用户名: 密码: 验证码:
自然循环槽式太阳能中高温集热系统中流动传热特性及强化传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光热太阳能技术在解决全球清洁能源生产问题上具有重要的战略意义。然而,成本和经济性问题是当前光热太阳能技术发展面临的主要瓶颈,因此,提高系统效率降低成本是光热太阳能技术发展的必然趋势。自然循环集热系统以利用气-液重力压差为动力实现循环换热为最大特点,为槽式太阳能集热系统的安全、稳定、高效运行提供了新的选择。
     此外,纳米流体作为一种新型的强化传热工质,其强化传热机理及其在工业换热系统中的应用研究一直是强化传热领域的热点。
     本论文课题研究以“节能环保”和“新能源”两大战略新兴领域为导向,以自然循环槽式太阳能集热系统为对象,以非能动自然循环集热(换热)系统中流动沸腾传热特性以及过程中的强化传热机理为主要研究内容。
     论文首先对自然循环槽式太阳能中高温集热系统的结构特点进行了优化分析,并对本课题提出和首次建立的50kW自然循环槽式太阳能中高温集热系统的关键性能参数(集热效率、散热损失、热阻特性以及运行最低辐照条件)进行了实验分析。得到50kW自然循环集热槽式太阳能集热系统的集热效率为0.3852,通过工业保温后可达0.439~0.458;集热管热效率为0.662~0.792;热阻于加热功率之间的关系为RHP=155.116q-1.523;系统运行最低辐照条件为Ic=254-272W/m2。在此基础上,建立了基于等效热流密度关系的室内自然循环集热系统实验台,得到对应的加热功率范围为0.45kW~1.35kW。为了更好的理解和掌握自然循环槽式太阳能集热系统流动传热特性,本文利用室内实验系统对自然循环槽式太阳能集热系统典型流动传热特征和流动不稳定特征以及加热功率、充液率和加热方式三种因素对集热系统的流动传热特性的影响规律进行了完整的实验研究。
     研究结果表明:自然循环集热系统在流动特征上存在逆流和双向并行流两种不稳定性流动特征;随着加热功率的增加,逆流特征逐渐减弱,管内流动循环最终转变为顺时单向流动。在同一流型特征下,集热管内的对热系数随加热功率增加而增加。然而,当逆流出现转变时(1.0kW,0.15MPa排汽工况),集热管内的对流换热系数出现最高值,为285.86W/m2K。现场系统与室内系统在热管热阻与加热功率之间的关系可以很好的吻合,得到系统逆流流型发生转变的热管热阻参数为0.83kW,34.37K/kW。在0.8kW加热功率条件下,集热系统的最佳充液率为FR=0.5;集热系统的最低充液率为FR=0.2。半管加热方式增强了管内逆流特征导致集热系统效率较低;但从系统安全运行和高效吸热角度来讲,下半管加热方式最有利于自然循环集热系统的高效、稳定安全运行。
     为了研究氧化石墨烯(GONs)纳米流体沸腾强化传热特性及其强化传热调控机理,探索其在然循环循环集热系统中的应用。本文利用瞬态淬火沸腾实验对不同浓度的氧化石墨烯(GONs)纳米流体的沸腾强化传热特性及其强化传热调控机理展开了系统的实验研究。研究结果表明,氧化石墨烯(GONs)纳米流体瞬态淬火沸腾强化传热特性主要体现在过渡沸腾和临界热流密度(CHF)上,其受到纳米颗粒沉积表面和悬浮液中纳米颗粒两者因素的共同影响。更重要的是,氧化石墨烯(GONs)纳米颗粒沉积形成的沸腾表面对浸润性的改变是强化CHF的决定因素。值得指出的是,本文在浓度为0.0002wt.%氧化石墨烯(GONs)纳米流体淬火结果中得到一种特别的“花状”由鳞片状石墨烯纳米片叠成的“突起”结构沉积表面;在该浓度条件下得到本文在CHF上的最高强化效果,为25.0%。
     此外,氧化石墨烯(GONs)纳米流体对循环启动前热管的加热速率提升了近15.15%;但随着循环流动的开始,受管内流型特征的影响,集热系统的逆流效果得到减弱,热效率提高了18.0%,但热管热阻增加了6.7%,对流换热系数也降低7.85%。
Solar thermal technology plays an important and strategic role in addressing the issue of global clean energy production. However, the bottlenecks in cost and eco-nomics have hindered the development of solar thermal technology. Therefore, ther-mal efficiency improvement and system cost reduction become the inevitable devel-oping trend of solar thermal technology. Natural circulation solar steam generation systems, driven passively by gas-liquid gravitational difference, provide a new choice for parabolic trough solar steam generation featuring safe, stable, and highly-efficient operation.
     Moreover, as a new kind of working fluid for heat transfer enhancement, study of the mechanisms of nanofluids on enhanced heat transfer and their applications in in-dustrial heat exchangers have been a hot spot for decades.
     The main objective of this dissertation, which is oriented by two strategic emerg-ing fields of "energy conservation and environment protection" and "new energy", is focused on the characteristics of flow boiling heat transfer as well as the underlying mechanisms of enhanced heat transfer in parabolic trough collector (PTC)-based nat-ural circulation steam generation systems.
     Firstly, an analytical and optimization work on the structure of the the PTC based medium-high temperature natural circulation steam generation system was carried out. Moreover, an experimental analysis was done on heat transfer characteristics, such as thermal efficiency, heat losses, thermal resistance and the minimum solar radiation for operation, etc., for the firstly proposed and constructed50kW medium-high temper-ature natural circulation steam generation system. The result show that the thermal efficiency was0.3852which could reached to0.439~0.458after industrial thermal improvement, thermal efficiency of the receiver was0.662~0.792, the relationship between thermal resistance and heat power was RHP=155.116q-1523and the mini- mum solar radiation for operation of the system was Ic=254~272W/m2.
     Based on this field setup, an indoor experimental system was design and con-structed based on equivalent heat flux model. The heat load of the indoor test rig was ranged from0.45kW to1.35kW.
     In order to better understand the thermal performance of natural circulation PTC systems, both flow and heat transfer instabilities and the effects of heat load, filling ratio and heating condition on thermal performance of the system was studied exper-imentally in this dissertation.
     The results showed that two types of flow instabilities, i.e., backflow and bi-directional flow, were observed in the system. The effects of backflow were de-creased as the heat load was raised and the flow pattern was finally transformed to be a clockwise unidirectional flow at the end. The two phase heat transfer coefficient in the receiver was increased with heat load for the same flow pattern conditions. As the transition of flow patterns happened, however, a highest heat transfer coefficient,285.86W/m2K, was obtained for the0.15MPa steam discharging process at the heat load of1.0kW. Moreover, the relationship between the heat pipe thermal resistance and heat load has a good agreement with the equivalent heat flux. The critical heat pipe thermal resistance for the flow pattern transition was found to be0.83kW,34.37K/kW. Additionally, the best filling ratio for the heat load of0.8kW was found to be0.5. The limited filling ratio for the system operation was found to be0.2. Moreover, an enhanced backflow effect was observed by the half circular heating method, which finally resulted in a lower thermal efficiency. The lower half heating method, however, was identified to be the optimized heating way in view of safe operation and efficient heat transfer.
     In studying the mechanisms of enhanced boiling heat transfer of graphene oxide nanosheets (GONs) nanofluid and their thermal performance in natural circulation system generation system, transient boiling experiments for nanofluids with different concentrations were carried out by quenching method. The results showed that the enhanced boiling heat transfer was mainly happened in the transient boiling and criti-cal heat flux (CHF) region, which are, however, both affected by the dynamic deposi-tion process and the suspended GONs nanopartilces. Moreover, it was concluded that the enhancement of CHF is primarily resulted from surface deposition of GONs. It is important to point out that the formation of unique discrete flower-like circular bumps consisting of self-assembly fish-scale-shaped GONs was only seen for the nanofluid sample of0.0002wt.%, which was the case of the greatest CHF enhancement of25.0%.
     As the nanofluid was present in the natural circulation steam generation system, the heating rate was increased by nearly15.15%before the starting of the circulation. As the circualiton was started, however, backflow effects were found to be weakened in the presence of nanolfuids. Accordingly, thermal efficiency was increased by18.0%while the heat pipe thermal resistance was increased by6.7%. What's worse, the heat transfer coefficient in the receiver was decreased by7.85%in the presence of nanofluids as well.
引文
[1]International Energy Agency, Word Energy Outlook2011,2011.
    [2]BP,2030世界能源展望,2012年1月,伦敦.
    [3]国家发展和改革委员会能源研究所课题组,中国2050年低碳发展之路—能源需求暨碳排放情景分析,科学出版社,2009。
    [4]国际能源署(IEA)编著,张阿玲,尹秀梅,黄禾译,能源技术展望2010:面向2050年的情景与战略,清华大学出版社,2011。
    [5]2050中国能源和碳排放研究课题组,2050中国能源和碳排放报告,科学出版社,2009.
    [6]中华人民共和国国家发展和改革委员会,可再生能源中长期发展规划,2007年8月,北京。
    [7]中华人民共和国能源局,可再生能源发展“十二五”规划,2012年8月,北京。
    [8]Pernick, R., Wilder, C., and Winnie, T., Clean Energy Trends 2012, Clean Edge, 2012.
    [9]Solar Energy Industries Association, http://www.seia.org/cs/research/.
    [10]NREL, Sunshot Vision Study, Sun Shot, U.S. Department of Energy,2012.
    [1 l]Szabo, M., Jager-Waldau, A., Monforti-Ferrario, F., et al., Technical Assessment of the Renewable Energy Action Plans, JRC European Commission,2011.
    [12]中华人民共和国科技部,太阳能发电科技发展“十二五”专项规划,www.most.gov.cn,2012.
    [13]Price, H., Lupfert, E., Kearney, D., et al., Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering 124(2002) 109-125.
    [14]Mills, D., Advances in solar thermal electricity technology. Solar Energy 76(2004) 19-31.
    [15]Thirugnanasambandam, M., Iniyan, S., and Goic, R., A review of solar thermal technologies. Renewable and Sustainable Energy Reviews 14(2010) 312-322.
    [16]Sargent & Lundy LLC Consulting Group, Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. NREN/SR-550-3440; 2003.
    [17]王红梅,俞自涛,胡亚才等人,太阳能中高温热利用技术及其经济性分析, 能源工程2012(3)21-24。
    [18]国家能源局,国家能源科技“十二五”规划,2011年12月。
    [19]Price, H., Liipfert, E., Kearney, D., et al., Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering 124(2002) 109-125.
    [20]Rodnguez, L.G., Marrero, A., and Camacho, C.G., Application of direct steam generation into a solar parabolic trough collector to multi effect distillation. De-salination 125(1999) 139-145.
    [21]Eck M., and Steinmann W.D., Direct Steam generation in parabolic troughs:first results of the DISS project, Proceedings of Solar Forum 2001. Washington D.C, Solar Energy:The Power to Choose,2001.
    [22]Zarza, E., Valenzuela, L., Leon, J., et al., The DISS Project:Direct Steam Gen-eration in Parabolic Trough Systems Operation and Maintenance Experience and Update on Project Status. ASME Journal of Solar Energy Engineering,124(2002) 126-133.
    [23]Eck, M., Zarza, E., Eickhoff, M., et al., Applied research concerning the direct steam generation in parabolic troughs. Solar Energy 74(2003) 341-351.
    [24]Zarza, E., Valenzuela, L., Leon, J., et al., Direct steam generation in parabolic troughs:Final results and conclusions of the DISS project. Energy 29(2004) 635-644.
    [25]Norton, B., and Probert, S.D., Natural circulation solar energy simulated sys-tems for heating water. Applied Energy 11(1982) 167-196.
    [26]Shitzer, A., Kalmanoviz, D., Zvirin Y., et al., Experiments with a flat plate solar water heating system in thermosyphonic flow. Solar Energy 22(1979) 27-35.
    [27]Morrison, G.L., and Ranatunga, D.B.J., Thermosyphon circulation in solar col-lectors. Solar Energy 24(1980) 191-198.
    [28]Ezekwe, C.I., Thermal performance of heat pipe solar energy systems. Solar & Wind Technology 7(1990) 349-354.
    [29]Bong, T.Y., Ng, K.C., and Bao, H., Thermal performance of a flat-plat heat-pipe collector array. Solar Energy 50(1993) 491-498.
    [30]Ismail, K.A.R., and Abogderah, M.M., Performance of Heat Pipe Solar collector. Journal of Solar Energy Engineering 120(1998) 51-59.
    [31]Chun, W., Kang, Y.H., Kwak, H.Y., et al., An experimental study of the utiliza-tion of heat pipes for solar water heaters. Applied Thermal Engineering 19(1999) 807-817.
    [32]Yu, Z.T., Hu, Y.C., Hong, R.H., et al., Investigation and analysis on a cellular heat pipe flat solar heater. Heat and Mass Transfer 42(2005) 122-128.
    [33]Riffat, S.B., Zhao, X., and Doherty, P.S., Developing a theoretical model to in-vestigated thermal performance of a thin membrane heat-pipe solar collector. Applied Thermal Engineering 25(2005) 899-915.
    [34]Rittidech, S., and Wannapakne, S., Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP). Applied Thermal Engineering 27(2007) 1978-1985.
    [35]Hussein, H.M.S., Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger. Energy Conver-sion & Management 48(2007) 1266-1272.
    [36]Azad, E., Theoretical and experimental investigation of heat pipe solar collector. Experimental Thermal and Fluid Science 32(2008) 1666-1672.
    [37]Rittidech, S., Donmaung, A., and Kumsombut, K., Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV). Renewable Energy 34(2009) 2234-2238.
    [38]Gupta, C.L., and Garg, H.P., System design in solar water heaters with natural circulation. Solar Energy 12(1968) 163-182.
    [39]Ortabasi, U., and Fehlner, F.P., Cusp Mirror-Heat pipe evacuated tubular solar thermal collector. Solar Energy 24(1980) 477-489.
    [40]Sodha, M.S., and Tiwari, G.N., Analysis of natural circulation solar water heat-ing systems. Energy Conversion & Management 21(1981) 283-288.
    [41]Ribot, J., and McConnell, R.D., Testing and analysis of a heat-pipe solar collec-tor. Journal of Solar Energy Engineering 105(1983) 440-445.
    [42]Hussein, H.M.S., Mohamad, M.A., and Belessiotis, V., Optimization of a wick-less heat pipe flat plate solar collector. Energy Conversion & Management 40(1999) 1949-1961.
    [43]Mathioulakis, E., and Belessiotis, V., A new heat-pipe solar domestic hot water system. Solar Energy 72(2002) 13-20.
    [44]Tanaka, H., and Nakatake, Y., A vertical multiple-effect diffusion-type solar still coupled with a heat pipe solar collector. Desalination 160(2004) 195-205.
    [45]Tanaka, H., Nakatake, Y., and Watanabe, K., Parametric study on a vertical mul-tiple-effect diffusion-type solar still couple with a heat-pipe solar collector. De- salination 171(2004)243-255.
    [46]Hobbi, A., and Siddiqui, K., Experimental study on the effect of heat transfer enhancement devices in flat-plate solar collectors. International Journal of Heat and Mass transfer 52(2009) 4650-4658.
    [47]Bourdoukan, P., Wurtz, E., Joubert, P., et al., Potential of solar heat pipe vacuum collector in the desiccant cooling process:Modeling and experimental results. Solar Energy 82(2008) 1209-1219.
    [48]Morrison, G.L., Budihardjo, I., and Behnia, M., Water in glass evacuated tube solar water heaters.Solar Energy 24(2004) 191-198.
    [49]Shah, L.J., and Furbo, S., Theroretical flow investigations of an all glass evacu-ated tubular collector. Solar Energy 81(2007) 822-828.
    [50]Ramsey, J.M. Gupta, B.P., and Knowles, G.R., Experimental evaluation of a cy-lindrical parabolic solar collector. Journal of Heat Transfer ASME Transition, 99(1997) 163-168
    [51]Fadar, A.E., Mimet, A., Azzabakh A., et al., Study of a new solar adsorption re-frigerator powered by a parabolic trough collector. Applied Thermal Engineering 29(2009) 1267-1270.
    [52]Fadar, A.E., Mimet, A., and Garcia, M.P., Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe. Re-newable Energy 34(2009) 2271-2279.
    [53]彭耀峰,回路型重力热管太阳能蒸汽发生系统的设计和理论分析,浙江大学硕士学位论文,浙江大学,2007.
    [54]王武军,同轴套管式回路型重力热管太阳能锅炉设计及系统传热特性研究,硕士学位论文,浙江大学,2010。
    [55]王武军,胡亚才,俞自涛等人,同轴套管式汽液分流两相热虹吸管太阳能蒸汽发生系统,200910099363.4.
    [56]倪煜,以纳米流体为工质的自然循环太阳能集热系统研究,博士学位论文,浙江大学,2011.
    [57]Zhang, L., Wang, W.J., Yu, Z.T., et al., An experimental investigation of a natu-ral circulation heat pipe system applied to a parabolic trough solar collector steam generation system. Solar Energy 86(2012) 911-919
    [58]Zhang, L., Yu, Z.T. Fan, L.W., et al., An Experimental Investigation of the Heat Losses of a U-Type Solar Heat Pipe Receiver of a Parabolic Trough Collec- tor-Based Natural Circulation Steam Generation System. Renewable Energy 57(2013) 262-268.
    [59]张良,胡亚才,俞自涛等人,自然循环槽式太阳能集热系统,201110004634.0.
    [60]陈欢,王红梅,俞自涛等人,自然循环槽式太阳能中高温集热系统实验研究,浙江大学学报(工学版)46(2012)1666-1670.
    [61]俞自涛;王红梅;胡亚才;张良;等人,传热改善型U型太阳能集热管,201110318417.9,2012.11.
    [62]Laing, D., and Trabing, C., Second Generation Sodium Heat Pipe Receiver for a USAB V-160 Stirling Engine:Evaluation of On-Sun Test Results Using the Proposed IEA Guidelines and Analysis of Heat Pipe Damage. ASME Journal of Solar Energy Engineering 119(1997) 279-285.
    [63]Moreno, J., Rawlinson, S., Andraka, C, et al. Dish/Stirling hybrid-heat-pipe-re-ceiver design and test results.37th Intersociety Energy Conversion Engineering Conference (IECEC). (2002) 556-564.
    [64]张红,辉许,穜白等人,高温太阳能热管接收器.200710191145.
    [65]张红,战栋栋,许辉等人, 用于太阳能热发电的中温热管接收器.200610086187.
    [66]帅鸥,胡亚才,俞自涛等人,管腔一体化碟式太阳能热接收器,201110090602.7
    [67]帅鸥,胡亚才,俞自涛等人,U型通道组合型热管接收器.201110049803.2.
    [68]郭烈锦,廖波,一种腔式太阳能直流蒸汽锅炉.201110006109.
    [69]代彦军,王如竹,吴静怡等人,腔体式太阳能吸收器.200910050737.
    [70]Pioro, L.S., Pioro, I.L., Industrial Two-Phase Thermosyphons, Begell House Inc., New York, Wallingford (UK),1997
    [71]黄素逸, 魏保太,气液两相流动与传热,华中理工大学出版社,1989.
    [72]林宗虎, 管路内气液两相流特性及其工程应用, 西安交通大学出版社,1992.
    [73]http://ghajar.ceat.okstate.edu/.
    [74]Maydanik, Yu.F., Loop heat pipes. Applied Thermal Engineering 25 (2005) 635-657.
    [75]Launary, S., Sartre, V., and Bonjour, J., Parametric analysis of loop heat pipe operation:a literature review, International Journal of Thermal Science 46 (2007) 621-636.
    [76]Tsoi, V., Chang, S.W., Chiang, K.F., et al., Thermal performance of plate-type loop thermosyphon at sub-atmospheric pressures. Applied Thermal Engineering 31(2011)2556-2567.
    [77]Chang, S.W., Lo, D.C., Chiang, K.F., et al., Sub-atmospheric boiling heat transfer and thermal performance of two-phase loop thermosyphon. Experi-mental Thermal Fluid and Science 39 (2012) 134-147.
    [78]Khodabandeh, R., Palm, B., Influence of system pressure on the boiling heat transfer coefficient in a closed two-phase thermosyphon loop. International Journal of Thermal Science.41 (2002) 619-624.
    [79]Khodabandeh, R., Thermal performance of a closed advanced two-phase ther-mosyphon loop for cooling of radio base stations at different operating condi-tions. Applied Thermal Engineering 24 (2004) 2643-2655.
    [80]Khodabandeh, R., Pressure drop in riser and evaporator in an advanced two-phase thermosyphon loop. International Journal of Refrigeration 28 (2005) 725-734.
    [81]Khodabandeh, R., Heat transfer in the evaporator of an advanced two-phase thermosyphon loop, International Journal of Refrigeration.28 (2005) 190-202.
    [82]Khodabandeh, R., and Furberg, R., Instability, heat transfer and flow regime in a two-phase flow thermosyphon loop at different diameter evaporator channel, Applied Thermal Engineering 30 (2010) 1107-1114.
    [83]Cieslinski, J.T., and Fiuk, A., Heat transfer characteristics of a two-phase ther-mosyphon heat exchanger, Applied Thermal Engineering 51 (2013) 112-118.
    [84]Chen, Y., Groll, M., Mertz, R., et al., Steady-state and transient performance of a miniature loop heat pipe, International Journal of Thermal Science 45 (2006) 1084-1090.
    [85]Muraoka, I., Ramos, F.M., and Valssov, V.V., Analysis of operational character-istics and limits of a loop heat pipe with porous element in the condenser. Inter-national Journal of Heat and Mass Transfer 44(2001) 2287-2297.
    [86]Lin, M.C., Chun, L.J., Lee, W.S., et al., Thermal performance of a two-phase thermosyphon energy storage system. Solar Energy 75(2003) 295-306.
    [87]Li, J., Wang, D., and Peterson, G.P., Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Applied Thermal Engi- neering 30 (2010) 741-752.
    [88]Choi, S.U.S. and Eastman, J.A., Enhancing thermal conductivity of fluid with nanoparticles. ASME International Mechanical Engineering Congress & Expo-sition, November 12-17, San Francisco, CA,1995.
    [89]Eastman, J.A., Choi, S.U.S., and Li, S., et al., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letter 78(2001) 718-720.
    [90]Tsaia, C. Y., Chien, H.P., Ding, P.P., et al., Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Materials Letter. 58(2004)1461-1465.
    [91]Huminic, G., Huminic, A., Morjan, I., et al. Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Interna-tional Journal of Heat and Mass Transfer.54(2011).656-661.
    [92]Huminic, G. and Huminic A.,Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids. Experimental Thermal and Fluid Science. 35(2011)550-557.
    [93]Liu, Z.H., Li, Y.Y., Bao, R., Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. International Journal of Thermal Sciences.50(2011)558-568
    [94]Liu, Z.H, Xiong, J,G., and Bao, R., Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. International Journal of Multiphase Flow 33(2007) 1284-1295.
    [95]Liu, Z.H., and Zhu, Q.Z., Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Conversion and Management 52 (2011) 292-300.
    [96]Yang, X.F., Liu, Z.H.,and Zhao, J., Heat transfer performance of a horizontal microgrooved heat pipe using CuO nanofluid. Journal of Micromechanics and Microengineering 18(2008)35-38.
    [97]Wang Y.P., Chen X.J., Liu Z.H., et al., Application of nanofluid in an inclined mesh wicked heat pipes. Thermochimica Acta 539 (2012) 100-108.
    [98]Yang, X.F., Liu, Z.H., Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. International Jour-nal of Heat and Mass Transfer 55 (2012) 7375-7384.
    [99]Li, L., Liu, Z.H.,and Xiao, H.S., Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors Part 1: Indoor experiment. Solar Energy 85 (2011) 379-387
    [100]Kole, M., Dey, T.K.,Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Applied Thermal Engineering 50 (2013) 763-770.
    [101]Shukla, K. N., Solomon, A.Br., Pillai, B. C., et al., Thermal performance of heat pipe with suspended nano-particles. Heat and Mass Transfer 48(2012) 1913-1920.
    [102]Kang, S.W., Wei, W.C., Tsai, S.H., et al., Experimental investigation of sil-ver nano-fluid on heat pipe thermal performance. Applied Thermal Engineering 26(2006) 2377-2382.
    [103]Lin, Y.H., Kang, S.W., Chen, H.L., Effect of silver nanofluid on pulsating heat pipe thermal performance. Applied Thermal Engineering 28(2008) 1312-1317.
    [104]Kang, S.W., Wei, W.C., Tsai, S.H., et al., Experimental Investigation of nanofluid on sintered heat pipe thermal perfomance. Applied Thermal Engi-neering 29(2009).973-979.
    [105]Paramatthanuwat, T., Boothaisong, S., Rittidechet, S., et al., Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano. Heat And Mass Transfer 46(2010) 281-285.
    [106]Parametthanuwat T., Rittidechet, S., and Pattiyaet A., A correlation to pre-dict heat-transfer rates of a two-phase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions. International Journal of Heat and Mass Transfer 53(2010) 4960-4965.
    [107]Hajian, R, Layeghi M., and Sani K.A., Experimental study of nanofluid ef-fects on the thermal performance with response time of heat pipe. Energy Con-version and Management 56 (2012) 63-68.
    [108]Asirvatham, L.G., Nimmagadda, R., and Wongwises, S., Heat transfer per-formance of screen mesh wick heat pipes using silver-water nanofluid. Interna-tional Journal of Heat and Mass Transfer 60 (2013) 201-209.
    [109]Firouzfar, E., Soltanieh, M., Noie, S. H. et al., Investigation of heat pipe heat exchanger effectiveness and energy saving in air conditioning systems us-ing silver nanofluid. International Journal of Environmental Science and Tech-nology 9 (2012)587-594.
    [110]Ma, H.B., Wilson, C., Borgmeyer, B., et al., Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letter 88 (2006) 143116.
    [111]Ma, H.B., Wilson, C., Yu, Q., et al., An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe. Journal of Heat Transfer 128(2006)1213-1216.
    [112]Naphon, P., Assadamongkol, P., and Borirak, T., Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. International Com-munications in Heat and Mass Transfer 35 (2008) 1316-1319.
    [113]Naphon, P., Thongkum, D., and Assadamongkol, P., Heat pipe efficiency enhancement with refrigerant-nanoparticles mixtures. Energy Conversion and Management 50(2009)772-776.
    [114]Noie.H.S., Heris, S.Z., Kahani, M., et al. Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. International Journal of Heat and Fluid Flow 30(2009) 700-705.
    [115]Teng T.P., Hsu, H.G., Mo, H.E., et al., Thermal efficiency of heat pipe with alumina nanofluid. Journal of Alloys and Compound.504(Supplement 1) (2010) 380-384
    [116]Putra, N., Septiadi, W.N., Rahman, H., et al., Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science 40 (2012) 10-17.
    [117]Hung, Y.H., Teng, T.P., and Lin, B.G., Evaluation of the thermal perfor-mance of a heat pipe using alumina nanofluids, Experimental Thermal and Fluid Science 44 (2013) 504-511.
    [118]Saleh, R., Putra, N., Prakoso, S.P., et al., Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. In-ternational Journal of Thermal Sciences 63 (2013) 125-132.
    [119]Xue, H.S., Fan, J.R., Hu, Y.C., et al., The interface effect of carbon nano-tube suspension on the thermal performance of a two-phase closed thermosy-phon. Journal of Applied Physics 100 (2006) 104909-1-5.
    [120]薛怀生,樊建人,胡亚才等人,碳纳米管悬浮液在重力热管中的沸腾特性,化工学报,57(2006)2562-2567.
    [121]Chiang, Y.C., Chieh, J.J. and Ho, C.C., The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement. Nanoscale Re- search Letters 7(2012)322.
    [122]Liu, Z.H., and Li, Y.Y., A new frontier of nanofluid research-Application of nanofluids in heat pipes. International Journal of Heat and Mass Transfer 55 (2012)6786-6797.
    [123]Khodabandeh, R., and Furberg, R., Heat transfer, flow regime and instabil-ity of a nano-and micro-porous structure evaporator in a two-phase thermosy-phon loop. International Journal of Thermal Science 40 (2010) 1183-1192.
    [124]Taylor, R.A., and Phelan, P.E., Pool boiling of nanofluids:comprehensive review of existing data and limited new data. International Journal of Heat and Mass Transfer 52(2009) 5339-5347.
    [125]Kim, H., Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Research Letter 6(2011)415.
    [126]Ahn, H.S., and Kim M.H., A review on cirtical heat flux enhancement with nanofluids and surface modification. Journal of Heat Transfer ASME Transition 134(2012)024001.
    [127]Kim, H., Ahn, H.S., and Kim, M.H., On the mechanism of pool boiling critical heat flux enhancement in nanofluids. Journal of Heat Transfer ASME Transition 132 (2010) 061501.
    [128]Milanova, D., and Kumar, R., Heat transfer behavior of Silica nanoparticles in pool boiling experiment. Journal of Heat Transfer ASME Transition 130 (2008)042401.
    [129]Cieslinski, J.T., and Kaczmarczyk, T.Z., Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes. Nanoscale Research Letters 6(2011)220.
    [130]Kwark, S.M, Kumar R., Moreno G., et al., Transient characteristics of pool boiling heat transfer in nanofluids. Journal of Heat Transfer ASME Transition 134(2012)051015.
    [131]Kedziersik, M.A., Effect of diamond nanolubricant on R134a pool boiling heat transfer. SME Transition of Journal of Heat Transfer 134(2012) 051001.
    [132]Xuan, Y.M., Li, Q., Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow 21(2000) 58-64.
    [133]Xuan, Y.M., Li, Q., Zhang X., et al., Stochastic thermal transport of nano-particle suspensions, Journal of Applied Physics 100(2006) 043507.
    [134]Kim, H., Truong, B., Buongiorno, J., et al., On the effect of surface rough- ness height, wettability and nanoporosity on Leidenfrost phenomena. Applied Physics Letter 98(2011) 083121.
    [135]Kim, S.J., Bang, I.C., Buongiorno, J., et al., Effects of nanoparticle deposi-tion on surface wettability influencing boiling heat transfer in nanofluids. Ap-plied Physics Letter 89(2006)153107.
    [136]Kim, S.J., Bang, I.C., Buongiorno, J., et al., Surface wettability change dur-ing pool boiling of nanofluids and its effect on critical heat flux. International Journal of Heat and Mass Transfer 50(2007) 4105-4116.
    [137]Coursey, J.S., and Kim, J., Nanofluids boiling:the effect of surface wetta-bility. International Journal of Heat and Fluid Flow 29(2008)1577-1585.
    [138]Stutz, B., Morceli, C.H.S., Silva, M.F.,et al., Influence of nanoparticle sur-face coating on pool boiling. Experimental Thermal and Fluid Science 35(2011) 1239-1249.
    [139]Phan, H.T., Caney, N., Marty, P., et al., How does surface wettability influence nucleate boiling?. Comptes Rendus Mecanique 337(2009) 251-259.
    [140]Jo, H., Ahn, H.S., Kang, S.H., et al., A study of nucleate boiling heat trans-fer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Interna-tional Journal of Heat and Mass Transfer 54 (2011) 5643-642.
    [141]Kim, H.D., and Kim, M.H., Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Applied Physics Let-ter 91(2007) 014104.
    [142]Phan, H.T., Caney, N., Marty, P., et al., Surface wettability control by nano-coating:The effects on pool boiling heat transfer and nucleation mechanism," International Journal of Heat and Mass Transfer 52(2009) 5459-5471.
    [143]Kim, H., Kim, J., and Kim, M.H., Effect of nanoparticles on CHF en-hancement in pool boiling of nano-fluids. International Journal of Heat and Mass Transfer 49(2006) 5070-5074.
    [144]Kim, H., Kim, J., and Kim, M, Experimental study on CHF characteristics of Water-TiO2 nano-fluids. Nuclear Engineering and Technology 38(2006) 61-68.
    [145]Kim, H.D., Kim, J., and Kim, M.H., CHF characteristics of nano-fluids at pool boiling. International Journal of Multiphase Flow 33(2007) 691-706.
    [146]Kwark, S.M., Kumar, R., Moreno, G., et al., Pool boiling characteristics of low concentration nanofluids. International Journal of Heat and Mass Transfer 53(2010)972-981.
    [147]Kedziersik, M.A., R134a/Al2O3 nanolubricant mixture pool boiling on a rectangular finned surface, Jounal of Heat Transfer ASME Transition 134(2012) 121501.
    [148]Kumar R., and Milanova D., Effect of surface tension on nanotube nanoflu-ids. Applied Physics Letter 94(2009) 073107.
    [149]Wasan, D.T., and Nikolov, A.D., Spreading of nanofluids on solids. Nature 423 (2003) 156-159.
    [150]Wen, D., Mechanisms of thermal nanofluids on enhanced critical flux (CHF). International Journal of Heat and Mass Transfer 51(2008) 4958-4965
    [151]Wen, D., On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids, Journal of Nanoparticle Research 10(2008) 1129-1140.
    [152]Suriyawong, A., and Wongwises S., Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations. Experi-mental Thermal and Fluid Science 34(2010) 992-999.
    [153]White, S.B., Shih, A.J., and Pipe, K.P., Boiling surface enhancement by electrophoretic deposition of particles from a nanofluid. International Journal of Heat and Mass Transfer 54(2011) 4370-4375.
    [154]Chen, R., Lu, M.C., Srinivasan, V., et al., Nanowires for enhanced boiling heat transfer, Nano Letters 9(2009) 548-553.
    [155]Kim, S., Kim, H.D., Kim, H., et al., Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Experimental Thermal Fluid and Science 34(2010)487-495.
    [156]Chu, K.H., Enright, R., and Wang, E.N., Structured surfaces for enhanced pool boiling heat transfer. Applied Physics Letter 100(2012) 241603.
    [157]Betz, A.R., Xu, J., Qiu, H., et al., Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?. Applied Physics Letter 97(2010) 141909.
    [158]张良,胡亚才,俞自涛等人,单轴聚光式太阳能集热场系统聚光跟踪精度优化修正系统装置,201110003553.9。
    [159]俞自涛,王红梅,胡亚才,张良等人,传热改善型集热管,201110318417.9。
    [160]胡亚才,陈欢,张良等人,同轴聚光二次反射槽式太阳能自然循环集热装置,201210069848.0。
    [161]胡亚才,张良,王武军等人,聚光式太阳能抽凝式热电联产系统,200910155864.X。
    [162]胡亚才,张良,王武军等人,聚光式太阳能热电冷联产系统,201010133159.2。
    [163]Bejan, A, Convective Heat Transfer (third edition); 2004.
    [164]Dudiey, V.E., Kolb, G.J., Sloan, M., et al., Test results SEGS LS-2 solar collector. SAND94-1884, Sandia, U.S. Department of Energy, categories UC (1994) 1302-1303.
    [165]Duffie J.A., Beckman, W.A., Solar engineering of thermal processes [M]. 3rd ed. New York:Wiley,2006.
    [166]Kandlikar, S.G., A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. Jounal of Heat Transfer ASME Transition 112(1990)219-228.
    [167]王红梅,纳米流体在分离型热管槽式太阳能集热系统中对流传热特性研究,浙江大学硕士学位论文,2012。
    [168]陈欢,自然循环太阳能蒸汽发生系统传热特性实验研究,浙江大学硕士学位论文,2013。
    [169]Collier, J.G., and Thome, J.R., Convective boiling and condensation,3rd Edition, Oxford,1994.
    [170]Arneth, S., and Stichlmair, J., Characteristics of thermosyphon reboilers. Intetnational Journal of Thermal Science 40 (2001) 385-391
    [171]Tran,T.N., Wambsganss, M.W., and France, D.M., Small circular-and rec-tangular-channel boiling with two refrigerants. International Journal of Multi-phase Flow 22 (1996) 485-498.
    [172]屠传经,洪荣华,王鹏举,重力热管式换热器及其在余热利用中的应用,浙江大学出版社,1989.
    [173]http://www.timesnano.com
    [174]Barin I. Thermochemical data of pure substances(纯物质热化学数据手册)[M].Cheng Nailiang(程乃良),Niu Sitong(牛四通),Xu Guiying(徐桂英),trans.3rd ed. Beijing. Science Press,2003
    [175]Park, S.D., Lee, S.W., Kang, S., et al., Effects of nanofluids containing gra-phene-oxide nanosheets on critical heat flux. Applied Physics Letter 97(2010) 023103.
    [176]Kandlikar, S.G., A theoretical model to predict pool boiling CHF incorpo-rating effects of contact angle and orientation. Jounal of Heat Transfer ASME Transition 213(2001)1071-1079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700