用户名: 密码: 验证码:
采空区煤自燃诱发瓦斯燃烧(爆炸)规律及防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采空区瓦斯燃烧是煤矿多发事故之一,随着煤矿开采水平的加深,瓦斯涌出和地温不断增加,这使得自燃诱发瓦斯燃烧成为一种重要的形式。由于缺少自燃条件下瓦斯燃烧发生规律和防治研究,使得现场防治自燃引燃瓦斯时具有一定的盲目性,为此,本文重点对采空区煤自燃诱发瓦斯燃烧的规律及防治进行了研究,研究结果有利于减少采空区瓦斯燃烧事故的发生。
     为了控制采空区煤自燃诱发瓦斯燃烧,基于矿压理论对采场自燃和瓦斯涌出规律进行了研究。分析了采场应力分布,得出采煤过程中在采场走向和倾向上会逐渐形成应力“三区”,这造成了上覆岩层在垂直方向上逐渐形成冒落三带和在采空区冒落带形成“O”型压实区,此种岩层冒落规律使得采空区见方前形成了“U”型漏风,见方后形成了“M”型漏风。把采场易自燃区域分为煤柱附近、断层附近、大矸石处等,结合采场瓦斯涌出规律,提出控制漏风和浮煤分布是减少自燃诱发瓦斯燃烧的有效手段。
     在分析自燃引燃瓦斯理论的基础上,论文设计加工了高温煤体引燃瓦斯实验平台,开展了高温煤体诱发瓦斯燃烧实验。研究了不同加热功率、初始CH_4浓度和热源深度条件下煤样升温过程中封闭空间气体的变化规律,结果显示,随温度升高,封闭空间O_2浓度降低,N_2浓度先增大后减少,其他气体浓度增加。在高温阶段,加热功率增大使得O_2浓度增大,N_2浓度先增大后减小,其他气体浓度减小;增大初始CH_4浓度,O_2浓度先减小后增大,CH_4浓度增大,其他气体浓度减小;当热源深度增加时,O_2浓度增大,N_2浓度先减小后增大,其他气体浓度减小。利用Matlab对煤样升温过程中封闭空间可燃气体浓度与其爆炸限之间的关系进行了分析,得到在多数条件下,封闭空间可燃气浓度会大于其爆炸上限而失去爆炸性。结合现场煤自燃形式,指出了工作面煤柱、顶煤和上邻近煤层提前氧化区域在压裂或冒落进采空区时易引燃瓦斯。
     为了得到上隅角不同空间特性下瓦斯燃烧规律,基于上隅角瓦斯燃烧实验平台,设计了自由空间、充填矸石、瓦斯包和风扇干扰条件下的瓦斯燃烧实验,通过高速摄像和测温系统记录燃烧过程和温度,分析了不同条件下的CH_4燃烧过程,得到了自由空间下7.8%和21%瓦斯燃烧速度较慢,从而提出了现场可能存在低浓度和高浓度瓦斯燃烧;充填矸石使得瓦斯不易引燃,但引燃后燃烧速度加快和强度增强,易形成爆炸;瓦斯包燃烧时,燃烧波的多次叠加增加了爆炸的破坏性;风扇干扰条件下,瓦斯不易引燃,但引燃后燃烧速度加快,且风扇干扰使瓦斯燃烧易在矸石内部传播,增加了扑灭瓦斯燃烧的困难度。对瓦斯燃烧时间和条件的关系进行了分析,得出了自由空间初始阶段瓦斯燃烧速度为几到几百厘米每秒;对不同条件下瓦斯燃烧温度进行定性分析,验证了瓦斯燃烧的传播过程。
     为了保证6135试验工作面顺利回采,开展了现场煤自燃诱发瓦斯防治研究。通过气体和温度观测,验证了机巷煤柱和上邻近煤层为该工作面自燃引燃瓦斯区域。针对“Y”型通风方式,在模型假设和连续定量稳定释放SF6的基础上建立了工作面漏风定量计算模型,开展漏风测试,得出了该工作面下隅角向采空区漏风较大,漏风率为-23.35%。基于数值模拟技术对6135采空区自燃“三带”和瓦斯爆炸浓度范围进行模拟,得到了易发生自燃引燃瓦斯的区域。针对试验工作面自燃危险区域,提出了预注阻化液、注三相泡沫和液态CO_2等措施进行防灭火,结果显示,对60煤预注阻化液可以很好的预防上邻近煤层的自燃问题;大量灌注三相泡沫和液态CO_2很好的控制了机巷自燃点,保证了工作面顺利开采和收作,取得了很好的经济效益。
Gas burning is one of multiple accident in coalmine goaf. With the increase ofmining depth, gas emission and ground temperature are increased continuously. Thismakes gas burning induced by coal spontaneous combustion become an importantform. Due to the lack of gas burning law and prevention research under the conditionof spontaneous combustion, it has certain blindness to prevent gas burning frominducing by spontaneous combustion in field. Therefore, this paper focused onresearching the law and prevention of coal spontaneous combustion inducing gasburning in goaf. The result is beneficial to decrease the occurrence of gas burning ingoaf.
     In order to control coal spontaneous combustion inducing gas burning in goaf,law of spontaneous combustion and gas emission in stope was studied based on minepressure theory. On the basis of analyzing stress distribution in stope, stress “threeareas” is gradually formed in strike and tendency of stope during coal mining isobtained. This results in the formation of overlying strata caving “three zones” invertical direction and O-ring recompaction area in caving zone of goaf. The stratacaving law leads to “U” type air leakage before becoming a square of goaf and “M”type air leakage after becoming a square of goaf. Easy self-ignition area is dividedinto the vicinity of coalpillar, fault and large gangue. Based on the gas emission ofstope, effective means of decreasing spontaneous combustion inducing gas burning,controlling air leakage and residual coal distribution, are proposed.
     On the basis of analyzing spontaneous combustion igniting gas theory,experiment platform of high temperature coal igniting gas was designed andconstructed and experiment of high temperature coal inducing gas burning wascompleted. Closed space gas change law during coal warming was studied underdifferent heating power, different initial CH_4concentration and different heat sourcedepth. The results showed O_2concentration decreases, N_2concentration increases firstand then decreases and other gas concentration increases with the increase of closedspace coal warming. In the high temperature stage, O_2concentration increases, N_2concentration increases first and then decreases and other gas concentration decreaseswith the increase of heating power. O_2concentration decreases first and then increases,CH_4concentration increases and other gas concentration decreases with the increaseof initial CH_4concentration. O_2concentration increases, N_2concentration decreases first and then increases and other gas concentration decreases with the increase of heatsource depth. Relation between closed space gas concentration and explosion limitduring coal warming process was analyzed by Matlab. The result shows closed spacegas concentration is greater than its explosion limit and easily loses explosiveness inmany conditions. Advancing oxidation area of coalpillar, top coal and upper adjacentcoal seams is easy to ignite gas during crushing or caving in goaf was proposed bycombining with spontaneous combustion form in field.
     In order to obtain gas burning law of different spatial characteristic in uppercorner, gas burning experiment of free space, filling gangue, gas package and faninterference was devised based on gas burning experiment platform. Burning processand temperature were recorded by high-speed camera and temperature measuringsystem. Burning process of CH_4burning under different conditions was analyzed. Theresult shows the burning speed of7.8%and21%gas concentration under free space isslower. Low and high concentration gas burning are possible to occur is proposed.Gas of filling gangue is not easy to ignite. But the burning speed and strength becomestronger after being ignited and burning is easy to become explosion. When gaspackage is ignited, explosive destructiveness is increased because of the superpositionof combustion wave. Gas is not easy to ignite under fan interference. But the burningspeed becomes quicker and is easy to spread in gangue inside. This increases thedifficulty of putting out gas burning. Relation of gas burning time and condition wasanalyzed. The result shows gas burning speed of initial moment in free space is a fewto a few hundred centimeters per second. Qualitative analysis of gas burningtemperature under different conditions was done and gas burning spread process wasproved.
     Prevention research of coal spontaneous combustion inducing gas burning infield was completed in order to ensure6135test face smoothly mining. Machine-lanecoalpillar and upper adjacent coal seam were the area of spontaneous combustionigniting gas in this face was proved by gas and temperature observation. According tothe "Y" type ventilation, the quantitative calculation model of air leakage in face wasestablished based on model hypothesis and continuous quantitative stable release SF6.Air leakage test was done and the result shows air leakage volume in lower corner ismore large and the air leakage rate is-23.35%. Based on numerical simulationtechnology, range of spontaneous combustion “there zones” and gas explosionconcentration was acquired in6135goaf. The region where gas was frequently ignited by coal spontaneous combustion in this face was obtained. According to the dangerzone of coal spontaneous combustion, the fire prevention and extinguishing measuressuch as pre-injecting inhibitor, three-phase foam and liquid CO_2were proposed. Theresult shows pre-injecting inhibitor can prevent60coal from spontaneous combustionand large perfusion three-phase foam and liquid CO_2can control machine-lanespontaneous combustion point. Measures made the face smoothly mining andrecovery and good economic benefits were achieved.
引文
[1]中华人民共和国国家统计局.中华人民共和国2012年国民经济和社会发展统计公报[R].2013年2月22日.
    [2]2012中国节能服务产业年度峰会[C].2013年1月15日.
    [3]时国庆.防灭火三相泡沫在采空区中的流动特性与应用[D].徐州:中国矿业大学,2010.
    [4]马尚权,朱建芳,蔡卫,等. FBG技术连续监测采空区温度的应用实践[J].煤矿安全,2007,(12):36-39.
    [5]马占国,兰天,潘银光,等.饱和破碎泥岩蠕变过程中孔隙变化规律的试验研究[J].岩石力学与工程学报,2009,28(7):1447-1453.
    [6]宋颜金,程国强,郭惟嘉.采动覆岩裂隙分布及其空隙率特征[J].岩土力学,2011,32(2):533-536.
    [7]李宗翔,衣刚,武建国等.基于“O”型冒落及耗氧非均匀采空区自燃分布特征[J].煤炭学报,2012,37(3):484-489.
    [8]梁运涛,张腾飞,王树刚等.采空区孔隙率非均质模型及流场分布模拟[J].煤炭学报,2009,34(9):1203-1207.
    [9]李树刚,钱鸣高,石平五.综放开采覆岩离层裂隙变化及空隙渗流特性研究[J].岩石力学与工程学报,2000,19(5):604-607.
    [10]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [11]姜福兴,孔令海,刘春刚.特厚煤层综放采场瓦斯运移规律[J].煤炭学报,2011,36(3):407-411.
    [12]周西华.双高矿井采场自燃与爆炸特性及防治技术研究[D].阜新:辽宁工程技术大学,2006:41-43.
    [13]张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(增1):2994-3000.
    [14]张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,31(11):1216-1219.
    [15]黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(1):45-49.
    [16]林海飞,李树刚,成连华.覆岩采动裂隙带动态演化模型的实验分析[J].采矿与安全工程学报,2011,28(2):298-303.
    [17] Sujanti, Wiwik Zhang, Dong-Ke, et al. Low-temperature oxidation of coal studied usingwire-mesh reactors with both steady-state and transient methods[J]. Combustion and Flame,1999,117(3):646-651.
    [18] Frank P Incropera, David P Dewitt. Introduction to Heat Transfer[M]. New York: School ofMechanical Engineering Purdue University,1985.
    [19] Ramani, R.V. A numerical simulation of spontaneous combustion of coal in goaf[M]. Int.Mine Vet.Congr.,6th1997,313-316.
    [20]余明高,王清安.煤层自然发火期预测的研究[J].中国矿业大学学报,2001,30(4):384-387.
    [21]余明高,黄之聪,岳超平.煤最短自然发火期解算数学模型[J].煤炭学报,2001,26(5):516-519.
    [22]张瑞林,杨运良,马哲伦,等.自燃采空区风流场、温度场及热力风压场的计算机模拟[J].焦作矿业学院学报,1998,17(4):253-257.
    [23]张瑞林,杨运良,史本林,等.综放采空区自燃带的三维数值模拟研究[J].煤矿安全,2000(10):33-35.
    [24]章梦涛,王景琰.采场空气流动状况的数学模型和数值方法[J].煤炭学报,1983,8(3):46-54.
    [25]黄伯轩.采场通风与安全防火[M].北京:煤炭工业出版社,1992.
    [26]李宗翔.采空区场流安全理论及其研究的新进展[J].中国安全科学学报,2005,(12):85-88.
    [27]丁广骧,邸志乾,马维绪.二维采空区非线性渗流流函数方程及有限元解法[J].煤炭学报,1993,18(2):19-24.
    [28] Jiejie huang, J.Bruining, K.-H.A.A. Wolf. Modelling of gas and temperature fields inunderground coal fires[J]. Fire safety Journal,36(2001),477-489.
    [29]蒋曙光,张人伟.综放采场流场数学模型及数值计算[J].煤炭学报,1998,23(3):258-259.
    [30]邓军,文虎,徐精彩.煤自然发火预测理论及技术[M].西安:陕西科学出版社,2001.
    [31] Zhu Mingshan, Xu yingqin, Wuqiang. Computer simulation of spontaneous in goaf,Proceedings of the US Mine Ventilation Symposium[M]. Publ by SME, Litteton, CO, USA,1991,83-93.
    [32]杜礼明,杨运良.采空区三维非稳定流场的数学模型及热力风压的计算[J].焦作工学院学报,1999,(5):169-173.
    [33] Schmal Dick, Duyzer Jan H, Jan Willem. Model for the spontaneous heating of coal[J]. Fuel,1985,64(7):963-972.
    [34] Nordon P. Spontaneous combustion interactive heat and mass transfer driven by a chemicalreaction[A]. Third Australasian Conference on Heat&Mass Transfer,1985:363-370.
    [35] Btooks Kevin, Svanas Nicoloas, Glasser David. Critical temperatures of some Turkish coalsdue to spontaneous combustion[J]. Journal of Mines, Metals&Fuels,1988,36(9):434-436.
    [36]卞晓锴,包宗宏,史美仁.采空区温度场模拟及煤自燃状态预测[J].南京化工大学学报,2000,22(2):43-47.
    [37]冯小平.采空区高温点位置确定的计算机模拟分析[J].淮南矿业学院学报,1995,15(l):36-41.
    [38] Sasaki Kyuro, Miyakoshi Hiroshi, Otsuka Kazuo. Spontaneous combustion of coal in the lowtemperature range-application of exposure equivalent-time to numerieal analysis[J]. Journalof the mining and metallurgical institute of Japan,1987,103(11):771-775.
    [39]吕文陵,杨胜强,何磊,等.孤岛综放面撤架期间自然发火防治技术[J].2011,42(7):54-57.
    [40]李宗翔,许端平,刘立群.采空区自然发火“三带”划分的数值模拟[J].辽宁工程技术大学学报,2002,21(5):545-548.
    [41]朱红青,汪崇鲜,马辉,等.巷道煤柱自燃温度场数值模拟与火源定位的研究[J].湖南科技大学学报(自然科学版),2007,22(2):1-4.
    [42] M. Gieras, R. Klemens, G. Rarata, et al. Determination of explosion parameters ofmethane-air mixtures in the chamber of40dm3at normal and elevated temperature[J].Journal of Loss Prevention in the Process Industries,2006,19(2-3):263-270.
    [43] B. Janovsky, P. Selesovsky, J. Horkel, et al. Vented confined explosions in stramberkexperimental mine and autoreagas simulation[J]. Journal of Loss Prevention in the ProcessIndustries,2006,19(2-3):280-287.
    [44] Wilfred E B, Tang M J. Gas, dust and hybrid explosions[M]. Elsevier Science publishingCompany, Inc. New York,1991.
    [45] James R.S. Camhan-Starling-Desantis, Lee-Kesler-plocker. Interaction coefficients for binarymixtures of ozone-safe refrigerants. Int.J.Refrig.1994;Vol.17(2).
    [46] Metcx W.P.M, Berg A C van den. Modeling and experimental research into gas explosions[C].Overall Final Report for CEC Contact: STEP-CT-0111,1994.
    [47] Hjertager B H. Simulation of transient compressible turbulent reactive flows[J]. CombustionScience and Technology,1982,(27):195-170.
    [48] H.F.Coward, G.W.Jones. Limits of flammability of gases and vapors[R]. US Bureau of Mines,Bulletin503, Washington, DC,1952.
    [49] Kondos, Ran Y, Takahashi A, et al. Reinvestigation of flammability limits measurement ofmethane by the conventional vessel method with ac discharge ingniton[J]. combust Sci Tech,1990,145:1-15.
    [50] M.G. Zabetakis. Flammability Characteristics of combustion gases and vapors[R]. US Bureauof Mines, Bulletin627, Washington, DC, l965.
    [51]王志荣,蒋军成,李玲.容器内可燃气体燃爆温度与压力的计算方法[J].南京工业大学学报,2004,26(1):9-12.
    [52]林柏泉,周世宁.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [53]林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报,2002,31(1):6-9.
    [54] Moen I O, Bjerketvedt D, Rinnan A, et al. Deflagration of detonation from tubes into a largefuel-air explosive Cloud[J]. Symposium (International) on Combustion,1982,41:635-644.
    [55] Starke R, Roth P. An Experimental investigation of flame behavior during explosions incylindrical enclosures with obstacles[J]. Combustion and Flame,1989,75:111-118.
    [56] Fair-Weather M, et al. Studies of premixed flame propagation in explosion tubes[J].Combustion and Flame,1996,116:504-518.
    [57] Fair-Weather M, et al. Turbulent premixed flame propagation in a cylindrical vessel[A].Twenty-sixth Symposium International on Combustion, Pittsburgh, The CombustionInstitute,1996.
    [58]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):36-40.
    [59]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D].北京:中国矿业大学,2003.
    [60]杨艺,何学秋,王从银,等.瓦斯爆炸火焰的分形特性[J].中国矿业大学学报,2004,33(1):115-119.
    [61]刘贞堂.瓦斯(煤尘)爆炸物证特性参数实验研究[D].徐州:中国矿业大学,2010.
    [62]程磊.受限空间煤尘爆炸冲击波传播衰减规律研究[D].焦作:河南理工大学,2011.
    [63]李孝斌,林海飞,成连华,等.半封闭空间瓦斯由燃烧转为爆炸过程的动力学分析[J].煤炭学报,2012,37(3):459-462.
    [64] Akifumi Takahashi, Youkichi Urano, Kazuaki Tokuhashi. Effect vessel size and shape onexperimental flammability limits of gases[J]. Journal of hazardous materials,2003, A105:27-37.
    [65] Shigeo Kondo, Akifumi Takahashi, Kazuaki Tokuhashi. Experimental explorationdiscrepancies in F-number correlation of flammability limits[J]. Journal of hazardousmaterials,2003, A100:27-36.
    [66]李培煊.超细粉体抑制矿井多元可燃性气体爆炸的实验研究[D].西安:西安科技大学,2011.
    [67]邓军.采空区多组份可燃性气体爆炸特性实验研究[R].徐州:中国矿业大学,2007.
    [68]王颖.20L球形密闭装置内惰性气体抑制爆炸实验研究[D].太原:中北大学,2012.
    [69]黄文祥.变点火能作用下瓦斯爆炸火焰传播特征实验研究[D].西安:西安科技大学,2010.
    [70] F.Vanden Schoor, F.Norman, F.Verplaetsen. Influence of the ignition source location on thedetermination of the explosion pressure at elevated initial pressures[J]. Journal of LossPrevention in the Process Industries,2006,19:459-462.
    [71] Acton M.R, Sutton P, Wichens M.J. Lessons for cycle safety management[C]. SymposiumSeries NO.122, IChe mE, Rugby UK,1990.
    [72] H.K.Chelliah, A.K.Lazzarini, P.C.Wanigarathne, et al. Inhibitio-n of premixed andnon-premixed flames with fine droplets of water and solutions[J]. Proceedings of theCombustion Institute,2002,29(1):369-376.
    [73] A.K.Lazzarini, R.H.Krauss, H.K.Chelliah, et al. Extinction conditions of non-premixedflames with fine droplets of water and water/NaOH solutions[J]. Symposium (International)on Combustion.2000,28(2):2939-2945.
    [74] M.Bundy, A.Haminsa, Ki Yong Lee. Suppression limits of low strain rate non-premixedmethane flames[J]. Combustion and Flame,2003,133:299-300.
    [75] Murray S B, Lee J H. On the transformation of planar detonation to cylindrical detonation[J].Combustion and Flame,1983,52:269-289.
    [76] Bartlm F, Schr der K. The diffraction of a plane detonation wave at a convex corner[J].Combustion and Flame,1986,66:237-248.
    [77] Ohyagi S, Obara T, Hoshi S, et al. Diffraction and re-initiation of detonations behind abackward-facing step[J]. Shock Waves,2002,12:221-226.
    [78]邱雁,高广伟,罗珠海.充注惰气抑制矿井火区瓦斯爆炸机理[J].煤矿安全,2003,34(2):8-11.
    [79]何学秋,杨艺,王恩元,等.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报,2004,27(2):186-189.
    [80]王昌建,徐胜利,费立森.气相爆轰波绕射流场显示研究[J].爆炸与冲击,2006,26(1):27-32.
    [81]张磊磊,谭迎新,王星河,等.甲烷-空气混合气燃烧过程的高速摄影测量[J].测试技术学报,2011,25(3):274-277.
    [82] M.Gieras, R.Klemens, G.Rarata. Determination of explosion paramenters of methane-airmixtures in the chamber of40dm3at normal and elevated temperature[J]. Journal of LossPrevention in the Process Industries,2006,19:263-270.
    [83]王家臣,王进学,沈杰,等.顶板垮落诱发瓦斯灾害的理论分析[J].采矿与安全工程学报,2006,23(4):379-382.
    [84]戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002.
    [85]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994.
    [86]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004.
    [87]吴永礼.计算固体力学方法[M].北京:科学出版社,2003.
    [88]余为,缪协兴,茅献彪,等.岩石撞击过程中的升温机理分析[J].岩石力学与工程学报,2005,24(9):1535-1538.
    [89]谢强珍.综放采空区覆岩冒落与撞击火花引爆瓦斯研究[D].徐州:中国矿业大学,2003.
    [90]姜文忠.采空区瓦斯爆炸(燃烧)机理及防治技术研究[D].徐州:中国矿业大学,2002.
    [91]周心权,周博潇,朱红青,等.摩擦火花引爆瓦斯时点燃温度特性理论研究[J].湘潭矿业学院学报,2004,19(1):1-4.
    [92]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    [93] Dziurzynski Waclaw. Underground fire under conditions of methane inflow[J]. Archives ofMining Sciences,1991,36(3):209-225.
    [94] Beamish B B. Factors affecting hot spot development in bulk coal and associated gasevolution[J]. Australasian Institute of Mining and Metallurgy Publication Series,2005,(2):187-193.
    [95] Yuan Liming, Smith Alex C, Brune Jürgen F. Computational fluid dynamics study on theventilation flow paths in long wall gobs[A]. Proceedings and Monographs in Engineering,Water and Earth Sciences[C].2006:591-598.
    [96] Media-Struminska B. Correlation between methane and fire hazards in abandoned workingsof long wall mining[A]. Proceedings and Monographs in Engineering, Water and EarthSciences[C].2006:325-330.
    [97] Skotniczny Przemyslaw. Three-dimensional distribution of temperature and gas concentrationin long wall drifts accompanying the phenomenon of self-combustion of coal deposited inlong wall goafs[J]. Archives of Mining Sciences,2008,53(2):235-255.
    [98]杨永辰,孟金锁,王同杰.关于回采工作面采空区爆炸产生机理的探讨[J].煤炭学报,2002,27(6):636-638.
    [99]杨永辰,刘富明,吕秀江,等.铜川矿务局陈家山煤矿特大瓦斯爆炸事故的原因分析[J].矿业安全与环保,2007,34(5):85-87.
    [100]秦波涛,张雷林,王德明,等.采空区煤自燃引爆瓦斯的机理及控制技术[J].煤炭学报,2009,34(12):1655-1659.
    [101]周福宝.瓦斯与煤自燃共存研究(Ι):致灾机理[J].煤炭学报,2012,37(5):843-849.
    [102]潘荣锟,程远平,余明高,等.防控采煤工作面瓦斯燃烧新技术实验研究[J].煤炭学报,2012,37(11):1854-1858.
    [103]王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [104]钱鸣高,石平五,邹喜正,等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [105]谭云亮,吴士亮,尹增德,等.矿山压力与岩层控制[M].北京:煤炭工业出版社,2008.
    [106]张铁岗,卢鉴章,周心权,等.煤矿重大灾害应急救援技术[M].徐州:中国矿业大学出版社,2007.
    [107]李树刚.综放面采空区岩体碎胀特性分析[J].陕西煤炭技术,1996,(4):19-22.
    [108]张顶立,钱鸣高.综放工作面围岩结构分析[J].岩石力学与工程学报,1997,16(4):320-326.
    [109]钱鸣高,何富连,王作棠,等.再论采场矿山压力理论[J].中国矿业大学学报,1994,23(3):1-9.
    [110]王魁军,程五一,高坤,等.矿井瓦斯涌出理论及预测技术[M].北京:煤炭工业出版社,2009.
    [111]陈晋.综放采场“O”形圈内瓦斯运移规律研究[D].太原:太原理工大学,2011.
    [112]白岳松.受限空间瓦斯爆炸传播规律数值模拟研究[D].太原:太原理工大学,2012.
    [113]徐梓铭,刘然,刘志坚.煤矿瓦斯爆炸的条件与预防措施[J].煤炭科技,2007,(3):67-70.
    [114]王培栋,闵哲乾.对分次放炮引燃瓦斯事故的分析和建议[J].煤矿安全,1999,(10):44-45.
    [115]内田早月.高速冲击摩擦火花的沼气引燃性的研究[J].世界煤炭技术,1985,(6):39-42.
    [116]屈庆栋,许家林,马文顶,等.岩石撞击摩擦火花引爆瓦斯的实验研究[J].煤炭学报,2006,31(4):466-469.
    [117]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2811.
    [118]胡省三,成玉琪.21世纪前期我国煤炭科技重点发展领域探讨[J].煤炭学报,2005,30(1):1-7.
    [119]余明高,常绪华,贾海林,等.基于Matlab采空区自燃“三带”的分析[J].煤炭学报,2010,35(4):600-604.
    [120]陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007,32(9):939-944.
    [121] Qi Xuyao, Wang Deming, Zhong Xiaoxing, et al. Characteristics of oxygen consumption ofcoal at programmed temperatures[J]. Mining Science and Technology,2010,20(3):372-377.
    [122]郭兴明,徐精彩,惠世恩.综放工作面巷道漏风状况分析[J].煤炭学报,2000,25(6):619-623.
    [123]杨胜强,徐全,黄金,等.采空区自燃“三带”微循环理论及漏风流场数值模拟[J].中国矿业大学学报,2009,38(6):669-773.
    [124]纪传仁,李宗翔,李建新.采空区沿空通风巷道边界漏风分布的迭代计算[J].辽宁工程技术大学学报(自然科学版),2009,28(2):165-168.
    [125]王红刚.采空区漏风流场与瓦斯运移的叠加方法研究[D].西安:西安科技大学,2009.
    [126]徐会军,刘江,徐金海.浅埋薄基岩厚煤层综放工作面采空区漏风数值模拟[J].煤炭学报,2011,36(3):435-441.
    [127]邬剑明,李明珠,周春山.沿空留巷“Y”型通风条件下采空区漏风测试及分析[J].煤矿安全,2012,43(4):132-134.
    [128]马威.西庞煤矿复采工作面采空区浮煤自燃规律及防治技术研究[D].西安:西安科技大学,2010.
    [129]罗新荣,李增华,张迎第,等.综采放顶煤采场漏风与采空区氧化三带研究[J].煤炭学报,1998,23(5):480-485.
    [130]吴刚.柠条塔矿浅埋煤层综采面采空区漏风规律研究[D].西安:西安科技大学,2011.
    [131]刘瑛忠,马忠利.示踪技术在煤矿漏风检测中的应用[J].煤矿安全,2002,33(4):26-28.
    [132]张树川,秦永洋,高松,等.高瓦斯综采面Y型通风采空区漏风规律研究[J].煤炭科学技术,2009,37(10):35-38.
    [133]杨胜强,程涛,徐全,等.尾巷风压及风量变化对采空区自然发火影响的理论分析与数值模拟[J].煤炭学报,2011,36(2):308-312.
    [134]黄金,杨胜强,褚廷湘,等.采空区自燃三带漏风流场的数值模拟[J].煤炭科学技术,2009,37(6):60-63.
    [135]邵昊,蒋曙光,王兰云,等.尾巷对采空区煤自燃影响的数值模拟研究[J].采矿与安全工程学报,2011,28(1):45-50.
    [136]周俊波,刘洋. Fluent6.3流场分析从入门到精通[D].北京:机械工业出版社,2011.
    [137]朱红钧,林元华,谢龙汉. Fluent12流体分析及工程仿真[D].北京:清华大学出版社,2011.
    [138]张人伟,贺晓刚,孙勇,等.朱仙庄矿综放面采空区“三带”范围的确定及应用[J].采矿与安全工程学报,2008,25(3):332-336.
    [139] ZHOU Fu-bao, WANG De-ming, ZHANG Yong-jiu, et al. Practice of fighting fire andsuppressing explosion for a super-large and highly gassy mine[J]. Journal of ChinaUniversity of Mining and Technology,2007,17(4):459-463
    [140]卢平,鲍杰,韩德明,等.综放开采采空区煤炭自燃特征及其控制研究[J].火灾科学,2004,13(3):173-179.
    [141]任万兴,巫斌伟,王德明,等.高瓦斯易自燃超大俯采工作面的防灭火技术研究[J].采矿与安全工程学报,2009,26(2):198-202.
    [142]董希琳,陈长江,郭艳丽.煤炭自燃阻化文献综述[J].消防科学与技术,2002,(2):28-31.
    [143]张国庆,陈艳华. PDS脱硫技术中Na2CO3吸收机理浅析[J].燃料与化工,2008,39(5):32-34.
    [144]姚志通,夏枚生,叶瑛.碳酸钠和氯化钠助剂对粉煤灰碱熔的影响[J].中南大学学报(自然科学版),2011,42(5):1220-1225.
    [145]余龙醒.用活性碳酸钠净化低浓度二氧化硫废气的研究[J].上海第二工业大学学报,1990,(2):44-53.
    [146]刘伟,李斌,周秋生,等. Na2CO3-CO2-H2O体系处理铬渣的热力学分析[J].中南大学学报(自然科学版),2011,42(5):1209-1214.
    [147]刘英学,邬培菊.黄泥灌浆防止采空区遗煤自燃的机理分析与应用[J].中国安全科学学报,1997,7(1):36-39.
    [148] FENG Lei-yu, YAN Yuan-yuan, CHEN Yin-guang. Kinetic analysis of waste activatedsludge hydrolysis and short-chain fatty acids production at pH10[J]. Joumal ofEnvironmental Sciences,2009,21(5):589-594.
    [149]秦波涛,王德明,毕强,等.三相泡沫防治采空区煤炭自燃研究[J].中国矿业大学学报,2006,35(2):162-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700