology and Biotechnology,2011,89(4):1149-1159.
    [84] Mazodier P, Guglielmi G, Davies J, Thompson C J. Characterization of theGroEL-like genes in Streptomyces-albus[J]. Journal of Bacteriology,1991,173(22):7382-7386.
    [85] Guglielmi G, Mazodier P, Thompson C J, Davies J. A survey of the heat shockresponse in four Streptomyces species reveals two groEL-like genes and threegroEL-like proteins in Streptomyces albus[J]. Journal of Bacteriology,1991,173(22):7374-7381.
    [86] Puglia A M, Vohradsky J, Thompson C J. Developmental control of theheat-shock stress regulon in Streptomyces coelicolor[J]. MolecularMicrobiology,1995,17(4):737-746.
    [87] Vohradsky J, Li X-M, Dale G, Folcher M, et al. Developmental Control ofStress Stimulons in Streptomyces coelicolor Revealed by Statistical Analysesof Global Gene Expression Patterns[J]. Journal of Bacteriology,2000,182(17):4979-4986.
    [88] Kim Y J, Song J Y, Moon M H, Smith C P, et al. pH shock inducesoverexpression of regulatory and biosynthetic genes for actinorhodinproductionin Streptomyces coelicolor A3(2)[J]. Applied Microbiology andBiotechnology,2007,76(5):1119-1130.
    [89] Elsayed Metwally A M M. Effect of enzymatic cross-linking of milk proteins onproperties of ice cream with different composition[J]. International Journal ofFood Science&Technology,2007,42(8):939-947.
    [90] Jaros D, Jacob M, Otto C, Rohm H. Excessive cross-linking of caseins bymicrobial transglutaminase and its impact on physical properties of acidifiedmilk gels[J]. International Dairy Journal,2010,20(5):321-327.
    [91] Farnsworth J P, Li J, Hendricks G M, Guo M R. Effects of transglutaminasetreatment on functional properties and probiotic culture survivability of goatmilk yogurt[J]. Small Ruminant Research,2006,65(1-2):113-121.
    [92] Sanli T, Sezgin E, Deveci O, Senel E, Benli M. Effect of using transglutaminaseon physical, chemical and sensory properties of set-type yoghurt[J]. FoodHydrocolloids,2011,25(6):1477-1481.
    [93] Ardelean A I, Otto C, Jaros D, Rohm H. Transglutaminase treatment to improvephysical properties of acid gels from enriched goat milk[J]. Small RuminantResearch,2012,106(1):47-53.
    [94] Jaros D, Heidig C, Rohm H. Enzymatic modification through microbialtransglutaminase enhances the viscosity of stirred yogurt[J]. Journal of TextureStudies,2007,38(2):179-198.
    [95] De Sá E M F, Bordignon-Luiz M T. The effect of transglutaminase on theproperties of milk gels and processed cheese[J]. International Journal of DairyTechnology,2010,63(2):243-251.
    [96] Lorenzen P C. Renneting properties of transglutaminase-treated milk[J].Milchwissenschaft-Milk Science International,2000,55(8):433-437.
    [97] Kaufman S P, Hoseney R C, Fennema O. Dough rheology-a review ofstructural models and the role of disulfide interchange reactions[J]. CerealFoods World,1986,31(11):820-824.
    [98] Larre C, Denery-Papini S, Popineau Y, Deshayes G, et al. Biochemical analysisand rheological properties of gluten modified by transglutaminase[J]. CerealChemistry,2000,77(2):121-127.
    [99] Gottmann D K D, Sproessler, Dr. Bruno (DE). Baking agent or flour, andmethod of production of dough and bakery products.[P].1995(EP0492406).
    [100] Zhu Y, Bol J, Rinzema A, Tramper J, Wijngaards G. Transglutaminase as apotential tool in developing novel protein foods[J]. Agro Food IndustryHi-Tech,1999,10(1):8-10.
    [101] Gerrard A J, Fayle S E, Brown P A, Sutton K H, et al. Effects of microbialtransglutaminase on the wheat proteins of bread and croissant dough[J]. Journalof Food Science,2001,66(6):782-786.
    [102] Seravalli E A G, Iguti A M, Santana I A, Filho F F. Effects of application oftransglutaminase in wheat proteins during the production of Bread[J]. ProcediaFood Science,2011,1(0):935-942.
    [103] Herrero A M, Cambero M I, Ordonez J A, De la Hoz L, Carmona P. Ramanspectroscopy study of the structural effect of microbial transglutaminase onmeat systems and its relationship with textural characteristics[J]. FoodChemistry,2008,109(1):25-32.
    [104] Debackerroyer C, Traore F, Meunier J C. Purification and properties offactor-XIII from human placenta[J]. International Journal of Biochemistry,1992,24(1):91-97.
    [105] Kuraishi C, Sakamoto J, Soeda T. Application of transglutaminase for meatprocessing[J]. Fleischwirtschaft,1998,78(6):657-+.
    [106] Kuraishi C, Yamazaki K, Susa Y. Transglutaminase: Its utilization in the foodindustry[J]. Food Reviews International,2001,17(2):221-246.
    [107] Milkowski A L M, WI), Sosnicki, Andrzej A.(Hendersonville, TN). Methodfor treating PSE meat with transglutaminase[P].1999(5928689).
    [108] Cofrades S, López-López I, Ruiz-Capillas C, Triki M, Jiménez-Colmenero F.Quality characteristics of low-salt restructured poultry with microbialtransglutaminase and seaweed[J]. Meat Science,2011,87(4):373-380.
    [109] Hong G-P, Xiong Y L. Microbial transglutaminase-induced structural andrheological changes of cationic and anionic myofibrillar proteins[J]. MeatScience,2012,91(1):36-42.
    [110] Kuraishi C, Sakamoto J, Yamazaki K, Susa Y, et al. Production of restructuredmeat using microbial transglutaminase without salt or cooking[J]. Journal ofFood Science,1997,62(3):488-&.
    [111] Baarda K C, CA), Fehr, Henry (Calgary, CA). Composite meat product andmethod for the manufacture thereof[P].2002(20020048622).
    [112] Sakamoto H, Kumazawa Y, Toiguchi S, Seguro K, et al. Gel strengthenhancement by addition of microbial transglutaminase during onshore surimimanufacture[J]. Journal of Food Science,1995,60(2):300-304.
    [113] Chanarat S, Benjakul S, H-Kittikun A. Comparative study on proteincross-linking and gel enhancing effect of microbial transglutaminase on surimifrom different fish[J]. Journal of the Science of Food and Agriculture,2012,92(4):844-852.
    [114] Techaratanakrai B, Nishida M, Igarashi Y, Watanabe M, et al. Effect of settingconditions on mechanical properties of acid-induced Kamaboko gel from squidTodarodes pacificus mantle muscle meat[J]. Fisheries Science,2011,77(3):439-446.
    [115] Griffin M R, Main Street, Bleasby, Nottinghamshire NG147GH, GB),Collighan, Russell (School of Life and Health SciencesAston UniversityAstonTriangle, Birmingham B47ET, GB), Chau, David (School of Life and HealthSciencesAston University Aston Triangle, Birmingham B47ET, GB), VerderioEdwards, Elisabetta (School of Biomedical&Natural SciencesCollege ofScience&Technology Nottingham Trent UniversityClifton Lane, NottinghamNG118NS, GB). Transglutaminase crosslinked collagen biomaterial formedical implant materials[P].2011(EP1796751).
    [116] Gentile P, Chiono V, Tonda-Turo C, Sartori S, Ciardelli G.in: Nyanhongo G S,Steiner W, Gübitz G (Eds.), Springer Berlin/Heidelberg2011, pp.181-205.
    [117] Cui L, Fan X, Wang P, Wang Q, Fu G. Casein and transglutaminase-mediatedmodification of wool surface[J]. Engineering in Life Sciences,2011,11(2):201-206.
    [118] Chau D Y S, Collighan R J, Verderio E A M, Addy V L, Griffin M. Thecellular response to transglutaminase-cross-linked collagen[J]. Biomaterials,2005,26(33):6518-6529.
    [119] O Halloran D M, Collighan R J, Griffin M, Pandit A S. Characterization of amicrobial transglutaminase cross-linked type II collagen scaffold[J]. TissueEngineering,2006,12(6):1467-1474.
    [120] O'Halloran D M, Burnell A M. An investigation of chemotaxis in the insectparasitic nematode Heterorhabditis bacteriophora[J]. Parasitology,2003,127:375-385.
    [121] Garcia Y, Wilkins B, Collighan R J, Griffin M, Pandit A. Towardsdevelopment of a dermal rudiment for enhanced wound healing response[J].Biomaterials,2008,29(7):857-868.
    [122] McDermott M K, Chen T H, Williams C M, Markley K M, Payne G F.Mechanical properties of biomimetic tissue adhesive based on the microbialtransglutaminase-catalyzed crosslinking of gelatin[J]. Biomacromolecules,2004,5(4):1270-1279.
    [123] Broderick E P, O'Halloran D M, Rochev Y A, Griffin M, et al. Enzymaticstabilization of gelatin-based scaffolds[J]. Journal of Biomedical MaterialsResearch Part B-Applied Biomaterials,2005,72B(1):37-42.
    [124] Yung C W, Wu L Q, Tullman J A, Payne G F, et al. Transglutaminasecrosslinked gelatin as a tissue engineering scaffold[J]. Journal of BiomedicalMaterials Research Part A,2007,83A(4):1039-1046.
    [125] Chien K B, Shah R N. Novel soy protein scaffolds for tissue regeneration:Material characterization and interaction with human mesenchymal stemcells[J]. Acta biomaterialia,2012,8(2):694-703.
    [126] Cortez J, Bonner P L R, Griffin M. Application of transglutaminases in themodification of wool textiles[J]. Enzyme and Microbial Technology,2004,34(1):64-72.
    [127] Taylor M M, Bumanlag L, Marmer W N, Brown E M. Use of enzymaticallymodified gelatin and casein as fillers in leather processing[J]. Journal of theAmerican Leather Chemists Association,2006,101(5):169-178.
    [128] Du G, Cui L, Zhu Y, Chen J. Improvement of shrink-resistance and tensilestrength of wool fabric treated with a novel microbial transglutaminase fromStreptomyces hygroscopicus[J]. Enzyme and Microbial Technology,2007,40(7):1753-1757.
    [129] Taylor M M, Marmer W N, Brown E M. Evaluation of polymers preparedfrom gelatin and casein or whey as potential fillers[J]. Journal of the AmericanLeather Chemists Association,2007,102(4):111-120.
    [130] Tanaka T, Kamiya N, Nagamune T. Peptidyl linkers for proteinheterodimerization catalyzed by microbial transglutaminase[J]. BioconjugateChemistry,2004,15(3):491-497.
    [131] Tominaga J, Kemori Y, Tanaka Y, Maruyama T, et al. An enzymatic methodfor site-specific labeling of recombinant proteins with oligonucleotides[J].Chemical Communications,2007(4):401-403.
    [132] Villalonga R, Fernandez M, Fragoso A, Cao R, et al. Thermal stabilization oftrypsin by enzymic modification with beta-cyclodextrin derivatives[J].Biotechnology and Applied Biochemistry,2003,38:53-59.
    [133] Paguirigan A L, Beebe D J. Protocol for the fabrication of enzymaticallycrosslinked gelatin microchannels for microfluidic cell culture[J]. NatureProtocols,2007,2(7):1782-1788.
    [134] Folk J E, Cole P W. Mechanism of action of guinea pig livertransglutaminase[J]. Journal of Biological Chemistry,1966,241(23):5518-5525.
    [135] Bradford M M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(1-2):248-254.
    [136] Laemmli U K. Cleavage of structural proteins during the assembly of the headof Bacteriophage T4[J]. Nature,1970,227(5259):680-685.
    [137] Hirano S, Kato J-y, Ohnishi Y, Horinouchi S. Control of the Streptomycessubtilisin Inhibitor Gene by AdpA in the A-factor regulatory cascade inStreptomyces griseus[J]. Journal of Bacteriology,2006,188(17):6207-6216.
    [138] Fernandez M, Sanchez J. Viability staining and terminal deoxyribonucleotidetransferase-mediated dUTP nick end labelling of the mycelium in submergedcultures of Streptomyces antibioticus ETH7451[J]. Journal of MicrobiologicalMethods,2001,47(3):293-298.
    [139] Fernandez M, Sanchez J. Viability staining and terminal deoxyribonucleotidetransferase-mediated dUTP nick end labelling of the mycelium in submergedcultures of Streptomyces antibioticus ETH7451(vol47, pg293,2001)[J].Journal of Microbiological Methods,2002,49(2):207-208.
    [140] Candiano G, Bruschi M, Musante L, Santucci L, et al. Blue silver: A verysensitive colloidal Coomassie G-250staining for proteome analysis[J].Electrophoresis,2004,25(9):1327-1333.
    [141] Xue H, Li B, Zhang J, Wu M, et al. Identification of Serum Biomarkers forColorectal Cancer Metastasis Using a Differential Secretome Approach[J].Journal of Proteome Research,2010,9(1):545-555.
    [142] AOAC. Methods of Analysis, Revision1.17th edn. Arlington, VA:Association of Official Analytical Chemists Inc.[J].2002.
    [143] Hinz K, Huppertz T, Kulozik U, Kelly A L. Influence of enzymaticcross-linking on milk fat globules and emulsifying properties of milkproteins[J]. International Dairy Journal,2007,17(4):289-293.
    [144] Soukoulis C, Tzia C. Impact of the acidification process, hydrocolloids andprotein fortifiers on the physical and sensory properties of frozen yogurt[J].International Journal of Dairy Technology,2008,61(2):170-177.
    [145] Doull J L, Singh A K, Hoare M, Ayer S W. Conditions for the production ofjadomycin-B by Streptomyces-venezuelae isp5230-effects of heat-shock,ethanol treatment and phage infection[J]. Journal of Industrial Microbiology,1994,13(2):120-125.
    [146] Nakata K, Yoshimoto A, Yamada Y. Promotion of antibiotic production byhigh ethanol, high NaCl concentration, or heat shock in Pseudomonasfluorescens S272[J]. Bioscience Biotechnology and Biochemistry,1999,63(2):293-297.
    [147] Himabindu M, Potumarthi R, Jetty A. Enhancement of gentamicin productionby mutagenesis and non-nutritional stress conditions in Micromonosporaechinospora[J]. Process Biochemistry,2007,42(9):1352-1356.
    [148] Gerber U, Jucknischke U, Putzien S, Fuchsbauer H L. A rapid and simplemethod for the purification of transglutaminase from Streptoverticilliummobaraensis[J]. Biochemical Journal,1994,299:825-829.
    [149] Pfleiderer C, Mainusch M, Weber J, Hils M, Fuchsbauer H L. Inhibition ofbacterial transglutaminase by its heat-treated pro-enzyme[J]. MicrobiologicalResearch,2005,160(3):265-271.
    [150] Ghribi D, Zouari N, Jaoua S. Improvement of bioinsecticides productionthrough adaptation of Bacillus thuringiensis cells to heat treatment and NaCladdition[J]. Journal of Applied Microbiology,2005,98(4):823-831.
    [151] Ngo K X, Umakoshi H, Shimanouchi T, Jung H S, et al. Heat-enhancedproduction of chitosanase from Streptomyces griseus in the presence ofliposome[J]. Journal of Bioscience and Bioengineering,2005,100(5):495-501.
    [152] Fernández M J, Adrio J L, Piret J M, Wolfe S, et al. Stimulatory effect ofgrowth in the presence of alcohols on biotransformation of penicillin G intocephalosporin-type antibiotics by resting cells of Streptomyces clavuligerusNP1[J]. Applied Microbiology and Biotechnology,1999,52(4):484-488.
    [153] Haq I-U, Ali S, Qadeer M A, Iqbal J. Stimulatory effect of alcohols (methanoland ethanol) on citric acid productivity by a2-deoxy-glucose resistant cultureof Aspergillus niger GCB-47[J]. Bioresource Technology,2003,86(3):227-233.
    [154] Sevcikova B, Kormanec J. Differential production of two antibiotics ofStreptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon saltstress conditions[J]. Archives of Microbiology,2004,181(5):384-389.
    [155] Wei Z-H, Bai L, Deng Z, Zhong J-J. Enhanced production of validamycin Aby H2O2-induced reactive oxygen species in fermentation of Streptomyceshygroscopicus5008[J]. Bioresource Technology,2011,102(2):1783-1787.
    [156] Lu Y, Cheng Y-F, He X-P, Guo X-N, Zhang B-R. Improvement of robustnessand ethanol production of ethanologenic Saccharomyces cerevisiae underco-stress of heat and inhibitors[J]. Journal of Industrial Microbiology&Biotechnology,2012,39(1):73-80.
    [157] Chater K, Bibb M. Regulation of bacterial antibiotic production.[M].Weinheim,1997:57-105.
    [158] Wei Z-H, Wu H, Bai L, Deng Z, Zhong J-J. Temperature shift-inducedreactive oxygen species enhanced validamycin A production in fermentation ofStreptomyces hygroscopicus5008[J]. Bioprocess and Biosystems Engineering:1-8.
    [159] Zhou W-W, Ma B, Tang Y-J, Zhong J-J, Zheng X. Enhancement ofvalidamycin A production by addition of ethanol in fermentation ofStreptomyces hygroscopicus5008[J]. Bioresource Technology,2012,114(0):616-621.
    [160] Sikorski J, Brambilla E, Kroppenstedt R M, Tindall B J. Thetemperature-adaptive fatty acid content in Bacillus simplex strains from'Evolution Canyon', Israel[J]. Microbiology-Sgm,2008,154:2416-2426.
    [161] Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, et al. AdaptiveMelanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stressat "Evolution Canyon'', Mount Carmel, Israel[J]. PLoS ONE,2008,3(8).
    [162] Rangel D E N, Butler M J, Torabinejad J, Anderson A J, et al. Mutants andisolates of Metarhizium anisopliae are diverse in their relationships betweenconidial pigmentation and stress tolerance[J]. Journal of Invertebrate Pathology,2006,93(3):170-182.
    [163] Miller C D, Rangel D, Braga G U L, Flint S, et al. Enzyme activitiesassociated with oxidative stress in Metarhizium anisopliae during germination,mycelial growth, and conidiation and in response to near-UV irradiation[J].Canadian Journal of Microbiology,2004,50(1):41-49.
    [164] VERMA, C. N, SINGH, K. R. Stress-inducible DNA repair in Saccharomycescerevisiae[M]. New York, NY, ETATS-UNIS: Begell House,2001.
    [165] Ruijter G J G, Bax M, Patel H, Flitter S J, et al. Mannitol is required for stresstolerance in Aspergillus niger conidiospores[J]. Eukaryotic Cell,2003,2(4):690-698.
    [166] Singer M A, Lindquist S. Thermotolerance in Saccharomyces cerevisiae: theYin and Yang of trehalose[J]. Trends in Biotechnology,1998,16(11):460-468.
    [167] Iwahashi H, Nwaka S, Obuchi K, Komatsu Y. Evidence for the interplaybetween trehalose metabolism and hsp104in yeast[J]. Applied andEnvironmental Microbiology,1998,64(11):4614-4617.
    [168] Serafini-Fracassini D, Della Mea M, Tasco G, Casadio R, Del Duca S. Plantand animal transglutaminases: do similar functions imply similar structures?[J].Amino Acids,2009,36(4):643-657.
    [169]陈康康,刘松,鞠晓辉,马腾博, et al.吸水链霉菌谷氨酰胺转胺酶基因的阻断及其对细胞分化的影响[J].微生物学报,2010(12):1626-1632.
    [170] Rangel D. Stress induced cross-protection against environmental challenges onprokaryotic and eukaryotic microbes[J]. World Journal of Microbiology andBiotechnology,2010:1-16.
    [171] Taguchi S, Arakawa K, Yokoyama K, Takehana S, et al. Overexpression andpurification of microbial pro-transglutaminase from Streptomycescinnamoneum and in vitro processing by Streptomyces albogriseolusproteases[J]. Journal of Bioscience and Bioengineering,2002,94(5):478-481.
    [172] Kunst F, Rapoport G. Salt stress is an environmental signal affectingdegradative enzyme-synthesis in Bacillus-subtilis[J]. Journal of Bacteriology,1995,177(9):2403-2407.
    [173] Gabdrakhmanova L, Vishniakov I, Sharipova M, Balaban N, et al. Salt stressinduction of glutamyl endopeptidase biosynthesis in Bacillus intermedius[J].Microbiological Research,2005,160(3):233-242.
    [174] Kang D H, Jeh E J, Seo J W, Chun B H, Hur B K. Effect of salt concentrationon production of polyunsaturated fatty acids in Thraustochyhium aureumATCC34304[J]. Korean Journal of Chemical Engineering,2007,24(4):651-654.
    [175] Szegezdi E, Szondy Z, Nagy L, Nemes Z, et al. Apoptosis-linked in vivoregulation of the tissue transglutaminase gene promoter[J]. Cell Death andDifferentiation,2000,7(12):1225-1233.
    [176] Kim D, Chater K, Lee K, Hesketh A. Changes in the extracellular proteomecaused by the absence of the bldA gene product, a developmentally significanttRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomycescoelicolor[J]. Journal of Bacteriology,2005,187:2957-2966.
    [177] Kim D, Chater K, Lee K, Hesketh A. Effects of growth phase and thedevelopmentally significant bldA-specified tRNA on the membrane-associatedproteome of Streptomyces coelicolor[J]. Microbiology,2005,151:2707-2720.
    [178] Hesketh A, Bucca G, Laing E, Flett F, et al. New pleiotropic effects ofeliminating a rare tRNA from Streptomyces coelicolor, revealed by combinedproteomic and transcriptomic analysis of liquid cultures[J]. BMC Genomics,2007,8(1):261.
    [179] Petrickova K, Petricek M. Eukaryotic-type protein kinases in Streptomycescoelicolor: variations on a common theme[J]. Microbiology-Sgm,2003,149:1609-1621.
    [180] Manteca A, Alvarez R, Salazar N, Yague P, Sanchez J. Myceliumdifferentiation and antibiotic production in submerged cultures of Streptomycescoelicolor[J]. Applied and Environmental Microbiology,2008,74(12):3877-3886.
    [181] Ning S B, Guo H L, Wang L, Song Y C. Salt stress induces programmed celldeath in prokaryotic organism Anabaena[J]. Journal of Applied Microbiology,2002,93(1):15-28.
    [182] Huh G H, Damsz B, Matsumoto T K, Reddy M P, et al. Salt causes iondisequilibrium-induced programmed cell death in yeast and plants[J]. PlantJournal,2002,29(5):649-659.
    [183] Olano C, Lombó F, Méndez C, Salas J A. Improving production of bioactivesecondary metabolites in actinomycetes by metabolic engineering[J]. MetabolicEngineering,2008,10(5):281-292.
    [184] Wray L V, Fisher S H. The Streptomyces coelicolor glnR gene encodes aprotein similar to other bacterial response regulators.[J]. Gene,1993,130(1):145-150.
    [185] Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A. Twotranscriptional regulators GlnR and GlnRII are involved in regulation ofnitrogen metabolism in Streptomyces coelicolor A3(2)[J]. MolecularMicrobiology,2002,46(2):331-347.
    [186] Hesketh A, Fink D, Gust B, Rexer H U, et al. The GlnD and GlnK homologuesof Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogenregulatory system counterparts from enteric bacteria[J]. MolecularMicrobiology,2002,46(2):319-330.
    [187] Rigali S, Nothaft H, Noens E E E, Schlicht M, et al. The sugarphosphotransferase system of Streptomyces coelicolor is regulated by theGntR-family regulator DasR and links N-acetylglucosamine metabolism to thecontrol of development[J]. Molecular Microbiology,2006,61(5):1237-1251.
    [188] Tiffert Y, Supra P, Wurm R, Wohlleben W, et al. The Streptomyces coelicolorGlnR regulon: identification of new GlnR targets and evidence for a centralrole of GlnR in nitrogen metabolism in actinomycetes[J]. MolecularMicrobiology,2008,67(4):861-880.
    [189] Wray L V, Atkinson M R, Fisher S H. Identification and cloning of the GlnRlocus, which is required for transcription of the GlnA gene in Streptomycescoelicolor A3(2)[J]. Journal of Bacteriology,1991,173(22):7351-7360.
    [190] Engebrecht J, Nealson K, Silverman M. Bacterial bioluminescence: Isolationand genetic analysis of functions from Vibrio fischeri[J]. Cell,1983,32(3):773-781.
    [191] De Mot R, Schoofs G, Nagy I. Proteome analysis of Streptomyces coelicolormutants affected in the proteasome system reveals changes in stress-responsiveproteins[J]. Archives of Microbiology,2007,188(3):257-271.
    [192] Lee E J, Karoonuthaisiri N, Kim H S, Park J H, et al. A master regulatorsigma(B) governs osmotic and oxidative response as well as differentiation viaa network of sigma factors in Streptomyces coelicolor[J]. MolecularMicrobiology,2005,57(5):1252-1264.
    [193] Langlois P, Bourassa S, Poirier G G, Beaulieu C. Identification ofStreptomyces coelicolor proteins that are differentially expressed in thepresence of plant material[J]. Applied and Environmental Microbiology,2003,69(4):1884-1889.
    [194] Suzuki S, Izawa Y, Kobayashi K, Eto Y, et al. Purification andcharacterization of novel transglutaminase from Bacillus subtilis spores[J].Bioscience Biotechnology and Biochemistry,2000,64(11):2344-2351.
    [195] Duran R, Junqua M, Schmitter J M, Gancet C, Goulas P. Purification,characterisation, and gene cloning of transglutaminase from Streptoverticilliumcinnamoneum CBS683.68[J]. Biochimie,1998,80(4):313-319.
    [196]尹少谦.吸水链霉菌产谷氨酰胺转胺酶的分离纯化、性质及应用研究[D].江南大学,2005,硕士.
    [197] Macedo J, Sato H. Purification and characterization of a new transglutaminasefrom Streptomyces spp. isolated in Brazilian soil[J]. New Biotechnology,2009,25: S125-S125.
    [198] Cui L, Du G C, Zhang D X, Chen J. Thermal stability and conformationalchanges of transglutaminase from a newly isolated Streptomyceshygroscopicus[J]. Bioresource Technology,2008,99(9):3794-3800.
    [199] Lorenzen P C, Neve H, Mautner A, Schlimme E. Effect of enzymaticcross-linking of milk proteins on functional properties of set-style yoghurt[J].International Journal of Dairy Technology,2002,55(3):152-157.
    [200] Ozer B, Avni Kirmaci H, Oztekin S, Hayaloglu A, Atamer M. Incorporation ofmicrobial transglutaminase into non-fat yogurt production[J]. InternationalDairy Journal,2007,17(3):199-207.
    [201] B nisch M P, Huss M, Weitl K, Kulozik U. Transglutaminase cross-linking ofmilk proteins and impact on yoghurt gel properties[J]. International DairyJournal,2007,17(11):1360-1371.
    [202] Gauche C, Tomazi T, Barreto P L M, Ogliari P J, Bordignon-Luiz M T.Physical properties of yoghurt manufactured with milk whey andtransglutaminase[J]. LWT-Food Science and Technology,2009,42(1):239-243.
    [203] Myll rinen P, Buchert J, Autio K. Effect of transglutaminase on rheologicalproperties and microstructure of chemically acidified sodium caseinate gels[J].International Dairy Journal,2007,17(7):800-807.
    [204] Brauss M S, Linforth R S T, Cayeux I, Harvey B, Taylor A J. Altering the FatContent Affects Flavor Release in a Model Yogurt System[J]. Journal ofAgricultural and Food Chemistry,1999,47(5):2055-2059.
    [205] Cayot P, Schenker F, Houzé G, Sulmont-Rossé C, Colas B. Creaminess inrelation to consistency and particle size in stirred fat-free yogurt[J].International Dairy Journal,2008,18(3):303-311.
    [206] Zhang H R, Wang Q, Fan E G. Stability Profile of Fatty Acids in Yak (Bosgrunniens) Kidney Fat During the Initial Stages of Autoxidation[J]. Journal ofthe American Oil Chemists Society,2009,86(11):1057-1063.
    [207] Kandeepan G, Sangma S. Comparison of quality characteristics of full fat andlow fat paneer developed from yak milk[J]. International Journal of DairyTechnology,2011,64(1):117-120.
    [208] Liu H N, Ren F Z, Jiang L, Ma Z L, et al. Short communication: Fatty acidprofile of yak milk from the Qinghai-Tibetan Plateau in different seasons andfor different parities[J]. Journal of Dairy Science,2011,94(4):1724-1731.
    [209] Trachoo N. Yogurt: The fermented milk[J]. Songklanakarin J. Sci. Technol.,2002,24(4):727-738.
    [210] Sheng Q H, Li J C, Alam M S, Fang X P, Guo M R. Gross composition andnutrient profiles of Chinese yak (Maiwa) milk[J]. International Journal of FoodScience and Technology,2008,43(3):568-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700