用户名: 密码: 验证码:
天然气水合物开采模拟与能效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界能源消费量巨大,导致传统石化能源供给紧张。同时由于传统石化能源储量只够未来几十年的使用,急需寻找新的替代能源。天然气水合物在自然界储量巨大,其中的碳含量是传统石化能源总含碳量的数倍,有潜力成为未来的主要能源。因此水合物的工业化开采非常迫切,急需寻找天然气水合物工业化开采的方法。
     本文将自然界天然气水合物藏分为4类,Ⅰ类水合物在现有技术条件下容易开采,Ⅳ水合物饱和度低不值得开采,Ⅱ类、Ⅲ类水合物开采存在较大争议。Ⅱ类水合物为水合物长期开采后的形态,未来水合物开采必须面对此类水合物开采问题,中国南海神狐海域水合物为Ⅲ类。本文针对Ⅱ类、Ⅲ类水合物藏,采用不同开采策略进行开采模拟。
     采用HydrateResSim对水合物进行开采模拟。为了验证数值模拟与实际水合物分解情况的吻合度,首先用过量水在实验室条件下,多孔介质中合成Ⅱ类水合物,然后1MPa定压分解,对比实验室水合物分解情况与数值模拟结果的一致性。在此基础上,进行Ⅱ类水合物藏开采模拟。Ⅱ类水合物藏上层为水合物,下层为水,其渗透性良好,采用竖直井开采。同时考虑单一减压法难于独立有效开采,所以采用加热辅助开采。采用加热热流密度为1200W/m,加热长度共20m,总共加热功率24000W;井内压力根据工程实践设置为0.2P0,0.5P0,0.8P0,因此Ⅱ类水合物藏开采策略为竖直井加热减压开采。0.2P0开采条件下开采情况最为理想,开采500天水合物分解气体释放平均速率为1.5m/s,井内气体收集平均速率约0.25m/s,水合物分解释放气体总体积6.5×10~7m~3,气体收集总体积1.0×10~7m~3,水收集总质量1.1×10~9kg,水气体积比约为6,采收比约0.15,加热分解水合物贡献为8.5%,开采过程能效比为5.1。从开采前期500天情况看,Ⅱ类水合物工业开采困难。但从开采发展趋势看,气水体积比及气体收集速率呈上升趋势,表明Ⅱ类水合物开采后期情况将得到改善。
     Ⅲ类水合物藏存在上下非渗透层,而且为单层水合物,其渗透率低,制约水合物开采。采用水平井能有效克服这类水合物藏渗透率低的约束,因此采用水平井加热减压联合开采Ⅲ类水合物。井内温度压力开采条件参考油气工程实践设置为0.2P0&42℃,0.5P0&42℃,0.8P0&42℃。Ⅲ类水合物藏3D开采模拟时0.2P0&42℃开采条件下开采情况最好,模拟开采450天,气体释放速率达到4-5m~3/s,累积释放气体1.6×10~8m~3(约为每天350,000m~3),达到工业开采要求。Ⅲ类水合物藏2D开采模拟显示,0.2P0&42℃开采条件下,开采8500天水合物全部分解,累积分解气体6.8×10~5m~3,累积收集气体3.5×10~5m~3,累积收集水质量1.1×10~6kg,气体采收比约0.5,气水体积比持续上升,最高达304。加热分解了5.28%的水合物,其余水合物由减压推动力分解。水合物藏中开采得到的天然气按高热值计算,Ⅲ类水合物开采过程能效比达到188。
The energy consumed around the world is very huge, which leads the shortage of energysupply. At the same time, the traditional fossil fuel in reservoirs can only satisfy the demandof the whole world for several decades. Finding a new replacement energy resource is veryurgent. Natural gas hydrate is a new energy resource, and the carbon in hydrate reservoirs istwo times of that in traditional fossil fuel. This indicated that the hydrates can be the potentialenergy resource in the future.
     The natural gas production from hydrate reservoirs method and strategies were the mostimportant issues in hydrate dissociation. Class1hydrates were easy to be recovered, andClass4was unworthy of attention for their low saturation. The natural gas productionfeasibility from Class2and Class3was controversial. Class2hydrate reservoirs is the statefor long term of other kind of hydrate reservoirs. People have deal with this kind of hydrate.Shenhu hydrate reservoirs in South China Sea was Class3. The feasibility of this two kinds ofhydrate reservoirs will be studied in this paper.
     HydrateResSim code was used to simulate the production of natural gas from reservoirs. Inorder to check the consistent and reliability of the code to hydrate reservoirs dissociation, thelab level experiment was conducted. The formation and dissociation of hydrates in porousmedia were conducted. The experiment show that the hydrates of55g were synthesized in2000s and dissociated in1200s, and the gas in the cell was about15L in total. The data inthe hydrate formation and dissociation were consistent with the numerical simulation result.Based on this, a numerical simulation that Class2hydrate was dissociated in vertical well indepressurization and thermal co-stimulation method for their good permeability wasdeveloped. The perforations and heating injection were taken in hydrate and mobile fluidinterface layers. Heating flux was1200W/m in20m length wellhole. And the pressure of thewell was set in0.2P0,0.5P0,0.8P0three levels. Simulation result shows that the productiondata under condition of0.2P0was the most favorable. The gas release rate was1.5m/s within500days production. Gas collection rate in the well was0.25m/s in average. Cumulativewater was1.1×10~9kg. Gas to water volume ratio was about6and gas collection to release ratewas0.15in average. Base on the production data of Class2hydrate reservoirs, heatingcontribution to hydrate dissociation and EER were calculated. Thermal dissociated8.5%ofthe hydrates, and the EER were about5.1. From the data above, it was indicated that Class2hydrate production in industry level was negative. However, the gas to water volume ratio andthe gas collecting rate were increasing, which indicated that the Class2hydrate production situation would be better for the later production stage.
     For Class3hydrate reservoirs, the horizontal well, depressurization and thermalco-stimulation method would be used for their low permeability. The production parametersof well pressure and temperature were set in0.2P0&42℃,0.5P0&42℃0.8P0&42℃threelevel according to oil production engineering. Simulation results of Class3hydrate reservoirswere very exciting. From3D simulation, gas release rate was4-5m~3/s in average in450daysand the cumulative gas was1.6×10~8m~3,approximately350,000m~3/d. this gas release rate cansatify the gas commercial production requirement.2D simulation of Class3hydratesdissociation showed that under production condition of0.2P0&42℃,all the hydrates weredissociated. The cumulative gas was6.8×10~5m~3and3.5×10~5m~3were collected. Whichindicated that gas collected to released rate was about0.5. The cumulative water in the wellwas1.1×10~6kg,and gas to water volume ratio were increasing, at the end, reaching to304.Based on the simulation data of Class3hydrate dissociation, the heating contribution tohydrate dissociation and EER were calculated. The results show that heating contribution tohydrate dissociation was5.28%, and EER were188. Equation Section (Next)
     Equation Section (Next)
引文
[1]陈庆修.中国能源战略大视野[J].决策管理,2008,(10):18-20
    [2]罗斐,罗婉婉.中国能源消费结构优化的问题与对策[J].经济管理,2010,36(7):21-25
    [3]http://www.gx.xinhuanet.com/newscenter/2012-10/23/c_113460765.htm
    [4]王立敏.全球能源市场在经济衰退与复苏中加速结构性调整《BP世界能源统计2010》解析[J].国际石油经济,2010:27-36
    [5]http://www.geoexpro.com/article/Gas_HydratesNot_So_Unconventional/b9d997f9.aspx.
    [6]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,(06):953-961
    [7] MH21. Gas Production from Methane Hydrate LayersConfirmed,http://www.jogmec.go.jp/english/news/release/release0110.html.
    [8] http://www.jogmec.go.jp/english/news/release/release0`1`10.html.
    [9] Kawamoto, T. The First Offshore MH Production Test[R]. JOGMEC,2013
    [10] Sloan E.D., Carolyn A.K. Clathrate hydrates of natural gases[M]. HEINZ HEINEMANNBerkeley,California: CRC Press,2008:
    [11] Hammerschmidt. Formation of gas hydrate in natural gas transmission lines[J].Eng.Chem,1934,26(8):851-855
    [12]颜克凤,李小森,孙丽华,等.储氢笼型水合物生成促进机理的分子动力学模拟研究[J].物理学报,2011,(12):645-652
    [13]黄犊子,樊栓狮,梁德青,等.水合物合成及导热系数测定[J].地球物理学报,2005,(05):1125-1131
    [14]樊栓狮.天然气水合物储存与运输技术[M].北京:化学工业出版社,2005;
    [15]Dharma-wardana. Thermal conductivity of the ice polymorphs and the ice clathrates[J].Phys Chem Chem Phys,1983,87(21):4185-4190.
    [16]milkov, a. v. Gas hydrate stability in the Gulf of Mexico Significance to resourceestimation,geoharzard and gloable challage.2001
    [17]杨波.沉积物中天然气水合物开采的实验与树脂模拟研究[D].广州:中国科学院研究生院中国科学院广州能源研究所,2012
    [18]宋永臣,杨明军,刘瑜,等.离子对甲烷水合物相平衡的影响[J].化工学报,2009,(06):1362-1366
    [19] He, Y., Rudolph, E. S. J., Zitha, P. L. J., et al. Kinetics of CO2and methane hydrateformation: An experimental analysis in the bulk phase[J]. Fuel,2011,90(1):272-279
    [20] Jerbi, S., Delahaye, A., Fournaison, L., et al. Characterization of CO2hydrate formationand dissociation kinetics in a flow loop[J]. International Journal of Refrigeration,2010,33(8):1625-1631
    [21] Falenty, A., Kuhs, W. F.“Self-Preservation” of CO2Gas Hydrates—SurfaceMicrostructure and Ice Perfection[J]. The Journal of Physical Chemistry B,2009,113(49):15975-15988
    [22] Kvenvolden, K. A. Methane hydrate—A major reservoir of carbon in the shallowgeosphere?[J]. Chemical Geology,1988,71(1–3):41-51
    [23] Kvenvolden, K. A., Rogers, B. W. Gaia's breath—global methane exhalations[J]. Marineand Petroleum Geology,2005,22(4):579-590
    [24]http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_06553HydrateProdTrial.html.
    [25]http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/rd-program/ToughFX/ToughFx.html.
    [26] Moridis, G. J., Reagan, M. I., Kim, S.J., et al. Evaluation of the Gas Production Potentialof Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal,2009,14(4):759-781
    [27] Makogon, Y. F. Natural gas hydrates–A promising source of energy[J]. Journal ofNatural Gas Science and Engineering,2010,2(1):49-59
    [28] Makogon, Y. F., Holditch, S. A., Makogon, T. Y. Natural gas-hydrates—A potentialenergy source for the21st Century[J]. Journal of Petroleum Science and Engineering,2007,56(1-3):14-31
    [29] Makogon, Y. F. hydrate of nature gas[M]. ENCYCLOPEDIA OF LIFE SUPPORTSYSTEMS(EOLSSS), http://www.eolss.net/sample-chapters/c08/e6-193-25.pdf
    [30]袁咏梅.天然气水合物调查和研究现状[J].科技信息(学术版),2006,(04):370-371
    [31]王秀娟,吴时国,王大伟,等.琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用[J].石油地球物理勘探,2010,(01):122-128
    [32]樊栓狮,刘锋,陈多福.海洋天然气水合物的形成机理探讨[J].天然气地球科学,2004,(05):524-530
    [33] Moridis, G. J., Kowalsky, M. B., Pruess, K. HydrateResSim User'S Manual: ANumerical Simulator For Modeling The Behavior Of Hydrates In Geologic Media; EarthSciences Division Lawrence Berkeley National Laboratory: Berkeley,CA94720.2005;
    [34]Ohgaki K., Takano K., Sangawa H. Methane exploitation by carbon dioxide from gashydrates-phase equilibria for CO2-CH4mixed hydrate system[J]. Chem. Eng. Japan,1996,29(3):478-483
    [35]李栋梁,樊栓狮.微波作用下天然气水合物分解的研究及应用[J].化工进展,2003,(03):280-282
    [36] Li, D.L., Liang, D. Q., Fan, S.S., et al. In situ hydrate dissociation using microwaveheating: Preliminary study[J]. Energy Conversion and Management,2008,49(8):2207-2213
    [37] Li, X.S., Li, G., Yang, B., et al. Experimental Study on Gas Production from MethaneHydrate in Porous Media by Huff and Puff Method in Pilot-Scale Hydrate SimulatorDissociation[C]. The7th International Conference on Gas Hydrates (ICGH2011).2011,Edinburgh, Scotland, United Kingdom
    [38]Phirani, J., Mohanty, K. K. Warm water flooding of confined gas hydrate reservoirs[J].Chemical Engineering Science,2009,64(10):2361-2369
    [39]Nihous, G. C., Kuroda, K., Lobos-González, J. R., et al. An analysis of gas hydratedissociation in the presence of thermodynamic inhibitors[J]. Chemical Engineering Science,2010,65(5):1748-1761
    [40]Yang, H., Bai, Y. H., Li, Q. P. The simulation of gas production from oceanic gas hydratereservoir by the combination of ocean surface warm water flooding with depressurization[J].Acta Mechanica Sinica, Oct,2012,28(5):1287-1295
    [41]董福海,臧小亚,李栋梁,等.乙二醇溶液作用下丙烷水合物分解实验研究[J].西南石油大学自然科学版,2009,31(3):121-125
    [42]李淑霞,张孟琴,李杰.不同水合物饱和度下注热水开采实验研究[J].实验力学,2012,(04):448-453
    [43]李淑霞,王炜,陈月明,等.多孔介质中天然气水合物注热开采影响因素实验研究[J].海洋地质前沿,2011,(06):49-54
    [44]李淑霞,郝永卯,陈月明.多孔介质中天然气水合物注热盐水分解实验研究[J].太原理工大学学报,2010,(05):680-684
    [45] Yuan, Q., Sun, C.Y., Liu, B., et al. Methane recovery from natural gas hydrate in poroussediment using pressurized liquid CO2[J]. Energy Conversion and Management,2013,67(0):257-264
    [46] Geng, C.Y., Wen, H., Zhou, H. Molecular Simulation of the Potential of MethaneReoccupation during the Replacement of Methane Hydrate by CO2[J]. The Journal ofPhysical Chemistry A,2009,113(18):5463-5469
    [47]Schoderbek, D., Farrell, H.,Hester, K., et al. ConocoPhillips Gas Hydrate Production TestFinal Technical Report [R]. United States Department of Energy National EnergyTechnology Laboratory,2013
    [48] Moridis, G. J., Kowalsky, M. Depressurization induced gas production from Class1andClass2hydrate deposits[C]. In Lawrence Berkeley National Laboratory, TOUGH Symposium,Berkeley, California,2006;1-7
    [49]Alp, D., Parlaktuna, M., Moridis, G. J. Gas production by depressurization fromhypothetical Class1G and Class1W hydrate reservoirs[J]. Energy Conversion andManagement,2007,48(6):1864-1879
    [50]Moridis, G. J., Kowalsky, M. B., Preuss, K. Depressurization-induced gas productionfrom class1hydrate deposits[J]. SPE Reservoir Evaluationand Engineering,2007,10(5):458-480
    [51]Moridis, G. J., Reagan, M. T. Estimating the upper limit of gas production from Class2hydrate accumulations in the permafrost: Alternative well designs and sensitivity analysis[J].Journal of Petroleum Science and Engineering,2011,76(3-4):124-137
    [52]Moridis, G. J., Reagan, M. T. Estimating the upper limit of gas production from Class2hydrate accumulations in the permafrost: Concepts, system description, and the productionbase case[J]. Journal of Petroleum Science and Engineering,2011,76(3-4):194-204
    [53]Moridis, G. J., Reagan, M. T. Strategies for Gas Production from Oceanic Class3Hydrate Accumulations[C]. In The Offshore Technology Conference, Houston, Texas,2007;
    [54]Moridis G.J. Numerical studies of gas production from class2and class3hydrateaccumulations at the mallik site, mackenzie delta, canada[J]. SPE Reservoir Evaluation&Engineering,2004,7(3):175-183
    [55] Kurihara, M., Ouchi, H., Narita, H., et al. Gas production from methene hydratereservoirs [C]. The7th International Conference on Gas Hydrates (ICGH2011).2011,Edinburgh, Scotland, United Kingdom
    [56]Boswell, R. The Gas Hydrates Resource Pyramid. In Fire in the ice,2006; Vol.6,1-17
    [57]Moridis, G. J., Sloan, E. D. Gas production potential of disperse low-saturation hydrateaccumulations in oceanic sediments[J]. Energy Conversion and Management,2007,48(6):1834-1849
    [58]Moridis, G. J., Collett, T. S., Dallimore, S. R., et al. Numerical studies of gas productionfrom several CH4hydrate zones at the Mallik site, Mackenzie Delta, Canada[J]. Journal ofPetroleum Science and Engineering,2004,43(3-4):219-238
    [59] Bai, Y.H., Li, Q.P., Li, X.S., et al. Numerical simulation on gas production from a hydratereservoir underlain by a free gas zone[J]. Chinese Science Bulletin, Mar,2009,54(5):865-872
    [60] Bai, Y. H., Li,Q.P. Simulation of gas production from hydrate reservoir by thecombination of warm water flooding and depressurization[J]. China-Technol.2010,53(9):2469-2476
    [61]Li, G.,Li, X.-S.,Zhang, K., et al. Numerical simulation of gas production from hydrateaccumulations using a single horizontal well in Shenhu Area, South China Sea[J]. ChineseJournal of Geophysics-Chinese Edition, Sep,2011,54(9):2325-2337
    [62] Li G., Moridis G.J., Zhang K., et al. Evaluation of gas production potential from marinegas hydrate deposits in shenhu area of south china sea[J]. Energy&Fuels,2010,24(11):6018-6033
    [63]李刚,李小森,陈琦,等.南海神狐海域天然气水合物开采数值模拟[J].化学学报,2010,(11):1083-1092
    [64]Su, Z., Cao, Y.C.,Wu, N.Y., et al. Numerical Analysis on Gas Production Efficiency fromHydrate Deposits by Thermal Stimulation: Application to the Shenhu Area, South ChinaSea[J]. Energies,2011,4(2):294-313
    [65]李淑霞,陈月明,张卫卫,等.多孔介质中天然气水合物注热+降压开采的实验研究[J].实验力学,2011,(02):202-208
    [66]Li, X. S., Li, G. Experimental Investigations into the Production Behavior of MethaneHydrate in Porous Sediment under Ethylene Glycol Injection and Hot Brine Stimulation
    [67]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2008
    [68] Grover, T., Moridis, G., Holditch, S. A. Analysis of reservoir performance ofMessoyakha Gas hydrate Field[J]. SPE,2008,
    [69] Kurihara, M., Funatsu, K., Ouchi, H., et al. Analysis Of2007/2008Jogmec/Nrcan/AuroraMallik Gas Hydrate Production Test Through Numerical Simulation[C]. The7th InternationalConference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [70]Kurihara, M., Sato, A., Funatsu, K., et al. Analysis of formation pressure test results in theMount Elbert methane hydrate reservoir through numerical simulation[J]. Marine andPetroleum Geology,2011,28(2):502-516
    [71]栾锡武,赵克斌,孙冬胜.天然气水合物的开采以马利克钻井为例[J].地球物理学进展,2007,22(4):1295-1304
    [72] Masuda, Y., Hideyuki, M., Naganawa, S., et al., Methane Recovery FromHydrate-Bearing Sediments By N2-CO2Gas Mixture Injection: Experimental InvestigationOn Co2-Ch4Exchange Ratio[C]. The7th International Conference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [73]Yousif, M. H., Abass, H. H., Selim, M. S., et al. Experimental and TheoreticalInvestigation of Methane-Gas-Hydrate Dissociation in Porous Media [J]. SPE ReservoirEngineering,1991,6(1):69-76
    [74]Eaton, M. W., Jones, K. W., Mahajan, D. Mimicking natural systems: methane hydrateformation-decomposition in depleted sediments[J]. Geological Society, London, SpecialPublications,2009,319(1):121-130
    [75]Phelps, T. J., Peters, D. J., Marshall, S. L., et al. A new experimental facility forinvestigating the formation and properties of gas hydrates under simulated seafloorconditions[J]. Review of Scientific Instruments,2001,72(2):1514-1521
    [76]Rempel, A. W., Buffett, B. A. Formation and accumulation of gas hydrate in porousmedia[J]. Journal of Geophysical Research: Solid Earth,1997,102(B5):10151-10164
    [77]Taylor, C. large-volume, hight-pruessue view cell helps fill gaps in understanding ofmathine hydrate behavior[N]. Fire in the ice methane hydrate newsletter,2005,10-12
    [78] Winters, W.J., Waite, W. F., Mason, D. H. physical properties of repressurized samplesrecovered during the2006national gas hydrate program experiment expedition off shore india.In the6th international conference on gas hydrate (ICGH2008), Vancouver, BritishColumbia,2008
    [79]Zhou, Y., Castaldi, M. J., Yegulalp, T. M. Experimental Investigation of Methane GasProduction from Methane Hydrate[J]. Industrial&Engineering Chemistry Research,2009,48(6):3142-3149
    [80]杜燕.多孔介质中天然气水合物二维开采实验模拟研究[D].广州:中国科学院研究生院中国科学院广州能源研究所,2008
    [81] Li, S.X., Chen, Y.M., Hao, Y.M. Experimental Study Of Influence Factors Of Hot-BrineStimulation For Dissociation Of NGH In Porous Medium[C]. The7th InternationalConference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [82]张卫卫,李淑霞.平板填砂模型中天然气水合物注热与降压连续开采的实验研究[J].海洋地质前沿,2012,(03):66-70
    [83]李淑霞,陈月明,王瑞和,等.初始压力对多孔介质中气体水合物生成的影响[J].实验力学,2009,(04):313-319
    [84]李淑霞,夏唏冉,郝永卯,等.电阻率测试技术在沉积物-盐水-甲烷水合物体系中的应用[J].实验力学,2010,(01):95-99
    [85] Yuan, Q., Sun, C.Y., Yang, X.,et al. Gas Production from Methane-Hydrate-BearingSands by Ethylene Glycol Injection Using a Three-Dimensional Reactor[J]. Energy&Fuels,2011,25(7):3108-3115
    [86] Yang, X., Sun, C.Y., Su, K.H., et al. A three-dimensional study on the formation anddissociation of methane hydrate in porous sediment by depressurization[J]. EnergyConversion and Management,2012,56(0):1-7
    [87]陈强.海洋天然气水合物动力学模拟实验研究[D].青岛,中国海洋大学,2006
    [88]陈强,业渝光,刘昌岭,等.多孔介质中甲烷水合物相变过程模拟实验研究[J].现代地质,2010,(05):972-978
    [89]陈强,业渝光,孟庆国,等.甲烷水合物分解过程模拟实验研究[J].现代地质,2008,(03):475-479
    [90] Li, Y., Song, Y.C., Liu, W.G.,. et al. Experimental Research on the Mechanical Propertiesof Methane Hydrate-Ice Mixtures[J]. Energies.2012,5(2)181-192.
    [91] Zhao J.F., R, X. K., Song, Y. C., et al. A review on research on replacement of CH4innatural gas hydrates by use of co2[J]. Energies,2012,5(2):399-419
    [92]祁影霞,喻志广,闫辉,等. CO2置换甲烷水合物热力学影响因素实验研究[J].石油与天然气工业,2012,41(3):285-288
    [93] Japan’s Methane Hydrate R&D Program-Phase1Comprehensive Report of ResearchResults[R]. Research Consortium for Methane Hydrate Resources in Japan,2008
    [94] Yoshihiro, K., Hiroyuki, O., Takashi, U et al. Dissociation Behavior Of Methane HydrateIn Sandy Cores Below The Quadruple Point[C]. The7th International Conference on GasHydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [95] Yoshihiro, K., Hiroyuki, O., Takashi, U et al. Dissociation Behavior Of MethaneHydrate In Sandy Cores Below The Quadruple Point[C]. The7th International Conference onGas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [96]Mikami, Y.,Kunieda, M.,Liang, Y., et al. Structual Origin Of Methane Recovery FromGas Hydrate By CO2[C]. The7th International Conference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [97] Jin, Y., Nagao, J. Observation Of Formation And Dissociation Behavior Of ClathrateHydrate Below Freezing Point Of Water By Using An Optical Scanning Microscopy[C]. The7th International Conference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland,United Kingdom
    [98] Masato, K., Yusuke, J., Jiro, N., et al. Observation Of Dissociation Process OfMethane-Ethane Mixed Gas Hydrates Using Powder X-Ray Diffraction And13c NMRTechniques[C]. The7th International Conference on Gas Hydrates (ICGH2011).2011,Edinburgh, Scotland, United Kingdom
    [99] Takeya, S. Dissociation Of Clathrate Hydrates Below The Ice Point[C]. The7thInternational Conference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, UnitedKingdom
    [100] Tanaka, s., Nakai, Y., Shimada, K., et al. Heat Transfer Analysis Of Re-Gasification OfPacked Bed Of Hydrates[C]. The7th International Conference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [101] Lee, J., Park, S., Sung, W. An experimental study on the productivity of dissociated gasfrom gas hydrate by depressurization scheme[J]. Energy Conversion and Management,2010,51(12):2510-2515
    [102] Sung, W. R., Kang, H. Experimental Investigation of Production Behaviors ofMethane Hydrate Saturated in Porous Rock [J]. Energy sources,2003,25(8):845-856
    [103]Kim, H. C. A kinetic study of methane hydrate decomposition[D]. Alberta: TheUnviersity Of Calgary,1985
    [104] Ai-Otaibi, F. D. Determination of the intrinsic kinetics of decomposition of hydrates[D].Alberta: The Unviersity Of Calgary,2006
    [105] Makogon, I. Hydrates of natural gas[M]. Tulsa, Okla: PennWell Books,1981;
    [106] Selim M.S., Sloan, E.D. Modelling and Dissociation of an In-Situ Hydrates[C]. SPECalifornia Regional Meeting, Bakersfield,CA,27-29
    [107] Verigin, N. N., Khabibullin, I. L., Khalikov, G. A. Linear problem of the dissociation ofthe hydrates of a gas in a porous medium[J]. Fluid Dyn,1980,15(1):144-147
    [108] Burshears, M. O., Brien, T. J., Malone, R. D. A multi-phase multi-dimensionalvariable composition simulation of gas production from a conventional gasreservoir in contact with hydrates[C]. SPE Unconventional Gas TechnologySymposium, Louisville, KY,1986;18-21
    [109] Ji, C., Ahmadi, G., Smith, D. H. Natural gas production from hydrate decomposition bydepressurization[J]. Chemical Engineering Science,2001,56(20):5801-5814
    [110] Goel, N. M., Wiggins, S. S. Analytical modeling of gas reeovery from in situ hydratesdissociation[J]..Journal of Petroleum Science and Engineering,2001,29(1):115-127
    [111] Tsypkin, G. G. Mathematical Models of Gas Hydrates Dissociation in Porous Media[J].Annals of the New York Academy of Sciences,2000,912(1):428-436
    [112] Gerami, S. Predictive and production analysis models for the unconventional gasreservoirs[D]. Alberta: The Unviersity Of Calgary,2007
    [113] Holder, G. D., Angert, P. F. Simulation of gas production from a reservoir containingboth gas hydrates and free natural gas[M].1982; Medium: X; Size:1-6
    [114] Moridis, G., Apps, J., Pruess, K., et al. EOSHYDR: A TOUGH2Module forCH4-Hydrate Release and Flow in theSubsurface[M].1998; Medium: ED
    [115] Kurihara, M., Ouchi, H., Sato, A., et al. prediction of performances of methane hydrateproduction test in the eastern nankai trough[C]. The7th International Conference on GasHydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [116] Hong, H. F., Pooladi-Darvish, M. Simulation of depressurization for gas productionfrom gas hydrate reservoirs[J]. Journal of Canadian Petroleum Technology,2005,44(11):39-46
    [117] Hong, H. F. Modeling of gas production from hydrates in porous media[D]. Alberta:The Unviersity Of Calgary,2003
    [118] Swinkels W.J.A.M., Drenth R.J.J. Thermal reservoir simulation model of productionfrom naturally occurring gas hydrate accumulations [J]. SPE Reservoir Eval. Eng,2000,559-566
    [119] Moridis G.J., Kowalsky M.B., Pruess K. TOUGH+HYDRATE v1.1User’s Manual: ACode for the Simulation of System Behavior in Hydrate-Bearing Geologic Media.2009,
    [120] Sun, X., Mohanty, K. K. Kinetic simulation of methane hydrate formation anddissociation in porous media[J]. Chemical Engineering Science,2006,61(11):3476-3495
    [121] Ruan X.K., Lam, W.H., Yang,M.J. et al.Numerical Investigation Of The Gas ProductionBehavior of Natural Gas Hydrates In Porous Sediments[C]. The7th International Conferenceon Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, United Kingdom
    [122] Ruan, X.K., Yang, M.J., Song, Y.C., et al. Numerical studies of hydrate dissociation andgas production behavior in porous media during depressurization process[J]. Journal ofNatural Gas Chemistry,2012,21(4):381-392
    [123] Asakawa, E., Hayashi, T., Okamoto, T., et al. The Methane Hydrate Dissociation At TheOffshore Methane Hydrate Production Tests Using Multicomponent Seismics[C].The7thInternational Conference on Gas Hydrates (ICGH2011).2011, Edinburgh, Scotland, UnitedKingdom
    [124] Zhou, Y. An investigation into gas production from methane hydrate[D]. Columbia:Columbia University,2009
    [125] Kumar, A. Formation and dissociation of gas hydrates in porous media[D]. Alberta:University Of Calgary,2005
    [126] Shahbazi, A. Mathematical Modeling of Gas Production from Gas HydrateReservoirs[D], Alberta: University Of Calgary,2010.
    [127] Patil, S. L. Modeling of depressurization and thermal reservoir simulation[D]. Alaska:University Of Alaska Fairbanks,2007
    [128]汤云浦,李春兰,黄世军.稠油油藏水平井产能预测新模型[J].特种油气藏,2011,(01):87-89
    [129] Feneyrou,G. Elucidation of the formation and decomposition of clathrate hydrates ofnatural gases through gas solubility measurements[D]. Houston,Texas: Rice University,1996
    [130] Kim, H. C., Bishnoi, P. R., Heidemann, R. A., et al. Kinetics of methane hydratedecomposition[J]. Chemical Engineering Science,1987,42(7):1645-1653
    [131] Selim, M. S., Sloan., E. D. Hydrate dissociation in sediment[J]. SPE ReservoirEngineering,1990,5(2):7
    [132] Kamath, V. A. Study Of Heat Transfer Characteristics During Dissociation Of GasHydrates In Porous Media[D]. Pittsburgh: Pittsburgh University,1984
    [133] Lake,L.W. Enhanced Oil Recovery[M]. Upper Saddle River: Prentice--Hall Inc.,1989;
    [134] Sun, X., Nanchary, N., Mohanty, K. K.1-D Modeling of Hydrate Depressurization inPorous Media[J]. Transp Porous Med,2005,58(3):315-338
    [135] Van Genuchten M, T. A closed-form equation for predicting the hydraulic conductivityof unsaturated soils[J]. Soil Science Society of America Journal1980,892-897
    [136] Corey, A. T. The interrelation between gas and oil relative permeability[J].1954:1938-1941
    [137] Parker, J.C., Lenhard, R.J., Kuppusamy, T. A parametric model for constitutiveproperties governing multiphase flow in porous media[J]. Water Resources Research,1987,23(4):618-624
    [138] Masuda, Y., Fujinaga, Y., Naganawa, S., et al. Modeling and experimental studies ondissociation of methane gas hydrates in berea sandstone cores[C]. In In Proceedings of ThirdInternational Conference on Gas Hydrates,1999;
    [139]李红梅.天然气水合物降压开采数值模拟研究[D].大连:大连理工大学,2007
    [140]鲁轩.天然气水合物降压开采数值模拟研究[D].东营:中国石油大学(华东),2009
    [141] Zhang, Y., Li, X. S., Li, G., et al. Experiment Research on Hydrate Dissociation byDepressurization in Three Dimensional Apparatus. In Proceedings of the7th InternationalConference on Gas Hydrates (ICGH2011)[C], Edinburgh, Scotland, United Kingdom,2011;
    [142] Kumar, A., Maini, B., Bishnoi, P. R., et al. Experimental determination ofpermeability in the presence of hydrates and its effect on the dissociation characteristics ofgas hydrates in porous media[J]. Journal of Petroleum Science and Engineering,2010,70(1-2):114-122
    [143] Oyama, H., Konno, Y., Masuda, Y., et al. Dependence of Depressurization-InducedDissociation of Methane Hydrate Bearing Laboratory Cores on Heat Transfer[J]. Energy&Fuels,2009,23(10):4995-5002
    [144] Moridis, G. J., Reagan, M. T. Gas Production from Oceanic Class2HydrateAccumulations[C]. In In The Offshore Technology Conference, Houston, Texas,2007
    [145] Grover, T.,Moridis, G.,Holditch, S. A. Analysis of reservoir performance ofMessoyakha Gas hydrate Field. In Proceedings of the Eighteenth, Chung, J. S., Ed.2008;49-56
    [146] Liu, Y., Gamwo, I. K. Comparison between equilibrium and kinetic models for methanehydrate dissociation[J]. Chemical Engineering Science,2012,69(1):193-200
    [147]http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/rd-program/ToughFX/ToughFx.html.
    [148] Liu, Y., Strumendo, M., Arastoopour, H. Numerical Simulation of Methane Productionfrom a Methane Hydrate Formation[J]. Industrial&Engineering Chemistry Research,2008,47(8):2817-2828
    [149] Michael, J., Economides, A. D. H., Christine E.E., et al. Petroleum Production Systems,2nd. Edition by Michael J. Economides Published Sep25,2012by Prentice Hall.
    [150] Wu, N.Y., Yang, S.X., Zhang, H.Q., et al. Gas gydrate system of Shenhu area, northernSouth China Sea: wire-line logging, geochemical results and preliminary resources estimates.In2010Offshore Technology Conference[C], Houston, Texas, U.S.A.,2010
    [151] Wu, N. Y.,Xiong, Y. S.,Zhang H., et al. Preliminary discussion on gas hydrate reservoirsystem of Shenhu Area, North Slope of South China Sea[C]. In Proceedings of the6thInternational Conference on Gas Hydrates (ICGH2008), Vancouver, British Columbia,CANADA,2008;
    [152] Sasaki, K.,Ono, S.,Sugai, Y., et al. Gas Production System from Methane HydrateLayers Using Horizontal Wells in Radial Arrangement[J]. Canadian International PetroleumConference2009and60th Annual Technical Meeting of the Petroleum Society,01,2009,1263-1263
    [153] Falser, S.,Uchida, S.,Palmer, A. C., etc. Increased Gas Production from Hydrates byCombining Depressurization with Heating of the Wellbore[J]. Energy&Fuels,2012,26(10):6259-6267
    [154]付玉,郭肖,龙华.煤层气储层压裂水平井产能计算[J].西南石油学院学报,2003,(03):44-46
    [155]范子菲.底水驱动油藏水平井产能公式研究[J].石油勘探与开发,1993,(01):71-75
    [156]阴国锋,徐怀民,叶双江,等.水平井注采井网条件下加密水平井产能评价模型[J].中国石油大学学报(自然科学版),2011,(04):93-97
    [157] Li, G., Moridis, G. J., Zhang, K., et al. The use of huff and puff method in a singlehorizontal well in gas production from marine gas hydrate deposits in the Shenhu Area ofSouth China Sea[J]. Journal of Petroleum Science and Engineering,2011,77(1):49-68
    [158]李刚,李小森.单井热吞吐开采南海神狐海域天然气水合物数值模拟[J].化工学报,2011,(02):458-468
    [159]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2009;
    [160]白玉湖,叶长明,李清平,喻西崇.天然气水合物开采模型研究进展与展望[J].中国海上油气,2009,21(4):251-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700