用户名: 密码: 验证码:
电容法测量蒸汽湿度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽湿度的大小对汽轮机的经济和安全运行具有重要的意义,若蒸汽湿度太大,水滴会对汽轮机叶片产生侵蚀现象,导致汽轮机的工作效率降低,并影响汽轮机的使用寿命。因此,要对蒸汽湿度进行实时监测,以判定蒸汽湿度是否超标,是否会对汽轮机的安全运行造成威胁。由此可见,蒸汽湿度的准确测量显得非常重要。
     蒸汽湿度不同,其等效介电常数不同。电容式传感器极板间湿蒸汽的湿度不同时,其电容值不同。基于此原理,本文开展了电容法测量蒸汽湿度的研究。
     基于电容法测量原理,本研究中设计了一种同轴并联圆柱形电容式湿度传感器和一套蒸汽湿度测量实验系统,利用该系统对电容式传感器测量蒸汽湿度的可行性进行了实验研究。该实验系统主要包括三个部分:湿度调节系统,设计了一种螺旋导流片换热器作为湿度调节装置;电容式湿度传感器,设计了一种同轴并联型电容式传感器;湿度标定系统,采用加热法进行湿度标定。实验研究结果表明:传感器存在一定的不稳定性,电容值随蒸汽湿度的增加逐渐增大,其灵敏度受湿度变化范围影响较大,其动态响应性较好。通过分析传感器的特性可知,利用电容式传感器测量蒸汽湿度是可行的。
     基于可行性实验研究结果,对电容式传感器和湿度测量实验系统进行了改进设计,称为改进型传感器I、II和改进型实验系统。改进型实验系统中,采用喷雾的方法对蒸汽进行造湿,采用外加热的加热方案对蒸汽湿度进行标定。进行了湿蒸汽两相流完全汽化长度的数值研究。利用改进型实验系统进行了测量湿度的实验研究,分析了其响应特性及极板长度与间距比值对传感器响应特性的影响。研究结果表明:湿蒸汽完全汽化长度与加热功率、湿蒸汽中液滴的平均直径、蒸汽湿度、蒸汽流速成正比线性关系;极板长度与间距比值越小,传感器稳定性越好;蒸汽流量对电容式传感器输出电容值无影响;电容式湿度传感器灵敏度受蒸汽湿度变化大小的影响;极板长度与间距比值增加,电容值与湿度的线性关系先加强后减弱,传感器灵敏度值增大,但其灵敏度稳定性先加强后减弱;极板长度与间距的比值越小,传感器动态阶跃响应速度越快;适当的减小传感器极板长度与间距比值,可以在一定程度上减小综合误差。
     本文基于电动力学和流体力学的基本理论,对电容式湿度传感器内部电场和流场多场耦合控制方程进行了推导,建立了传感器内电场和流场耦合数值模型,利用FLUENT软件对电容式湿度传感器内部电场和流场的耦合特性进行了数值研究。研究过程中通过UDF代码程序的编写,实现了利用FLUENT软件计算电场、电场数据与流场数据相互交换的功能。研究了传感器电场和流场的分布特点以及其耦合特性。研究结果表明:传感器进口和出口端面处,极板间电场强度呈现出中央区域低,极板附近高的分布状态;极板中间截面场强呈现出由内极板向外极板逐渐减小的分布状态,递减过程近似线性;内极板附近场强比外极板附近场强高,而且同一极板外表面场强比其内表面场强高;蒸汽流动会造成电荷沿传感器轴向的运动,而且蒸汽流速越大,电荷沿传感器轴向运动越剧烈,电流密度轴向分量绝对值越大;极板间施加激励电压,会改变极板附近蒸汽的流动状态,负极板附近蒸汽径向流速绝对值随着电压的增加逐渐增大,正极板附近蒸汽径向流速绝对值逐渐减小。
     利用传感器内电场与流场耦合计算模型,对改进型传感器I、II响应特性进行了耦合模拟研究,与实验结果进行了比较分析,结果表明数值模拟得到的时漂特性、流量对传感器电容值的影响、传感器电容值随蒸汽湿度的变化规律等,与实验结果相似,但数值模拟结果值小于实验结果值,最大相差19.8%。此外,研究了极板壁厚、极板长度、极板间距、极板长度与间距比值等结构参数,对传感器电场与流场耦合特性及电容值与蒸汽湿度关系的影响。研究结果表明:传感器极板厚度越小,越不容易被击穿,边缘效应越弱,同一湿度的情况下,电容值随极板壁厚增加逐渐增大,电容值与蒸汽湿度的线性关系逐渐减弱;传感器极板越长,边缘效应越弱,并且边缘场强的递减速率逐渐减弱;极板增加同样长度时,其电容变化值随极板长度增加逐渐增大;增大极板间距可以提高传感器的耐压强度,减小极板对蒸汽流场的影响,但同时降低了传感器的电容值、灵敏度,加强了电场的边缘效应,极板间距增大同样值时,电容变化值随极板间距增加逐渐减小;传感器极板长度和间距比值增加,电容值与蒸汽湿度的线性关系呈现先加强后减弱的变化趋势。
Appropriate steam humidity is important for the safe and economical operation of aturbine. If the steam humidity is too high, blade erosion decreases the efficiency and work lifeof the steam turbine, and a blade may even break. The steam humidity should thus beaccurately monitored in real time to ensure that it is not too high.
     The dielectric constant of steam depends on the humidity, and a capacitance sensor canthus be used to measure humidity. However, the measurement of capacitance by a sensor maybe affected by the humidity of the steam inside the capacitance sensor being different fromthat of the steam in a turbine. This paper researches the capacitance method for measuringsteam humidity..
     The paper presents the design for a coaxial cylindrical capacitance sensor andexperiment system, which comprises three parts: a humidity adjustment system, which is aspiral heat exchanger; the coaxial cylindrical capacitance sensor; and a steam humiditycalibration system that employs heating. The feasibility of measuring steam humidity with thecapacitance method is researched. Experimental results show that the sensor is stable, thecapacitance increases with increasing steam humidity, the sensitivity of the sensor depends onthe range of the humidity change, and the sensor has a good dynamic response. It is thusdeemed feasible to measure steam humidity employing the capacitance method.
     Using the experimental results, an improved experiment system and two improvedcapacitance sensors are presented. Steam humidity is controlled by spraying water andcalibrated by heating. The vapor length is numerically simulated, and the capacitance methodfor measuring steam humidity is researched. It is found that the vaporation length has directlyproportional relationships with the heating power, droplet mean diameter, steam velocity andsteam humidity. The stability of the capacitance sensor increases with a decreasing ratio of theplate length to plate separation. The capacitance of the sensor is independent of steam flow.The sensitivity of the sensor depends on the change in steam humidity. As the ratio of theplate length to the plate separation increases, the linearity of the sensor first increases and thendecreases, the sensitivity of the capacitance sensor increases, and the stability of the sensitivity first decreases and then increases. And the rate of the response and the sensor errorincrease with a decreasing ratio of the plate length to the plate separation.
     The coupled control equations of the electric field and flow field inside the capacitancesensor are deduced, and the coupled electric field and flow field are numerically simulated inthe paper. FLUENT UDF code is applied to simulate the electric field and convert electricfield data into flow field data. The distributions and interaction of the electric field and flowfield are researched. It is found that the electric field is stronger near the plate than in thecentral region at the inlet and exit cross-sections. The electric field decreases gradually fromthe innermost plate to the outermost plate in the central cross section. The electric field nearthe outer surface of a plate is stronger than that near the inner surface of the same plate. Theradial electric current density increases with steam velocity. And the radial velocity near thenegative plate increases with increasing voltage, and the radial velocity near the positive platedecreases.
     The coupled flow field and electric field within the improved capacitance sensors I and IIare numerically simulated. The results of simulation and experiment are similar, with themaximum difference being19.8%. The effects of the plate thickness, plate length, plateseparation and the ratio of plate length to plate separation on the coupled electric field andflow field are researched. It is found that the voltage increase that the sensor can endure andthe brim effect decrease with increasing plate thickness. The linear relationship of thecapacitance and steam humidity weakens with increasing plate thickness. The brim effectdecreases with increasing plate length. The capacitance change increases with increasing platelength. The voltage increase that the sensor can endure increases with increasing plateseparation. Capacitance sensor sensitivity decreases with increasing plate separation. Thecapacitance change decreases with increasing plate separation. And the capacitance increases,while the linearity of the sensor first increases and then decreases with an increasing ratio ofthe plate length to plate separation.
引文
[1] Guha A.Computationa analysis and theory of two-phase flow. The AeronauticalJournal,1998.102(1002):pp71-82.
    [2]一机部火电工作组.国外火力发电设备技术考查总结:第二分册.汽轮机.1979.
    [3]孙中宁.核动力设备[M].哈尔滨:哈尔滨工程大学出版社,2004.8.
    [4]阎昌琪.核反应堆工程[M].哈尔滨:哈尔滨工程大学出版社,2004.8.
    [5]沈维道,郑佩芝,将淡安.工程热力学(第二版)[M].北京:高等教育出版社,1983:pp251-258.
    [6]张弘,蔡小舒,王夕华.汽轮机内湿蒸汽实验测量技术现状[J].热力透平,2007.336(1):pp1-7.
    [7] Dibelius G,Dor A.Erfahrungenmit der bestimmung der dampffeuchte bei denabnahmeversuchen in kernkraftwerk bibils[C].VGB Kraftwerkstechnik.Heft.1997,9:p62.
    [8] Wiilians G.J. Instruments for wet steam measurement. Sixth Thermodynamics andFluid Mechanics Convention[J].In:Mech. Engrs.1976:p116.
    [9]蔡颐年,王乃宁.湿蒸汽两相流[M].西安:西安交通大学出版社,1985:pp182-183.
    [10] Langford R W, Moore M J.The measurement of steam wetness fraction in poeratingturbines[C].Sixth Thermodynamics and Fluid Mechanics Convention.In:Mech.Engrs.11(976):p152.
    [11]李炎锋,王新军,徐廷相等.新型加热法测量流动湿蒸汽湿度的试验技术[J].热能动力工程.2001,16(2):pp153-156.
    [12]李炎锋,王新军,徐廷相.流动湿蒸汽的加热法测量及其装置[J].中国电力.1997,Vol.30,No.10.
    [13]李炎锋,王新军,徐廷相.测湿探针加热的管壁温度及水滴汽化长度的计算[J].汽轮机技术.1998,Vol.40,No.6.
    [14]李炎锋,王新军,徐廷相.新型测量流动湿蒸汽湿度测量装置中取样结构的研究[J].汽轮机技术.1999,Vol.41,No.1.
    [15] Li Yanfeng,Wang Xinjun,Xu Tingxiang.An improved heating method for measuringthe wetness of flowing wet steam[C].Proceeding of the1stGraduate’s SimulationInternational Scienticfic Conference.1997.7,XJTU,pp142-146.
    [16]李炎峰.流动湿蒸汽湿度测量的理论与实践[D].西安交通大学博士学位论文,1999.3.西安.
    [17]杨善让,王升龙,孙灵芳等.蒸汽湿度测量的热平衡校验方法与装置[J].热科学与计算.2002,1(5):pp159-163.
    [18]夏冬.核电站汽轮机入口蒸汽湿度在线测量系统设计[D].湖南大学硕士学位论文.2008.
    [19]王升龙,杨善让,王建国等.汽轮机排汽湿度的在线监测方法及工业试验研究[J].中国电机工程学报.2005,25(17):pp83-87.
    [20]王升龙.汽轮机排汽湿度在线监测方法及应用研究[D].华北电力大学博士学位论文.2005:pp11-15.
    [21]王升龙,杨善让,王建国等.双区加热法在线监测汽轮机排汽湿度的应用研究[J].动力工程,2005:pp337-341.
    [22]王建国,王升龙等.饱和蒸汽湿度在线监测装置[J].仪器仪表学报,2005,26(S2):pp227-228.
    [23] Wang Shenglong,Yang Shanrang,Jianguo Wang,ect.Effect of thermal drag on theevaporation tube length in new style steam wetness probe[C].Sixth InternationalSymposium on Heat Transfer.Beijing,China,June,204:pp308-311.
    [24]肖湘.基于双区加热法的核电站汽轮机蒸汽湿度测量的方法研究[D].湖南大学硕士学位论文.2007.
    [25]卫敬明,张卫国,蔡小舒等.应用光学法饱和蒸汽湿度仪测量汽轮机末级蒸汽湿度[J].动力工程.1997,17(4):pp71-75.
    [26] Bohn D, Holzenthal K.Measurement of the wetness fraction and droplet sizedistribution in a condensation turbine[R].Aachen:Aachen University of Technology,1997.
    [27] Walters P T,Skingley P C.An optical instrument for measuring the wetness fractionand droplet size of wet steam flows in L P turbines[C].ImechE,1979,C141.
    [28] Wylers J.S,Desai K.J.Moisture measurements in a low pressure steam turbine usinglaser light scattering probe[J].Transaction ASME,Journal of Engineering forPower.1978,100(4):pp544-548.
    [29] Kreitmeier F,Schlachter W,Smutny J.Investigation of flow in a low pressure wetsteam model turbine and its use for determing wetness losses[C].Institution ofMechanical Engineers,Conference Publications.979:pp385-395.
    [30] Moore M.J,Walter P.T,Davidson B.J.Predicting the fog-drop size in wet-steamturbines[C].IME,ConfPubl3,1973:p101.
    [31]汪丽莉,蔡晓舒.汽轮机湿蒸汽两相流中水滴尺寸进展研究[J].上海理工大学学报.2003,17(4):pp307-312.
    [32]卫敬明,张志伟,蔡晓舒等.应用光学法饱和蒸汽湿度仪测量汽轮机末级蒸汽湿度[J].动力工程.2003,25(4):pp71-76.
    [33]宁廷保,蔡晓舒,尚志涛等.一种新型汽轮机湿蒸汽测量探针系统[J].热力发电.2008,37(7):pp65-71.
    [34]王乃宁.用光学探针测量汽轮机内的蒸汽湿度和水滴直径[J].工程热物理学报.1985,6(1):pp99-103.
    [35]蔡晓舒,汪丽莉,欧阳新等.一种新型的测量汽轮机内湿蒸汽两相流的集成化探针系统[J].工程热物理学报.2001,22(6):pp743-746.
    [36] G. Dibelius,张万封译.Biblis核电站验收试验中蒸汽湿度测量的经验[J].热力发电译丛.1991,4:pp52-61.
    [37]刘子烈,耿国山,苟智才.浅析非放射性示踪剂法在主蒸汽湿度测试实验中的应用[J].黑龙江电力.2003,25(3):pp168-171.
    [38]夏林泉,莫国钧.大亚湾核电站一、二号机组蒸汽湿度测量[J].核电工程与技术.1995,8(3):pp13-17.
    [39]李锴,尚德敏.超声波检测汽轮机中水蒸汽湿度方法探讨[J].热能动力工程.2002,17(6):pp559-560,p564.
    [40]韩中合,钱江波,杨昆.流动湿蒸汽湿度谐振腔微波法测量的实验研究[J].中国动力工程学报.2005,25(3):387-391.
    [41] Pascal K,Pramod K.Rastogi,etc.Relative humidity sensor with optical fiber bragggrating[J].Optics Letters,2002.8,27(16):pp1385-1387.
    [42]黄雪峰,盛德仁等.布拉格光纤光栅测量湿蒸汽两相流温/湿度的理论数学模型[J].中国电机工程学报.2006,26(7):pp40-46.
    [43]盛德仁,黄雪峰等.一种基于布拉格光纤光栅测量湿蒸汽两相流湿度场的新方法[J].中国电机工程学报.2005,25(5):pp136-140.
    [44]吴锡龙.大学物理教程第二册(第二版)[M].北京:高等教育出版社,2000:pp180-183.
    [45]张洪润主编.传感器技术大全(下册)[M].北京:北京航空航天大学出版,2007:pp1274-1289
    [46]丁喜波.电容式湿度传感器测试方法与测试系统研究[D].哈尔滨理工大学博士学位论文.2005:pp3-14..
    [47]祝敏.电容传感器微电容测量技术的分析和研究[J].煤炭技术.2010.29(3):pp57-60.
    [48]单志东.智能化多界面动态液位传感器技术研究[D].大连海事大学硕士学位论文.2008.5.
    [49]黄雷.电容层析成像系统的研制及其在两相流参数检测中的应用研究[J].浙江大学学报.2003:pp46-68.
    [50]黄家定.12电极电容层析成像电容传感器及数据采集系统的研究[D].哈尔滨理工大学硕士学位论文,2008.3.
    [51] Gregory G.A, Mattar L. An in-situ volume fraction sensor for two-phase flowof non-electrolytes[R].J.Can.Pet.Technol,1973,12: pp48-52.
    [52] Abouelwafa M.S.A,Kendall E.J.M.1979Determination of theoreticalcapacitance of a concave sensor[C].Rev.Sci.Instrum.50:pp1158-1159.
    [53] Abouelwafa M.S.A,Kendall E.J.M. The use of capacitance sensors for phasepercentage determination in multiphase pipelines[C]. IEEETans.Instrum.Measur.1980,29:pp24-27.
    [54] Borst J. C.1983Een capacitieve sensor voor gas-volumefractiemetigen[R].Research Report, Dept of Mechanical Engineering,Delft Univ.ofTechnology.
    [55] Gerates J.J.M,Borst J.C.A capacitance sensor for two-phase void fractionmeasurement and flow pattern idenfication[J].Int J Multiphase Flow.Vol.14,No.3:pp306-320,1988.
    [56] O’Halloran G.M,Sarro P.M,Groeneweg J,Trimp P.J,French P.J.Bulkmicromachined humidity sensor based on porous[C]. Int. Conf. Solid-stateSens.Actuators,Chicago,IL,USA,June1997,pp563-566.
    [57] Park S,Kang J.H,Park J,Mun S.One-bodied humidity and temperature sensorhaving advanced linearity at low and high related humidity range[J].Sensors andActuators B,76(201):pp322-326.
    [58] Story P.R,Galipeau D.W,Mileham R.D,A study of low-cost sensors for measuringlow relative humidity[J].Sensors and Actuators B:24-25(1995):pp681-685.
    [59] Nahar R.K.Study of the performace degradation of thin film aluminum oxide sensorsat high humidity[J].Sensors and Actuators B,2000,63:pp49-54.
    [60] Yang Y.L,Lo L.H,Huang I.Y,Chen H.J.H,Huang W.S,HuangS.R.S. Improvemnet of polyimide capacitive humidity sensor by reacitive ionetching and novel electrode design[C].IEEE Int. Conf.Sensors,Orlando,FL,USA,June2002,pp511-514.
    [61] Robert B,McIntosh.Fringing field capacitance sensor for measuring the moisturecontent of agricultural commodities[J].IEEE Sensor Journal,Vol.8,No.3,March,2008.
    [62] Alireza H, Robert G L. Relative humidity measurement using capacitivesensors[J].IEEE.2008:pp396-398p.
    [63]李小昱,雷廷武,王为.电容式传感器测量水流泥沙含量的研究[J].土壤学报.2002,39(3):pp429-435.
    [64]沈逸,李小昱等.电容式水流泥沙含量传感器数据融合的研究[J].华中农业大学学报.2004,23(4):pp459-462.
    [65]金峰,张宝芬,王师.电容式气-固两相流相浓度传感器的优化设计[J].清华大学学报.2002,42(3):pp380-382.
    [66]杨柳,杨明皓,刘嫣红.利用边缘电场的电容式谷物水分传感器的研究[J].中国农业大学学报.2007,12(2):pp58-61.
    [67]曹英荣.虚拟式电容测厚系统的研制[D].华中科技大学硕士学位论文.2006:pp7-16.
    [68]黄善仿,逯军等.基于单丝电容探针的机油-水两相流水相高度的测量[J].上海交通大学学报.43(8):pp1284-1288.
    [69]宁德亮.新型电容传感器测量蒸汽湿度的研究[D].哈尔滨工程大学博士学位论文.2007,pp825-829.
    [70]宁德亮,庞凤阁,高璞珍.流动蒸汽湿度测量方法的研究与比较[J].热能动力工程.2009,3,24(2):pp149-153.
    [71]宁德亮,庞凤阁,阎昌琪.新型湿度测量仪在气——水系统中的应用[J].哈尔滨工程大学学报.2006,12,27(6):pp825-829.
    [72]宁德亮,阎昌琪,高璞珍.新型电容式湿度传感器结构设计[J].传感器与微系统.2007,6,27(6):pp329-330.
    [73]宁德亮,阎昌琪,高璞珍.新型电容式湿度传感器及提高测量精度的方法[J].仪器与仪表学报.2007,20(3):pp65-72.
    [74]宁德亮,刘新全,梁毅等.电容法测量蒸汽湿度的可行性研究[J].热能动力工程.2009,5,24(3):pp300-304.
    [75]陈效鹏,程久生,尹协振.电流体动力学研究进展及其应用[J].科学通报,第48(7),2003.4:pp637-646.
    [76] Castellanos A.Coulomb-driven convection in electrohydrodynamics[C]. IEEETransactions Electrical Insulation,Vol.26,No.6,December,pp1201-1215.
    [77] Castellanos A, Gonzalez A. Nonlinear electrohydrodynamics of freesurfaces[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(3):pp334-343.
    [78] Hidekatsu F, Morita Y ect. Numerical simulation of three-dimensionalelectrohydrodynamics of spiked-electrode electrostatic precipitators[J]. IEEETransactions on Dielectrics and Electrical Insulation,2006,13(2); pp160-167.
    [79] Delfo J.A,Whitaker S. Electrohydrodynamics in porous media[J]. Transport inPorous Media44: pp385-405.2001.
    [80] Vazquez P. A, Georghious G. E. Numerical analysis of the stability of theeletrohydrodynamics (EHD) electroconvection between two plate[J]. Journal ofphysics D:Applied Physics41,2008.
    [81] Jung J H,Hyuncheol O,Kim S S.Numerical simulation of the deposition pattern inmultiple electrohydrodynamic spraying[J]. Powder Technology,2010,198:pp439-444.
    [82] Theodossiou G,Nelson J K,Odell G M.A computer simulation of transientelectrohydrodynamic motion in stressed dielectric liquids[J].J.Phys.D:Appl. Phys,1986,19:pp1643-1656.
    [83] Chen Xiaopeng,Cheng Jiusheng etc.Numerical Analysis of Electrohydrodynamics ina Round Pipe[J].IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(2):pp278-284.
    [84] Velkoff H.R,Miller J.H.Condensation of Vapor on a vertical plate with a transverseelectrostatic Field[J].Trans ASME,J Heat Transfer,1965, Vol.87.No.5:pp197-201.
    [85] Yabe A,Taketani T,Kikuchi K,et al.Augmentation of condensation heat transferaround vertical cooled tubes provided with helical wire electrodes by applyingnon-uniform electric fields[J].Heat Transfer Science and Technology,1987:pp812-819.
    [86] Yabe A,Taketami T,Kikuch K,et al.Angmentation of condensation heat transfer byapplying electrohydrodynamical pseudo-dropwise condensation[C].Proc of8thIntHeat Transfer Conf,1986,pp2957-2962.
    [87] Didkovsky A.B,Bologa M.K. Vapor film condensation heat transfer andhydrodynamics under the influence of an electric field[J].Int J heat Mass Transfer,1981,Vol.24,No.5: pp811-819.
    [88] Yamashita M.K,Yabe A.Electrohydrodynamic enhancement of falling filmevaporation heat exchangers[J].Trans ASME,J Heat Transfer,1997,119:pp339-343.
    [89] Sunada K,Yabe A,Taketani T,et al.Experimental Study of EHDP seudo-dropwisecondensation[C].Proc3rdASME/JSME Thermal Engineering Joint Conf,1991,3:pp45-54.
    [90] McCluskey F.M.J,Atten P.Heat tranfer enhancement by electroconvection resultingfrom an injected space charge between parallel plates[J].Int J Heat Mass Transfer,1991,Vol.34,No.9: pp2237-2250.
    [91] Paschkewitz J. S, Pratt D. M. The influence of fluid properties onelectrohydrodynamic heat transfer enhancement in liquids under viscous anelectrically dominated flow conditions[J].Exper Therm and Fluid Sci,2000,Vol.21:pp187-197.
    [92]刘振华,王经,陈玉明.EHD效应强化管内油的强制对流换热实验[J].工程热物理学报,2000,21(6):pp738-741.
    [93]陈春天,杜晓燕,陈靓瑜.介电流体的EHD强化凝结换热实验研究[J].哈尔滨商业大学学报(自然科学版),2007,23(4):pp499-500.
    [94]陈春天,杨嘉祥,张颖,李静.静电场强化介电流体冷凝换热实验研究[J].工程热物理学报,2004,25(2):pp284-286.
    [95]丁昌江.电场对生物物料中水分子输运特性的试验及机理研究[D].内蒙古大学硕士学位论文.2004.4.
    [96] Stuetzer O.M.Ion-drag pressure generation[J].J Appl Phys,1959,30:pp984.
    [97] Stuetzer O.M.Ion-drag pumps[J].J Appl Phys,1960,31:pp136-146.
    [98] Pickard W.F.Ion drag pumping I theory[J].J Appl Phys,1963,Vol.34:pp246-250.
    [99] Pickard W.F.Ion drag pumping II[J].Experiment J Appl Phys,1963,34:pp251-258.
    [100] Sharbaugh A.M,Walker G.W.The design and evaluation of an ion-drag dielectricpump to enhance cooling in a small oil-filled transformer[C].Pro IEEE-IAS Mtg,Orlando:IEEE Ind Appl Soc,1983:pp1161-1165.
    [101] Bryan J.E,Seyed-Yagoobi J,An experimental investigation of ion-drag pump in avertical and axisymmetric configuration[J].IEEE Trans on Industry Appl,1992,Vol.28, No.2:pp310-316.
    [102] Bologa M.K,Kozhevnikov I.V,Kozhukhari I.A,Multistage electrohydrodynamicalpump[C].2000Conference on Electrical Insulation and Dielectric Phenomena,Victoria:IEEE Dielectric and Insulation Soc,2000:pp54-60.
    [103] Kojevnikov I.V,Motorin O.V,Bologa M.K,et al.The effects of electrical fieldparameters, medium properties and interelectrode gap geometry on the EHD pumpcharacteristics[C].2001Annual report conference on electrical insulation anddielectric phenomena,Kitchener:IEEE Dielectric and Insulation Society,2001:pp532-535.
    [104] Melcher J.R,Taylor G.I.Electrohydrodynamics: a review of the role of interfacialshear stresses[J].Annu Rev Fluid Mech,1969,1:pp141-146.
    [105] Chos J,Kim Y.Micro-electrohydrodynamic pump driven by traveling electricfields[C].Industry Applications Conference,1995,13thIAS Annual Meeting,IAS’95,Orlando:IEEE Ind Appl Soc,1995,2:pp1480-1484.
    [106] Taylor G.I.Distintegration of water drops in an electric field[J].Proc Roy SocLondon Ser A,1964,280:pp293-397.
    [107] Cloupeau M.Prunet-Foch B.electrostatic spraying of liquids in con-jet mode[J].JElectrostatics,1989,22:pp135-159.
    [108] Tang K,Gomez A.On the structure of an electrostatic spray of monodispersedroplet[J].Phy Fluids A,1994,6:pp2317-2332.
    [109] Ganan-Calvo A.M,Davila J, Barrero A.Current and droplet size in theelectrospraying of liquids scaling laws[J].J Aerosol Sci,1997,28(2):pp249-275.
    [110] White A.J,Hounslow M.J.Modelling droplet size distributions in polydispersedwet-steam flows[J].International Journal of Heat and Mass Transfer.2000,43:pp1873-1884.
    [111]王雪文,张志勇编著.传感器原理及应用[M].北京:北京航空航天大学出版社,2004:pp279-280.
    [112]侯凌云,侯晓春著.喷嘴技术手册[M].北京:中国石化出版社.2002,8,pp307-317.
    [113] Wagner W,Kruse A. the Industrial standard IAPWS-IF97:Properties of Water andSteam [M].Springer,Berlin.1998.
    [114]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:pp1-3.
    [115]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.5.
    [116]毛晓辉.带定位格架的棒束通道内三位流场研究[D].哈尔滨工程大学硕士学位论文.2007.5.
    [117]陈秉乾,舒幼生,胡望雨.电磁学专题研究[M].北京:高等教育出版社.2001:pp259-262.
    [118]周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究[D].中南大学博士学位论文.
    [119] Ortiz-Almean C,Martin R.Two-phase oil-gas pipe flow imaging by simulatedannealing[J].Journal of geophys.Eng.2005,2:pp32-37.
    [120] Cutmore N.N,Miljak D.G,ect.On-conveyor measurement of moisture in coal usinglow frequency microwaves[C].The18thAnnual Pittsburgh coal conference,December2001,Newcastle,Australia,pp151-163.
    [121] Buschmuller C,Wiedey W.In-line monitoring of granule moisture in fluidized-beddryers using microwave resonance technology[C].European Journal of Pharmaceuticsand Biopharmaceutics,2008,69:pp380-387.
    [122] Catado A,Cannazza G..Metrological assessment of TDR performance for moistureevaluation in granular materials[J].Measurement,2009,42:pp254-263.
    [123] Cerny R.Time-domain reflectometry method and its application for measuringmosisture content in porous materials:A review[J].Measurement,2009,42:pp329-336.
    [124] Svoboda R,Bodmer M.Investigations into the composition of the water phase insteam turbines[C].The14thInternational conference on the properties of water andsteam in Kyoto.
    [125] Bakhtar F.Calibration characteristics of a three-hole probe and a static tube in wetsteam[J].International Journal of Heat and Fluid Flow,2001,22:pp5387-542.
    [126] Rittersma Z.M,Splinter A.A novel surface-micromachined capacitive porous siliconhumidity sensor[J].Sensors and Actuators B,2000,68:pp210-217.
    [127] Rittersma Z.M.Recent achievement in miniaturized humidity sensors-a review oftransduction techniques[J].Sensors and Actuators A,2002,96:pp196-210.
    [128] Lovell-Smith J. The propagation of uncertainty for humiditycalculations[J].Metrologia,2009,46:pp607-615.
    [129] Venugopalan T.Evaluation and calibration of FBG-based relative humidity sensordesigned for structural health monitoring[C].The20thinternational conference onoptical fibre sensor,2009.
    [130] Ionescu R,Vancu A,ect.Time-dependent humidity calibration for drift correction inelectronic noses equipped with SnO2gas sensors[J].Sensors and Actuators B,2000,69:pp283-286..
    [131] Kirthi L,Sreenivasan,Sunil K.Khijwania.Humidity estimation using neural networkand optical fiber sensor[J].Microwave and optical technology letters.March2009,51(3):pp641-645.
    [132] Muto S,Suzuki O,ect.A plastic optical fiber sensor for real-time humiditymonitoring[J].Measurement science and technology.2003,14:pp746-750.
    [133] Xu L,Joseph C,Fanguy,etc.Optical fiber humidity sensor based on evanescent-wavescattering[J].Optics Letters,2004,29(11):pp1191-1193.
    [134] Timothy J. Harpster, Brian S, etc. A passive wireless integrated humiditysensor[J].Sensors and Actuators A,2002,95:pp100-107.
    [135] Lee C Y,Lee G B.Micromachine-based humidity sensors with integrated temperaturesensors for signal drift compensation[J]. Journal of micromechanics andmicroengineering,2003,13:pp620-627.
    [136] Sunil K,Khijwania,Kirthi L,Srinivasan,etc.An evanescent-wave optical fiberrelative humidity sensor with enhanced sensitivity[J].Senors and Actuators B,2005,104:pp217-222.
    [137] Kang U,Wise K D.A high-speed capacitive humidity sensor with on-chip thermalreset[J].IEEE TRANSACTIONS ON ELECTRON DEVICES,2007,47(4):pp702-710.
    [138] Oprea A,Barsan N.Capacitive humidity sensors on flexible RFID labels[J].Sensorsand Actuators B,2008,132:pp404-410.
    [139] Dai C L.A capacitive humidity sensor integrated with micro heater and ring oscillatorcircuit fabricated by CMOS-MEMS technique[J].Sensors and Acutators B,2007,122:pp375-380.
    [140] O’Halloran G.M,Sarro P.M,Groeneweg J,Trimp P.J,French P.J.Bulkmicromachined humidity sensor based on porous[C]. Int. Conf. Solid-stateSens.Actuators,Chicago,IL,USA,June1997,pp563-566.
    [141] Park S,Kang J.H,Park J,Mun S.One-bodied humidity and temperature sensorhaving advanced linearity at low and high related humidity range[J].Sensors andActuators B,76(201):pp322-326.
    [142] Story P.R,Galipeau D.W,Mileham R.D.A study of low-cost sensors for measuringlow relative humidity[J].Sensors and Actuators B,1995,24-25:pp681-685.
    [143] Nahar R.K.Study of the performace degradation of thin film aluminum oxide sensorsat high humidity[J].Sensors and Actuators B,2000,63:pp49-54.
    [144] Lee D.H,Hong H.K,Park C.K,Kim G.H,Jeon Y.S,Bu J.U.A micro-machinedrobust humidity sensor for harsh environment applications[C].IEEE int.Conf.MicroElectro Mechan.Syst.Interlaken,January2001,pp558-561.
    [145] Yeow J.T.W,She J.P.M.Carbon nanotube-enhanced capillary condensation fora capacitive humidity sensor[J].Nanotechnology,2006,17:pp5441-5448.
    [146] Kim Y,Lung B.Capacitive humidity sensor design based on anodic aluminumoxid[J].Sensors and Actuators B,2009,141:pp441-446.
    [147] Hahm C D,Bhushan B.Lubricant film thickness mapping using a capacitancetechnique on magnetic thin-film rigid disks[J]. Review of ScientificInstruments.1998,69(9):pp3339-3349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700