用户名: 密码: 验证码:
钛材表面纳米结构化及其对骨髓间充质干细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料植入宿主体内后,其与生物系统的相互作用(蛋白吸附、细胞粘附/增殖等)发生在材料表面。细胞的生物学行为主要由材料表面化学成分和宏观、介观与微观多尺度的拓扑结构构成的局部微环境决定。因此,如何构建材料表面适宜的细胞外微环境,进而调控细胞的生理功能,已成为相关领域的研究热点之一。
     钛及钛合金由于具有良好的物理性能已被作为植入体材料广泛应用于骨科临床领域。不足之处是,钛及钛合金材料表面有生物惰性,缺乏诱导骨生成潜能,导致钛基植入体与周边自然骨组织的整合性差,使用寿命短,是其临床应用面临的普遍挑战。鉴于此,为了实现钛材表面原位调控细胞生物学行为,进而诱导骨组织形成,亟需研发新的钛材表面改性技术。从模拟类骨纳米结构及细胞外基质组分角度出发,本论文利用机械研磨技术、阳极氧化等方法制备了表面纳米拓扑结构的钛基材,进而沉积磷灰石/明胶,构建适宜的细胞外微环境,以期提高钛基植入体的骨整合性。主要研究内容和结论如下:
     1.表面纳米结构化钛材对骨髓间充质干细胞行为的影响
     为探究表面纳米结构化钛材对骨髓间充质干细胞生理行为的影响,本章利用机械研磨技术制备了表面纳米结构化钛材。通过扫描电子显微镜(SEM),透射电镜(TEM),原子力显微镜(AFM),X射线衍射仪(XRD)和接触角测试对表面特性进行表征。结果表明,经机械研磨技术处理后,在钛材表面上形成了纳米结构化薄层。通过纤连蛋白(Fn)与牛血清白蛋白(BSA)进行蛋白质吸附实验,结果表明,与未处理的纯钛相比,表面纳米结构化钛材对蛋白吸附量无显著的差异性。此外,在细胞与分子水平上,通过纽蛋白(vinculin)染色,四唑盐比色(MTT)检测,碱性磷酸酶(ALP)活性检测,骨钙素(OCN)与骨桥蛋白(OPN)染色,茜红素定量检测及骨钙素(OCN)、骨桥蛋白(OPN)、I型胶原蛋白(collagen I)与转录因子Runx2在mRNA水平表达等实验,分别研究了表面纳米结构化钛材对骨髓间充质干细胞粘附、铺展、增殖及分化的影响。结果表明,表面纳米结构化钛材促进了骨髓间充质干细胞粘附、增殖及骨发生相关的蛋白及基因在蛋白质与mRNA水平上的表达。本研究提供了一种制备表面纳米结构化钛材的新方法。
     2. BMP2功能化TiO_2纳米管对骨髓间充质干细胞行为的协同效应
     为探究BMP2功能化TiO_2纳米管对骨髓间充质干细胞行为的影响,本章利用聚多巴胺中间层将BMP2接枝到不同尺寸直径(30nm、60nm与100nm)的TiO_2纳米管上,并利用扫描电子显微镜(SEM),X光电子谱(XPS)及接触角对材料进行了表征。结果表明,BMP2已成功地接枝到TiO_2纳米管上。此外,进一步研究了BMP2修饰的TiO_2纳米管对骨髓间充质干细胞行为的影响。纽蛋白荧光染色结果表明,BMP2功能化的TiO_2纳米管促进了细胞粘附与生长,且经过7天与14天培养后,在BMP2功能化的TiO_2纳米管上生长的骨髓间充质干细胞表现更高的碱性磷酸酶(ALP)活性与矿化量(p<0.05或p<0.01),其中,BMP2功能化的管径为30nm的TiO_2纳米管上生长的细胞表现最高。该结果表明,BMP2功能化的TiO_2纳米管拓扑结构协同增效地促进了骨髓间充质干细胞的增殖与分化。本研究为研发高骨整合性钛植入体提供了新方法。
     3.钛材表面微环境的构建及其对体外骨髓间充质干细胞成骨分化与体内成骨的影响
     为模拟自然骨的细胞外基质,本章利用共沉淀方法将磷灰石/明胶沉积在纳米结构化钛材表面,这种纳米结构化钛材是通过氢氧化钾与加热处理后,在表面形成的抗腐蚀纳米结构化层。利用红外(FTIR),场发射扫描电子显微镜(FE-SEM),原子力显微镜(AFM)与薄膜X线衍射(TE-XRD)对材料进行了表征。检测结果表明,磷灰石/明胶成功地沉积在纳米结构化钛材表面。纽蛋白的荧光染色结果表明,磷灰石/明胶纳米成分促进了细胞粘附,更重要的是,在第7,14与21天时,在磷灰石/明胶纳米成分钛材上生长的骨髓间充质干细胞表现了更高的增殖与碱性磷酸酶(ALP)活性。并且,骨钙素(OCN)、骨桥蛋白(OPN)和I型胶原蛋白(p<0.05或p<0.01)的表达得到了更大地提高。通过OCN与OPN的免疫荧光染色也得到了同样的结果。通过组织切片,X光片与micro-CT(micro computedtomography,微计算机断层扫描技术)分析得知磷灰石/明胶纳米成分提高了骨密度和骨-植入体的接触率(p<0.05或p<0.01),诱导植入体与骨界面间新骨的生长。以上结果表明,磷灰石/明胶纳米成分促进了体内外成骨。本研究为制备高性能钛材植入体提供了新技术。
After implantation of a biomaterial into a host, the interaction betweenbiomaterials and biological system (protein adsorption, cell adhesion/proliferation, etc)occurs at the biomaterial surface. The biological behaviors of cells are mainlydominated by the local microenvironment of chemistry and topography on macroscle,mesoscale, and microscale sizes. Thus, how to construct desirable microenvironmentsonto the material surface, in turn mediating cells’ physiological functions, becomes oneof the hot topics in the related field.
     Titanium (Ti) and its alloys have been widely applied as bone implants in clinicalapplications because of their good mechanical properties. Nevertheless,titanium basedmaterials are surface bioinert, being lack of the potential for inducing tissue formation,which results in poor osseointegration between the implant and its surrounding naturebone tissue and short lifespan of the implant. It is the common challenge in clinicalapplication. Considering those issues, to realize surface-mediating control of thebiological behaviors of cells and induction of bone tissue formation, it is urgent todevelop novel techniques. To improve the osseointegration of titanium based implants,in this study, surface mechanical attrition treatment (SMAT) technique and anodizationwere employed to fabricate surface nanostructured titanium, and then depositedapatite/gelatin composite to construct desirable microenvironments, from theperspective of mimicking the bone-like nanoscale architecture and the components ofextracellular matrix.
     Main contents and conclusions of this research are listed as follows:
     1. Regulation of the behaviors of mesenchymal stem cells by surface nanostructuredtitanium
     The study describes the influence of surface nanostructured titanium on thebehaviors of mesenchymal stem cells (MSCs). Surface nanostructures of titanium wereproduced with surface mechanical attrition treatment (SMAT) technique. Field emissionscanning electron microscopy (FE-SEM), transmission electron microscopy (TEM),atomic force microscopy (AFM), X-ray diffraction (XRD) and contact-anglemeasurements were used to characterize the surfaces of native titanium and surfacenanostructured titanium substrates were characterized, respectively. A thinnanostructured layer was formed onto the surfaces of titanium substrates after SMAT treatment. Immunofluorescence staining of vinculin, osteocalcin (OCN), andosteopontin (OPN), MTT test, the levels of (Alkaline phosphatase) ALP and OCN andthe mRNA expressions of OCN, OPN, collagen type I (Col I) and Runx2(runt-relatedprotein2) were examined, in order to evaluate the effects of the surface nanostructuredtitanium substrates on the adhesion, spreading, proliferation and osteoblasticdifferentiation of MSCs at cellular and molecular levels in vitro. The results suggest thatthe surface nanostructured substrates were beneficial for the growth of MSCs, includingadhesion, filament orientation, proliferation and gene expression. This approach for thefabrication of surface nanostructured titanium may be exploited in the development ofhigh performance titanium-based implants.
     2. Surface functionalization of TiO_2nanotubes with bone morphogenetic protein2and its synergistic effect on the differentiation of mesenchymal stem cells
     To investigate the influence of surface-functionalized substrates withnanostructures on the behaviors of mesenchymal stem cells, we conjugated bonemorphogenetic protein2(BMP2) onto TiO_2nanotubes with different diameter sizes of30,60, and100nm for in vitro study. Polydopamine was employed as the intermediatelayer for the conjugation of BMP2. The successful conjugation of BMP2onto TiO_2nanotubes was revealed by field-emission scanning electron microscopy (FE-SEM),X-ray photoelectron spectroscopy (XPS), and contact angle measurements.Immunofluorescence staining of vinculin, osteocalcin (OCN), and osteopontin (OPN)revealed that BMP2-functionalized TiO_2nanotubes were favorable for cell growth.More importantly, MSCs cultured onto BMP2-functionalized TiO_2nanotubes displayedsignificantly higher (p <0.05or p <0.01) d ifferentiation levels of ALP andmineralization after7and14day cultures, respectively. The results suggested thatsurface functionalization of TiO_2nanotubes with BMP2was beneficial for cellproliferation and differentiation. The approach presented here has potential applicationfor the development of titanium-based implants for enhanced bone osseointegration.
     3. Construction of microenvironment onto titanium substrates to regulate theosteoblastic differentiation of mesenchymal stem cells in vitro and osteogenesis invivo
     To mimic the extracellular matrix of natural bone, apatite/gelatin composite wasdeposited onto nanostructured titanium substrates via a coprecipitation method, whichwas pretreated by potassium hydroxide and heat treatment to generate an anticorrosivenanostructured layer. The successful formation of the apatite/gelatin nanocomposite onto titanium surfaces was revealed by Fourier transform infrared spectroscopy,field-emission scanning electron microscopy, atomic force microscopy (AFM), and thinfilm X-ray diffraction (TF-XRD) measurements, respectively. The immunofluorescencestaining of vinculin revealed that the apatite/gelatin nanocomposite deposited titaniumsubstrate was favorable for cell adhesion. More importantly, mesenchymal stem cellscultured onto the apatite/gelatin nanocomposite deposited titanium displayed higher (p<0.05or p <0.01) proliferation and osteoblastic differentiation levels of alkalinephosphatase, mRNA expressions of collagen I (Col I), osteocalcin (OCN) andosteopontin (OPN), and OCN content after culture for7,14, and21days, respectively,which was also revealed by the immunofluorescence analysis of OCN and OPNexpression. The deposition of apatite/gelatin nanocomposite improved bone density (p <0.05) and bone-implant contact rate (p <0.05), which was reflected by microcomputedtomography analysis and histological evaluation in vivo using a rabbit model. This workprovides an approach to fabricate high-performance titanium-based implants withenhanced bone osseointegration.
引文
[1] Long M, Rack H. Titanium alloys in total joint replacement-a materials science perspective[J].Biomaterials.1998;19:1621-39.
    [2] Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M. Differences of bone bonding abilityand degradation behaviour in vivo between amorphous calcium phosphate and highlycrystalline hydroxyapatite coating[J]. Biomaterials.1996;17:1771-7.
    [3] Sporer SM, Paprosky WG. Biologic fixation and bone ingrowth. Orthopedic Clinics of NorthAmerica[J].2005;36:105-12.
    [4] Kieswetter K, Schwartz Z, Dean D, Boyan B. The role of implant surface characteristics in thehealing of bone[J]. Critical Reviews in Oral Biology&Medicine.1996;7:329-45.
    [5] Schwartz Z, Boyan B. Underlying mechanisms at the bone–biomaterial interface[J]. Journal ofcellular biochemistry.2004;56:340-7.
    [6] Martin J, Schwartz Z, Hummert T, Schraub D, Simpson J, Lankford J, et al. Effect of titaniumsurface roughness on proliferation, differentiation, and protein synthesis of humanosteoblast-like cells (MG63)[J]. Journal of Biomedical Materials Research.2004;29:389-401.
    [7] Sul Y-T, Johansson C, Wennerberg A, Cho L-R, Chang B-S, Albrektsson T. Optimum surfaceproperties of oxidized implants for reinforcement of osseointegration: surface chemistry,oxide thickness, porosity, roughness, and crystal structure[J]. The International journal of oral&maxillofacial implants.2005;20:349.
    [8] Rupp F, Scheideler L, Olshanska N, De Wild M, Wieland M, Geis-Gerstorfer J. Enhancingsurface free energy and hydrophilicity through chemical modification of microstructuredtitanium implant surfaces[J]. Journal of Biomedical Materials Research Part A.2005;76:323-34.
    [9] Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran D, et al. High surfaceenergy enhances cell response to titanium substrate microstructure[J]. Journal of BiomedicalMaterials Research Part A.2005;74:49-58.
    [10] Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H, et al. Effect of micrometer-scaleroughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo[J]. The Journal ofBone and Joint Surgery (American).2008;90:2485-98.
    [11] Att W, Tsukimura N, Suzuki T, Ogawa T. Effect of supramicron roughness characteristicsproduced by1-and2-step acid etching on the osseointegration capability of titanium[J].International Journal of Oral and Maxillofacial Implants.2007;22:719.
    [12] Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micronsurface features on vascular and bone cell adhesion on titanium[J]. Biomaterials.2008;29:970-83.
    [13] Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern-induced changes inmorphology and motility of smooth muscle cells[J]. Biomaterials.2005;26:5405-13.
    [14] Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum onhuman osteoblastic cell growth[J]. Journal of biomedical materials research.2002;60:529-40.
    [15] Stevens MM, George JH. Exploring and engineering the cell surface interface[J]. Science.2005;310:1135-8.
    [16] McCafferty E, Wightman J. An X-ray photoelectron spectroscopy sputter profile study of thenative air-formed oxide film on titanium[J]. Applied surface science.1999;143:92-100.
    [17] Variola F, Yi J-H, Richert L, Wuest JD, Rosei F, Nanci A. Tailoring the surface properties ofTi6Al4V by controlled chemical oxidation[J]. Biomaterials.2008;29:1285-98.
    [18] Wu JM, Huang B, Wang M, Osaka A. Titania nanoflowers with high photocatalytic activity[J].Journal of the American Ceramic Society.2006;89:2660-3.
    [19] Wu S, Liu X, Hu T, Chu PK, Ho J, Chan Y, et al. A biomimetic hierarchical scaffold: naturalgrowth of nanotitanates on three-dimensional microporous Ti-based metals[J]. Nano letters.2008;8:3803-8.
    [20] Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step[J]. Science.1995;268:1466-8.
    [21] Zwilling V, Darque‐Ceretti E, Boutry‐Forveille A, David D, Perrin M-Y, Aucouturier M.Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J]. Surfaceand Interface Analysis.1999;27:629-37.
    [22] Gong D, Grimes C, Varghese OK, Hu W, Singh R, Chen Z, et al. Titanium oxide nanotubearrays prepared by anodic oxidation[J]. Journal of Materials Research.2001;16:3331-4.
    [23] Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2nanotube diameterdirects cell fate[J]. Nano Letters.2007;7:1686-91.
    [24] Sj str m T, Dalby MJ, Hart A, Tare R, Oreffo RO, Su B. Fabrication of pillar-like titaniananostructures on titanium and their interactions with human skeletal stem cells[J]. Actabiomaterialia.2009;5:1433-41.
    [25] Yerokhin A, Nie X, Leyland A, Matthews A, Dowey S. Plasma electrolysis for surfaceengineering[J]. Surface and Coatings Technology.1999;122:73-93.
    [26] Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arcoxidized titania coatings[J]. Acta biomaterialia.2008;4:1518-29.
    [27] Yan Y, Han Y. Structure and bioactivity of micro-arc oxidized zirconia films[J]. Surface andCoatings Technology.2007;201:5692-5.
    [28] Wang Y, Jiang B, Lei T, Guo L. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3system solution: Microstructure, mechanical and tribological properties[J]. Surface andCoatings Technology.2006;201:82-9.
    [29] Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson G. Corrosion resistance of WE43andAZ91D magnesium alloys with phosphate PEO coatings[J]. Corrosion Science.2008;50:1744-52.
    [30] Jin F, Chu PK, Wang K, Zhao J, Huang A, Tong H. Thermal stability of titania films preparedon titanium by micro-arc oxidation[J]. Materials Science and Engineering: A.2008;476:78-82.
    [31] Shin Y-K, Chae W-S, Song Y-W, Sung Y-M. Formation of titania photocatalyst films bymicroarc oxidation of Ti and Ti–6Al–4V alloys[J]. Electrochemistry Communications.2006;8:465-70.
    [32] Ceschini L, Lanzoni E, Martini C, Prandstraller D, Sambogna G. Comparison of dry slidingfriction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVDcoating[J]. Wear.2008;264:86-95.
    [33] Jun Y-K, Kim H-S, Lee J-H, Hong S-H. CO sensing performance in micro-arc oxidized TiO2films for air quality control[J]. Sensors and Actuators B: Chemical.2006;120:69-73.
    [34] Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containingCa and P[J]. Journal of biomedical materials research.1995;29:65-72.
    [35] Lausmaa J. Mechanical, thermal, chemical and electrochemical surface treatment of titanium[J].Titanium in medicine: Springer;2001. p.231-66.
    [36] Advincula MC, Rahemtulla FG, Advincula RC, Ada ET, Lemons JE, Bellis SL. Osteoblastadhesion and matrix mineralization on sol–gel-derived titanium oxide[J]. Biomaterials.2006;27:2201-12.
    [37] He G, Hu J, Wei S, Li J, Liang X, Luo E. Surface modification of titanium by nano-TiO2HAbioceramic coating[J]. Applied surface science.2008;255:442-5.
    [38] Tang L, Tsai C, Gerberich W, Kruckeberg L, Kania D. Biocompatibility ofchemical-vapour-deposited diamond[J]. Biomaterials.1995;16:483-8.
    [39] Pareta R, Yang L, Kothari A, Sirinrath S, Xiao X, Sheldon BW, et al. Tailoring nanocrystallinediamond coated on titanium for osteoblast adhesion[J]. Journal of Biomedical MaterialsResearch Part A.2010;95:129-36.
    [40] Chen F, Lam W, Lin C, Qiu G, Wu Z, Luk K, et al. Biocompatibility of electrophoreticaldeposition of nanostructured hydroxyapatite coating on roughen titanium surface: In vitroevaluation using mesenchymal stem cells[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2007;82:183-91.
    [41] Bigi A, Fini M, Bracci B, Boanini E, Torricelli P, Giavaresi G, et al. The response of bone tonanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model[J]. Biomaterials.2008;29:1730-6.
    [42] Lin C, Han H, Zhang F, Li A. Electrophoretic deposition of HA/MWNTs composite coating forbiomaterial applications[J]. Journal of Materials Science: Materials in Medicine.2008;19:2569-74.
    [43] Liu X, Zhao X, Fu RK, Ho JP, Ding C, Chu PK. Plasma-treated nanostructured TiO2surfacesupporting biomimetic growth of apatite[J]. Biomaterials.2005;26:6143-50.
    [44] Mattox DM. Handbook of physical vapor deposition (PVD) processing[M]: William Andrew;2010.
    [45] Liu X, Huang A, Ding C, Chu PK. Bioactivity and cytocompatibility of zirconia (ZrO2) filmsfabricated by cathodic arc deposition[J]. Biomaterials.2006;27:3904-11.
    [46] H mmerle C, Schmid J, Olah A, Lang N. Influence of initial implant mobility on the integrationof titanium implants. An experimental study in rabbits[J]. Clinical Oral Implants Research.1996;7:120-7.
    [47] Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M. Cellular and molecularinteractions between MC3T3-E1pre-osteoblasts and nanostructured titanium produced byhigh-pressure torsion[J]. Biomaterials.2007;28:3887-95.
    [48] La P, Ma J, Zhu YT, Yang J, Liu W, Xue Q, et al. Dry-sliding tribological properties ofultrafine-grained Ti prepared by severe plastic deformation[J]. Acta materialia.2005;53:5167-73.
    [49] Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, andCoCrMo[J]. Biomaterials.2004;25:4731-40.
    [50] Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, et al. Nanostructuredtitanium for biomedical applications[J]. Advanced Engineering Materials.2008;10:B15-B7.
    [51] Tang K, Wu H, Mahata SK, O’Connor DT. A crucial role for the mitogen-activated proteinkinase pathway in nicotinic cholinergic signaling to secretory protein transcription inpheochromocytoma cells[J]. Molecular pharmacology.1998;54:59-69.
    [52] Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diversecellular functions[J]. Growth Factors.2006;24:21-44.
    [53] Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK,and p38protein kinases[J]. Science.2002;298:1911-2.
    [54] Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, et al. Nanocrystals asstoichiometric reagents with unique surface chemistry[J]. The Journal of Physical Chemistry.1996;100:12142-53.
    [55] Baraton M-I, Chen X, Gonsalves K. Ftir study of a nanostructured aluminum nitride powdersurface: Determination of the acidic/basic sites by CO, CO2and acetic acid adsorptions[J].Nanostructured materials.1997;8:435-45.
    [56] Mendon a G, Mendon a D, Aragao FJ, Cooper LF. Advancing dental implant surfacetechnology–from micron-to nanotopography[J]. Biomaterials.2008;29:3822-35.
    [57] Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, et al. The effect of nano-andmicron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro[J].Biomaterials.2007;28:2946-58.
    [58] Dalby M, Riehle M, Johnstone H, Affrossman S, Curtis A. Investigating the limits of filopodialsensing: a brief report using SEM to image the interaction between10nm highnano-topography and fibroblast filopodia[J]. Cell biology international.2004;28:229-36.
    [59] Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF, et al. Biologicallength scale topography enhances cell-substratum adhesion of human corneal epithelialcells[J]. Journal of cell science.2004;117:3153-64.
    [60] Hajicharalambous CS, Lichter J, Hix WT, Swierczewska M, Rubner MF, Rajagopalan P.Nano-and sub-micron porous polyelectrolyte multilayer assemblies: biomimetic surfaces forhuman corneal epithelial cells[J]. Biomaterials.2009;30:4029-36.
    [61] Winslow RL, Greenstein JL. Cardiac myocytes and local signaling in nano-domains. Progress inbiophysics and molecular biology[J].2011;107:48-59.
    [62] Kim D-H, Kim P, Suh KY, Choi SK, Lee SH, Kim B. Modulation of adhesion and growth ofcardiac myocytes by surface nanotopography[J]. Engineering in Medicine and BiologySociety,2005IEEE-EMBS200527th Annual International Conference of the: IEEE;2006. p.4091-4.
    [63] Lukyanenko V. Delivery of nano-objects to functional sub-domains of healthy and failingcardiac myocytes[J]. Nanomedicine.2007;2:831-46.
    [64] Woo KM, Jun J-H, Chen VJ, Seo J, Baek J-H, Ryoo H-M, et al. Nano-fibrous scaffoldingpromotes osteoblast differentiation and biomineralization[J]. Biomaterials.2007;28:335-43.
    [65] Kalbacova M, Kalbac M, Dunsch L, Kromka A, Vaně ek M, Rezek B, et al. The effect ofSWCNT and nano-diamond films on human osteoblast cells[J]. physica status solidi (b).2007;244:4356-9.
    [66] Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ. Human foetal osteoblastic cell responseto polymer-demixed nanotopographic interfaces[J]. Journal of The Royal Society Interface.2005;2:97-108.
    [67] Galli C, Collaud Coen M, Hauert R, Katanaev V, Wymann M, Gr ning P, et al. Proteinadsorption on topographically nanostructured titanium[J]. Surface science.2001;474:L180-L4.
    [68] Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence proteinadsorption and cell proliferation Colloids and Surfaces B[J]: Biointerfaces.2006;49:136-44.
    [69] Choudhary S, Haberstroh KM, Webster TJ. Enhanced functions of vascular cells onnanostructured Ti for improved stent applications[J]. Tissue engineering.2007;13:1421-30.
    [70] Lovmand J, Justesen J, Foss M, Lauridsen RH, Lovmand M, Modin C, et al. The use ofcombinatorial topographical libraries for the screening of enhanced osteogenic expression andmineralization[J]. Biomaterials.2009;30:2015-22.
    [71] Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaceson bone cells[J]. Biomaterials.2007;28:3188-97.
    [72] Miller DC, Haberstroh KM, Webster TJ. Mechanism (s) of increased vascular cell adhesion onnanostructured poly (lactic-co-glycolic acid) films. Journal of Biomedical Materials ResearchPart A[J].2005;73:476-84.
    [73] Richert L, Vetrone F, Yi JH, Zalzal SF, Wuest JD, Rosei F, et al. Surface nanopatterning tocontrol cell growth[J]. Advanced Materials.2008;20:1488-92.
    [74] Tambasco de Oliveira P, Nanci A. Nanotexturing of titanium-based surfaces upregulatesexpression of bone sialoprotein and osteopontin by cultured osteogenic cells[J]. Biomaterials.2004;25:403-13.
    [75] de Oliveira PT, Zalzal SF, Irie K, Nanci A. Early expression of bone matrix proteins inosteogenic cell cultures[J]. Journal of Histochemistry&Cytochemistry.2003;51:633-41.
    [76] Brammer KS, Oh S, Cobb CJ, Bjursten LM, Heyde Hvd, Jin S. Improved bone-formingfunctionality on diameter-controlled TiO2nanotube surface[J]. Acta biomaterialia.2009;5:3215-23.
    [77] Liu X, Zhao X, Li B, Cao C, Dong Y, Ding C, et al. UV-irradiation-induced bioactivity on TiO2coatings with nanostructural surface[J]. Acta biomaterialia.2008;4:544-52.
    [78] Clem WC, Chowdhury S, Catledge SA, Weimer JJ, Shaikh FM, Hennessy KM, et al.Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond forwear-resistant orthopaedic implants[J]. Biomaterials.2008;29:3461-8.
    [79] Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblastresponse to roughness by means of surface-morphology gradients[J]. Biomaterials.2007;28:2175-82.
    [80] Discher DE, Janmey P, Wang Y-l. Tissue cells feel and respond to the stiffness of theirsubstrate[J]. Science.2005;310:1139-43.
    [81] Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stagemineralization and bone cell–materials interactions of polarized hydroxyapatite[J]. Actabiomaterialia.2009;5:2178-88.
    [82] Joy A, Cohen DM, Luk A, Anim-Danso E, Chen C, Kohn J. Control of surface chemistry,substrate stiffness, and cell function in a novel terpolymer methacrylate library[J]. Langmuir.2011;27:1891-9.
    [83] Martínez E, Lagunas A, Mills C, Rodríguez-Seguí S, Estévez M, Oberhansl S, et al. Stem celldifferentiation by functionalized micro-and nanostructured surfaces[J]. Nanomedicine.2009;4:65-82.
    [84] Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda T, Anderson JM. In vivoleukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry[J].Journal of Biomedical Materials Research Part A.2003;64:320-9.
    [85] Park J, Bauer S, Schmuki P, von der Mark K. Narrow window in nanoscale dependentactivation of endothelial cell growth and differentiation on TiO2nanotube surfaces[J]. Nanoletters.2009;9:3157-64.
    [86] Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2nanotubesurfaces:15nm-an optimal length scale of surface topography for cell adhesion anddifferentiation[J]. Small.2009;5:666-71.
    [87] Faghihi S, Zhilyaev AP, Szpunar JA, Azari F, Vali H, Tabrizian M. Nanostructuring of aTitanium Material by High Pressure Torsion Improves Pre-Osteoblast Attachment[J].Advanced Materials.2007;19:1069-73.
    [88] Misra R, Thein-Han WW, Pesacreta T, Hasenstein K, Somani M, Karjalainen L. FavorableModulation of Pre-Osteoblast Response to Nanograined/Ultrafine-grained Structures inAustenitic Stainless Steel[J]. Advanced materials.2009;21:1280-5.
    [89] Tong W, Tao N, Wang Z, Lu J, Lu K. Nitriding iron at lower temperatures[J]. Science.2003;299:686-8.
    [90] Ke L. Mechanical and wear properties of nanostructured surface layer in iron induced bysurface mechanical attrition treatment[J]. J Mater Sci Technol.2003;19.
    [91] Zhu K, Vassel A, Brisset F, Lu K, Lu J. Nanostructure formation mechanism of α-titanium usingSMAT[J]. Acta materialia.2004;52:4101-10.
    [92] Wang Z, Tao N, Li S, Wang W, Liu G, Lu J, et al. Effect of surface nanocrystallization onfriction and wear properties in low carbon steel[J]. Materials Science and Engineering: A.2003;352:144-9.
    [93] Zhang Y, Han Z, Wang K, Lu K. Friction and wear behaviors of nanocrystalline surface layer ofpure copper[J]. Wear.2006;260:942-8.
    [94] Wen M, Wen C, Hodgson PD, Li YC. Wear behaviour of pure Ti with a nanocrystalline surfacelayer[J]. Applied mechanics and materials.2011;66:1500-4.
    [95] Choi K-H, Choi BH, Park SR, Kim BJ, Min B-H. The chondrogenic differentiation ofmesenchymal stem cells on an extracellular matrix scaffold derived from porcinechondrocytes[J]. Biomaterials.2010;31:5355-65.
    [96] McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, et al.Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype andmultipotency[J]. Nature materials.2011;10:637-44.
    [97] Park JS, Yang HN, Woo DG, Jeon SY, Do H-J, Lim H-Y, et al. Chondrogenesis of humanmesenchymal stem cells mediated by the combination of SOX trio SOX5,6, and9genescomplexed with PEI-modified PLGA nanoparticles[J]. Biomaterials.2011;32:3679-88.
    [98] Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as acarrier matrix for human mesenchymal stem cells in cartilage regeneration therapy[J]. Journalof biomedical materials research.2000;52:246-55.
    [99] Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh K-R, et al. Vascularendothelial growth factor–expressing mesenchymal stem cell transplantation for the treatmentof acute myocardial infarction[J]. Arteriosclerosis, thrombosis, and vascular biology.2005;25:1168-73.
    [100] Nesti LJ, Jackson WM, Shanti RM, Koehler SM, Aragon AB, Bailey JR, et al. Differentiationpotential of multipotent progenitor cells derived from war-traumatized muscle tissue[J]. TheJournal of Bone&Joint Surgery.2008;90:2390-8.
    [101] Petite H, Viateau V, Bensaid W, Meunier A, De Pollak C, Bourguignon M, et al.Tissue-engineered bone regeneration[J]. Nature biotechnology.2000;18:959-63.
    [102] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanicalattrition treatment[J]. Materials Science and Engineering: A.2004;375:38-45.
    [103] Pountos I, Corscadden D, Emery P, Giannoudis PV. Mesenchymal stem cell tissue engineering:techniques for isolation, expansion and application[J]. Injury.2007;38:S23-S33.
    [104] Cai K, Yao K, Cui Y, Lin S, Yang Z, Li X, et al. Surface modification of poly (D, L-lactic acid)with chitosan and its effects on the culture of osteoblasts in vitro. Journal of biomedicalmaterials research[J].2002;60:398-404.
    [105] Gregory CA, Grady Gunn W, Peister A, Prockop DJ. An Alizarin red-based assay ofmineralization by adherent cells in culture: comparison with cetylpyridinium chlorideextraction. Analytical biochemistry[J].2004;329:77-84.
    [106] Kim TN, Balakrishnan A, Lee B, Kim W, Dvorankova B, Smetana K, et al. In vitro fibroblastresponse to ultra fine grained titanium produced by a severe plastic deformation process[J].Journal of Materials Science: Materials in Medicine.2008;19:553-7.
    [107] Wen M, Liu G, Gu J-f, Guan W-m, Lu J. The tensile properties of titanium processed bysurface mechanical attrition treatment[J]. Surface and Coatings Technology.2008;202:4728-33.
    [108] Wu X, Tao N, Hong Y, Liu G, Xu B, Lu J, et al. Strain-induced grain refinement of cobaltduring surface mechanical attrition treatment[J]. Acta materialia.2005;53:681-91.
    [109] Ting C-C, Chen S-Y, Liu D-M. Structural evolution and optical properties of TiO thin filmsprepared by thermal oxidation of sputtered Ti films[J]. Journal of Applied Physics.2000;88:4628.
    [110] Jafari M, Vaezzadeh M, Noroozizadeh S. Thermal Stability of α Phase of Titanium by UsingX-Ray Diffraction[J]. Metallurgical and Materials Transactions A.2010;41:3287-90.
    [111] Allen LT, Tosetto M, Miller IS, O’Connor DP, Penney SC, Lynch I, et al. Surface-inducedchanges in protein adsorption and implications for cellular phenotypic responses to surfaceinteraction[J]. Biomaterials.2006;27:3096-108.
    [112] Roy DC, Wilke-Mounts SJ, Hocking DC. Chimeric fibronectin matrix mimetic as a functionalgrowth-and migration-promoting adhesive substrate[J]. Biomaterials.2011;32:2077-87.
    [113] Denis FA, Hanarp P, Sutherland DS, Gold J, Mustin C, Rouxhet PG, et al. Protein adsorptionon model surfaces with controlled nanotopography and chemistry[J]. Langmuir.2002;18:819-28.
    [114] Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesionon nanophase alumina involve vitronectin[J]. Tissue engineering.2001;7:291-301.
    [115] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineagepotential of adult human mesenchymal stem cells[J]. Science.1999;284:143-7.
    [116] Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controlsfocal adhesion formation by direct interactions with talin and actin. The Journal of cellbiology[J].2007;179:1043-57.
    [117] Dolatshahi-Pirouz A, Jensen T, Kraft DC, Foss M, Kingshott P, Hansen JL, et al. Fibronectinadsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces[J]. ACS nano.2010;4:2874-82.
    [118] Gundberg C, Looker A, Nieman S, Calvo M. Patterns of osteocalcin and bone specific alkalinephosphatase by age, gender, and race or ethnicity[J]. Bone.2002;31:703-8.
    [119] Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. Effects of static magnetic fields onbone formation in rat osteoblast cultures[J]. Journal of dental research.2003;82:962-6.
    [120] Huang J, Wang X, Zhang T-L, Wang K. Alterations of ovariectomized rat bone and impact ofnon-collagenous proteins on mineralization[J]. Joint Bone Spine.2009;76:176-83.
    [121] Reichert JC, Quent V, Burke LJ, Stansfield SH, Clements JA, Hutmacher DW. Mineralizedhuman primary osteoblast matrices as a model system to analyse interactions of prostatecancer cells with the bone microenvironment[J]. Biomaterials.2010;31:7928-36.
    [122] Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation ofbone-marrow cells mediated by collagen-α2β1integrin interaction[J]. Journal of cellularphysiology.2000;184:207-13.
    [123] Komori T. Runx2, a multifunctional transcription factor in skeletal development[J]. Journal ofcellular biochemistry.2002;87:1-8.
    [124] Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of humanmesenchymal cell differentiation using nanoscale symmetry and disorder. Nature materials[J].2007;6:997-1003.
    [125] Huang J, Gr ter SV, Corbellini F, Rinck-Jahnke S, Bock E, Kemkemer R, et al. Impact oforder and disorder in RGD nanopatterns on cell adhesion[J]. Nano letters.2009;9:1111.
    [126] Matschegewski C, Staehlke S, Loeffler R, Lange R, Chai F, Kern DP, et al. Cellarchitecture-cell function dependencies on titanium arrays with regular geometry[J].Biomaterials.2010;31:5729-40.
    [127] Bechara SL, Judson A, Popat KC. Template synthesized poly (-caprolactone) nanowiresurfaces for neural tissue engineering[J]. Biomaterials.2010;31:3492-501.
    [128] St Pierre CA, Chan M, Iwakura Y, Ayers DC, Kurt-Jones EA, Finberg RW. Periprostheticosteolysis: Characterizing the innate immune response to titanium wear-particles[J]. Journalof Orthopaedic Research.2010;28:1418-24.
    [129] Linder L, Carlsson A, Marsal L, Bjursten L, Branemark P. Clinical aspects of osseointegrationin joint replacement. A histological study of titanium implants[J]. Journal of Bone&JointSurgery, British Volume.1988;70:550-5.
    [130] Azevedo C. Failure analysis of a commercially pure titanium plate for osteosynthesis[J].Engineering Failure Analysis.2003;10:153-64.
    [131] Balaur E, Macak JM, Taveira L, Schmuki P. Tailoring the wettability of TiO2nanotubelayers[J]. Electrochemistry Communications.2005;7:1066-70.
    [132] Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy inchromic media. An electrochemical approach[J]. Electrochimica acta.1999;45:921-9.
    [133] Macak J, Hildebrand H, Marten-Jahns U, Schmuki P. Mechanistic aspects and growth of largediameter self-organized TiO2nanotubes[J]. Journal of Electroanalytical Chemistry.2008;621:254-66.
    [134] Oh S, Brammer KS, Li YJ, Teng D, Engler AJ, Chien S, et al. Stem cell fate dictated solely byaltered nanotube dimension[J]. Proceedings of the National Academy of Sciences.2009;106:2130-5.
    [135] Hu Y, Cai K, Luo Z, Zhang R, Yang L, Deng L, et al. Surface mediated in situ differentiationof mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layertechnique[J]. Biomaterials.2009;30:3626-35.
    [136] Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bonemorphogenetic protein-2decorated silk fibroin films induce osteogenic differentiation ofhuman bone marrow stromal cells[J]. Journal of Biomedical Materials Research Part A.2004;71:528-37.
    [137] Benoit DS, Collins SD, Anseth KS. Multifunctional hydrogels that promote osteogenic humanmesenchymal stem cell differentiation through stimulation and sequestering of bonemorphogenic protein2[J]. Advanced functional materials.2007;17:2085-93.
    [138] Thies R, Bauduy M, Ashton B, Kurtzberg L, Wozney J, Rosen V. Recombinant human bonemorphogenetic protein-2induces osteoblastic differentiation in W-20-17stromal cells[J].Endocrinology.1992;130:1318-24.
    [139] Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, et al. Bone regeneration using hyaluronicacid-based hydrogel with bone morphogenic protein-2and human mesenchymal stem cells[J].Biomaterials.2007;28:1830-7.
    [140] Carstens MH, Chin M, Li XJ. In situ osteogenesis: regeneration of10-cm mandibular defect inporcine model using recombinant human bone morphogenetic protein-2(rhBMP-2) andHelistat absorbable collagen sponge[J]. Journal of Craniofacial Surgery.2005;16:1033-42.
    [141] Kim SE, Song S-H, Yun YP, Choi B-J, Kwon IK, Bae MS, et al. The effect of immobilizationof heparin and bone morphogenic protein-2(BMP-2) to titanium surfaces on inflammationand osteoblast function[J]. Biomaterials.2011;32:366-73.
    [142] Waite JH. Surface chemistry: Mussel power[J]. Nature materials.2008;7:8-9.
    [143] Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, et al. Poly (D, L-lactic acid) surfaces modified bysilk fibroin: effects on the culture of osteoblast in vitro[J]. Biomaterials.2002;23:1153-60.
    [144] Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via musseladhesive protein inspired coatings[J]. Advanced materials.2008;21:431-4.
    [145] Poh CK, Shi Z, Lim TY, Neoh KG, Wang W. The effect of VEGF functionalization of titaniumon endothelial cells in vitro[J]. Biomaterials.2010;31:1578-85.
    [146] Cai K, Müller M, Bossert J, Rechtenbach A, Jandt KD. Surface structure and composition offlat titanium thin films as a function of film thickness and evaporation rate[J]. Applied surfacescience.2005;250:252-67.
    [147] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry formultifunctional coatings[J]. Science.2007;318:426-30.
    [148] Dalby M, Di Silvio L, Harper E, Bonfield W. In vitro adhesion and biocompatability ofosteoblast-like cells to poly (methylmethacrylate) and poly (ethylmethacrylate) bonecements[J]. Journal of Materials Science: Materials in Medicine.2002;13:311-4.
    [149] Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, Adams CS.Apoptosis and survival of osteoblast-like cells are regulated by surface attachment[J]. Journalof Biological Chemistry.2005;280:1733-9.
    [150] Wen K-K, Rubenstein PA, DeMali KA. Vinculin nucleates actin polymerization and modifiesactin filament structure[J]. Journal of Biological Chemistry.2009;284:30463-73.
    [151] Shah AK, Lazatin J, Sinha RK, Lennox T, Hickok NJ, Tuan RS. Mechanism of BMP-2stimulated adhesion of osteoblastic cells to titanium alloy[J]. Biology of the Cell.1999;91:131-42.
    [152] Rai B, Teoh S-H, Hutmacher D, Cao T, Ho K. Novel PCL-based honeycomb scaffolds as drugdelivery systems for rhBMP-2[J]. Biomaterials.2005;26:3739-48.
    [153] Akino K, Mineta T, Fukui M, Fujii T, Akita S. Bone morphogenetic protein-2regulatesproliferation of human mesenchymal stem cells[J]. Wound repair and regeneration.2003;11:354-60.
    [154] Dijke Pt. Bone morphogenetic protein signal transduction in bone[M]. Current MedicalResearch and Opinion.2006;22:S7-S11.
    [155] Lee H, Rho J, Messersmith PB. Facile conjugation of biomolecules onto surfaces via musseladhesive protein inspired coatings[J]. Advanced Materials.2009;21:431-4.
    [156] Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiationinterrelationships during progressive development of the osteoblast phenotype[J]. EndocrineReviews.1993;14:424-42.
    [157] Ayukawa Y, Takeshita F, Inoue T, Yoshinari M, Shimono M, Suetsugu T, et al. Animmunoelectron microscopic localization of noncollagenous bone proteins (osteocalcin andosteopontin) at the bone–titanium interface of rat tibiae[J]. Journal of Biomedical MaterialsResearch.1998;41:111-9.
    [158] Boskey AL. Mineral-matrix interactions in bone and cartilage[J]. Clinical orthopaedics andrelated research.1992:244.
    [159] Dalby M, Silvio LD, Harper E, Bonfield W. In vitro adhesion and biocompatability ofosteoblast-like cells to poly (methylmethacrylate) and poly (ethylmethacrylate) bonecements[J]. Journal of Materials Science: Materials in Medicine.2002;13:311-4.
    [160] Dijke Pt. Bone morphogenetic protein signal transduction in bone[J]. Current MedicalResearch and Opinion.2006;22:7-11.
    [161] Yu YY, Lieu S, Lu C, Colnot C. Bone morphogenetic protein2stimulates endochondralossification by regulating periosteal cell fate during bone repair[J]. Bone.2010;47:65-73.
    [162] Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T, et al. BMP-2promotesdifferentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines[J]. Journal ofcellular physiology.2007;211:728-35.
    [163] Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of theTGF-b receptor[J]. Nature.1994;370:341-6.
    [164] Ten Dijke P, Fu J, Schaap P, Roelen BA. Signal transduction of bone morphogenetic proteinsin osteoblast differentiation[J]. The Journal of Bone&Joint Surgery.2003;85:34-8.
    [165] Miyazono K. Signal transduction by bone morphogenetic protein receptors: functional roles ofSmad proteins[J]. Bone.1999;25:91-3.
    [166] Hanai J-i, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo W-H, et al. Interaction andFunctional Cooperation of PEBP2/CBF with Smads synergistic induction of theimmunoglobulin germline Cα promoter [J]. Journal of Biological Chemistry.1999;274:31577-82.
    [167] Lee J-S, Lee J-M, Im G-I. Electroporation-mediated transfer of Runx2and Osterix genes toenhance osteogenesis of adipose stem cells[J]. Biomaterials.2011;32:760-8.
    [168] Pungchanchaikul P, Bloch-Zupan A, Ferretti P. Delayed Osteoprogenitor Differentiation inCleft-Palate Models[J]. Cells Tissues Organs.2010;192:283-91.
    [169] Palmquist A, Omar OM, Esposito M, Lausmaa J, Thomsen P. Titanium oral implants: surfacecharacteristics, interface biology and clinical outcome[J]. Journal of The Royal SocietyInterface.2010;7:S515-S27.
    [170] Lutolf M, Hubbell J. Synthetic biomaterials as instructive extracellular microenvironments formorphogenesis in tissue engineering[J]. Nature biotechnology.2005;23:47-55.
    [171] Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed nano hydroxyapatite coatingson titanium for orthopaedic and dental implants[J]. Surface and Coatings Technology.2011;205:2785-92.
    [172] Gittens R, Olivares-Navarrete R, Tannenbaum R, Boyan B, Schwartz Z. Electrical implicationsof corrosion for osseointegration of titanium implants[J]. Journal of dental research.2011;90:1389-97.
    [173] Boyan B, Lossdorfer S, Wang L, Zhao G, Lohmann C, Cochran D, et al. Osteoblasts generatean osteogenic microenvironment when grown on surfaces with rough microtopographies[J].Eur Cell Mater.2003;6:22-7.
    [174] Ferris D, Moodie G, Dimond P, Giorani C, Ehrlich M, Valentini R. RGD-coated titaniumimplants stimulate increased bone formation in vivo[J]. Biomaterials.1999;20:2323-31.
    [175] Li Y, Lee I-S, Cui FZ, Choi SH. The biocompatibility of nanostructured calcium phosphatecoated on micro-arc oxidized titanium[J]. Biomaterials.2008;29:2025-32.
    [176] Fu Q, Hong Y, Liu X, Fan H, Zhang X. A hierarchically graded bioactive scaffold bonded totitanium substrates for attachment to bone[J]. Biomaterials.2011;32:7333-46.
    [177] Huang Y, Qu Y, Yang B, Li W, Zhang B, Zhang X. In vivo biological responses of plasmasprayed hydroxyapatite coatings with an electric polarized treatment in alkaline solution[J].Materials Science and Engineering: C.2009;29:2411-6.
    [178] Geesink R, de Groot K, Klein C. Bonding of bone to apatite-coated implants[J]. Journal ofBone&Joint Surgery, British Volume.1988;70:17-22.
    [179] Su X, Sun K, Cui F, Landis W. Organization of apatite crystals in human woven bone[J]. Bone.2003;32:150-62.
    [180] Jiao Y, Liu Z, Cui F, Zhou C. Effect of hydrolysis pretreatment on the formation of bone-likeapatite on poly (L-lactide) by mineralization in simulated body fluids[J]. Journal of Bioactiveand Compatible Polymers.2007;22:492-507.
    [181] Chen X, Meng Y, Wang Y, Du C, Yang C. A biomimetic material with a high bio-responsibilityfor bone reconstruction and tissue engineering[J]. Journal of Biomaterials Science, PolymerEdition.2011;22:153-63.
    [182] Cai K, Lai M, Yang W, Hu R, Xin R, Liu Q, et al. Surface engineering of titanium withpotassium hydroxide and its effects on the growth behavior of mesenchymal stem cells[J].Acta biomaterialia.2010;6:2314-21.
    [183] Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, et al. Production of anon-triple helical collagen α chain in transgenic silkworms and its evaluation as a gelatinsubstitute for cell culture[J]. Biotechnology and bioengineering.2010;106:860-70.
    [184] Veis A, Anesey J, Cohen J. The long range reorganization of gelatin to the collagen structure[J].Archives of Biochemistry and Biophysics.1961;94:20-31.
    [185] Von Hippel PH, Harrington WF. Enzymic studies of the gelatin collagen-fold transition[J].Biochimica et Biophysica Acta.1959;36:427-47.
    [186] Yang HN, Park JS, Woo DG, Jeon SY, Do H-J, Lim H-Y, et al. C/EBP-α andC/EBP-β–mediated adipogenesis of human mesenchymal stem cells (hMSCs) using PLGAnanoparticles complexed with poly (ethyleneimmine)[J]. Biomaterials.2011;32:5924-33.
    [187] Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified,culture-expanded human mesenchymal stem cells in vitro[J]. Journal of cellular biochemistry.1997;64:295-312.
    [188] Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J, et al. Autologous mesenchymal stem celltransplantation induce VEGF and neovascularization in ischemic myocardium[J]. Regulatorypeptides.2004;117:3-10.
    [189] Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, et al. Simultaneous regeneration of articularcartilage and subchondral bone in vivo using MSCs induced by a spatially controlled genedelivery system in bilayered integrated scaffolds[J]. Biomaterials.2011;32:4793-805.
    [190] Pignolo RJ, Xu M, Russell E, Richardson A, Kaplan J, Billings PC, et al. Heterozygousinactivation of Gnas in adipose‐derived mesenchymal progenitor cells enhances osteoblastdifferentiation and promotes heterotopic ossification[J]. Journal of Bone and MineralResearch.2011;26:2647-55.
    [191] Simon SR. Orthopaedic basic science[M]: Amer Academy of Orthopaedic;1994.
    [192] Liu X, Wu S, Yeung KW, Chan Y, Hu T, Xu Z, et al. Relationship between osseointegrationand superelastic biomechanics in porous NiTi scaffolds[J]. Biomaterials.2011;32:330-8.
    [193] Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K. Bonelike apatite growth onhydroxyapatite–gelatin sponges from simulated body fluid[J]. Journal of biomedical materialsresearch.2001;59:709-15.
    [194] Tank K, Sharma P, Kanchan D, Joshi M. FTIR, powder XRD, TEM and dielectric studies ofpure and zinc doped nano‐hydroxyapatite[J]. Crystal Research and Technology.2011.
    [195] Ting C-C, Chen S-Y, Liu D-M. Structural evolution and optical properties of TiO2thin filmsprepared by thermal oxidation of sputtered Ti films[J]. Journal of Applied Physics.2000;88:4628-33.
    [196] Joná ová L, Müller FA, Helebrant A, Strnad J, Greil P. Biomimetic apatite formation onchemically treated titanium[J]. Biomaterials.2004;25:1187-94.
    [197] Kim HM, Miyaji F, Kokubo T, Nakamura T. Bonding strength of bonelike apatite layer to Timetal substrate[J]. Journal of biomedical materials research.1998;38:121-7.
    [198] Yamaguchi T, Chattopadhyay N, Kifor O, Butters RR, Sugimoto T, Brown EM. MouseOsteoblastic Cell Line (MC3T3-E1) Expresses Extracellular Calcium (Ca2+)–SensingReceptor and Its Agonists Stimulate Chemotaxis and Proliferation of MC3T3‐E1Cells[J].Journal of Bone and Mineral Research.2009;13:1530-8.
    [199] Jaecques S, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, et al.Individualised, micro CT-based finite element modelling as a tool for biomechanical analysisrelated to tissue engineering of bone[J]. Biomaterials.2004;25:1683-96.
    [200] Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in thecharacterization of scaffolds[J]. Biomaterials.2006;27:1362-76.
    [201] Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA.Assessment of bone ingrowth into porous biomaterials using MICRO-CT[J]. Biomaterials.2007;28:2491-504.
    [202] Schouten C, Meijer GJ, van den Beucken JJ, Spauwen PH, Jansen JA. The quantitativeassessment of peri-implant bone responses using histomorphometry and micro-computedtomography[J]. Biomaterials.2009;30:4539-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700