用户名: 密码: 验证码:
复合拱圈加固圬工拱桥模型试验及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圬工拱桥采用复合拱圈加固后,能够提高加固结构的整体性、耐久性、强度、刚度和承载力,同时,这种加固方法因其施工方便、造价低廉等优点,在我国应用前景广阔。但是,就圬工拱桥加固理论而言,国内外就此开展的理论研究很少。因此研究复合拱圈加固圬工拱桥的加固技术,具有十分重要的理论意义和实际工程应用价值。
     本文以某实施复合拱圈技术加固的圬工拱桥为工程背景,采用理论分析、数值模拟及模型试验相结合的方法,研究了加固后的拱段。针对加固拱段的受力特点,系统研究了理论分析方法、承载能力、破坏形态、应力-应变曲线、复合拱圈统一偏心受压本构关系和加固后正截面极限承载力计算方法。最后,将所研究的主要内容应用于复合拱圈加固石拱桥的设计示例中,促进了研究成果在工程实践中的应用。主要研究成果如下:
     1、设计制作了9个典型的加固柱和2个未加固的对比柱,并进行阶段试验设计。制定完整试验计划,明确测试内容和试验目的,确定受压破坏的静力试验加载方案。上述工作是加固试验完成的前提条件,直接关系到整个试验的成败,为复合拱圈加固圬工拱桥提供分析基础和计算依据。
     2、在试验室2000kN千斤顶上进行了11个模型的试验,加载过程中,观察各试件的破坏过程,采集了各试件的承载力、荷载-应变曲线。对影响试件极限承载力的各种因素,包括受压区高度、原拱圈裂缝高度、加固层宽度和初应力一一作了分析。发现各试件在测试截面处的荷载-应变曲线的整体测试值与局部测试值基本接近,验证了试验数据的准确性。通过对试验数据分析,加载初期时砌体和混凝土复合拱圈截面应变分布情况不满足平截面假定,随着荷载的不断增大,复合拱圈截面应力重分布,砌体和混凝土层协调变形、共同受力,加载至0.9Pu时截面应变分布仍近似满足平截面假定。因此可近似认为复合拱圈截面的变形满足平截面假定。
     3、根据复合拱圈满足平截面假定的条件,基于4种常用的不同混凝土本构关系和1种常用的砌体本构关系,分别推导了4种复合材料的本构关系。将这4种复合材料本构关系应用于试件的有限元仿真模型中,比较有限元数值和实测数值,结果表明,采用混凝土Rüsch二次抛物线加水平直线模式推导出的复合材料本构关系的极限承载力有限元数值接近实测数值。以该复合材料本构关系模型为研究对象,分析应力-应变云图:发现理论破坏过程与实际破坏过程相近;对比理论荷载-应变数值和曲线与实际荷载-应变数值和曲线的,可以看出,砌体和混凝土偏压构件的荷载-应变曲线理论值和实际值能较好地吻合。说明混凝土采用Rüsch二次抛物线加水平直线模式推导出的复合材料本构关系还是比较符合实际情况的。从而,为复合拱圈加固圬工拱桥数值分析提供了准确的简化方法。
     4、考虑加固前原拱圈的初应力,砌体、混凝土和钢筋的本构关系,针对加固前圬工主拱圈是否出现横向裂缝,以混凝土肋式截面加固圬工拱桥为例,推导了复合拱圈加固圬工拱桥的正截面极限承载力计算公式。采用适于工程师使用的mapple软件,可以快速计算所求截面极限承载力。算例表明,公式计算值与试验实测值相比,误差在9%以内,为该推导公式在工程实际应用中提供可靠的理论支撑,说明本文所推导的公式还是比较符合工程实际应用。因为推导的公式对于大、小偏心受压构件均适合,所以该公式具有较高的适用性。
     5、基于平截面假定,复合材料本构关系和推导的复合拱圈加固圬工拱桥极限承载力公式,详细提出从截面设计到截面复核的加固设计流程。通过一个较为全面的复合拱圈加固圬工拱桥的设计示例,证明了本文推导的复合材料本构关系和极限承载力计算公式可以安全可靠的应用于复合拱圈加固圬工拱桥的正截面极限承载力计算中,把理论分析和工程实践完整的结合起来,促进了研究成果更好的推广应用于工程实践。
     综上所述,文中具有的创新点为:
     1、基于试验数据分析,验证了加固截面加载至破坏的平截面假定。加载初期由于砌体和混凝土的变形不同步,所以截面应变分布情况并不满足平截面假定。随着加载的不断增大,组合截面应力重分布,砌体和混凝土层协调变形、共同受力,加载至0.9Pu时截面应变分布近似满足平截面假定,因此可近似认为复合截面的变形满足平截面假定。
     2、根据复合拱圈满足平截面的假定条件,基于4种常用的不同混凝土本构关系和1种常用的砌体本构关系,分别推导了4种复合材料的本构关系。将这4种复合材料本构关系应用于试件的有限元仿真模型中,通过有限元数值与相应的模型试验实测数值的对比,分析得出混凝土采用Rüsch二次抛物线加水平直线模式的复合材料本构关系计算的承载力与实际试验值接近。将该复合材料的本构关系应用于工程实例的有限元分析中,在精简有限元模型和简化计算工作量同时,仍能准确地计算极限承载力。
     3、基于加固结构初应力和加固材料非线性,针对加固前圬工主拱圈是否出现横向裂缝,推导出的正截面极限承载力公式,并用试验进行验证。结果表明,公式计算值与试验实测值误差在9%以内,可以准确快速计算各截面极限承载力。再将该极限承载力公式应用于工程实例中,公式计算值与有限元计算值相近,说明推导公式能安全可靠应用于工程实践中。
Masonry arch bridge reinforced by composite arch circle can increase the integrity,durability, strength, stiffness and bearing capacity of the reinforcment structure, meanwhile,this reinforcement method has the advantage of convenient construction and low cost, so ithas a broad application prospect in our country. However, for reinforcement theory of amasonry arch bridge, its theoretical study is seldom carried out so far both at home and abroad.So the study on this reinforcement technology as for masonry arch bridge is ofgreat theoretical significance and engineering applications’value.
     In the engineering background of a some masonry arch bridge reinforced by compositearch circle method, this paper gives a research on reinforced arch segment by combination oftheoretical analysis, numerical simulation and model test. According to the stresscharacteristics of a reinforced arch segment, the research is carried out for the theoreticalanalysis method, bearing capacity, failure mode, stress-strain curve, eccentric compressionconstitutive relation of composite arch circle and the formulas of reinforcement normalsection bearing capacity. Finally, main contents in our study are applied to a design exampleof masonry arch bridge reinforced by composite arch circle, which promotes the applicationof research results to engineering practice. The principal results are as follows:
     1. Nine typical reinforced columns and two columns without reinforcement have beendesigned, produced and carried out periodical experimental design. The complete test plan hasbeen made, the test content and test purpose has been definited, and the static test loadingscheme of uniaxial compressive failure has been determined. The above work is theprecondition of fulfilment of strengthening test, which is directly related to the success orfailure of whole experiment, and provides the analysis foundation and calculation for masonryarch bridge reinforced by composite arch circle.
     2. Eleven speciments has been tested by2000kN jack in the testing laboratory. Duringthe test, the failure process of specimens were observed, the bearing capacity and load-straincurves of these were collected. The analysis of various factors which have influence onultimate bearing capacity of specimens has been carried out, such as the depth of compression,the fracture height of original arch ring, the width of reinforcing layer and the initial stress. It has been found that the whole test values of the load-strain curves are almost close to thepartial test values at the test section of each specimens, thus the accuracy of experimental datais verified. According to measurement data, the analysis shows that the section’s straindistribution of masonry and concrete is failed to meet plane section assumption at an initialstages of loading. Along with increase of loading, the composite section stress will beredistributed, the masonry and concrete will be coordination deformed and costressing. Whenloading is up to0.9Pu, the strain distribution of section will be approximately to meet planesection assumption. Therefore, the deformation of a composite section is able to approximatlymeet plane section assumption.
     3. According to assumed conditions that a composite arch circle meets the plane sectionassumption, four kinds of the composite material constitutive relations are deducedrespectively by four different kinds of concrete’s constitutive relation and one kind ofmasonry’s constitutive relation. The four kinds of the composite material constitutive relationsare used for finite element simulation model of specimens, the finite element numerical andthe measured value are compaMPared, the result shows that the finite element numerical ofultimate bearing capacity is close to the measured value by using the composites materialconstitutive relations of the concrete Rüsch model of quadratic parabola plus horizontal line.The distribution of stress and strain are analyzed by taking that the composite materialconstitutive relations as a research object, it is found that theoretical failure process is close tothe practical failure process, numerical and curves of theoretical load-strain is derived, incompaMParison with numerical vale and curves of practical load-strain, we can see thattheoretical value by load-strain curves of masonry and concrete under eccentric compressionLoading agree with practical value. It shows that the composite material constitutive relationsof the concrete Rüsch model of quadratic parabola plus horizontal line is compaMParativelycomformable to actual conditions, thus providing a simplified way to numerical analysis ofmasonry arch bridge reinforced by composite arch circle.
     4. In considerations of the initial stress of unreinforced original arch ring and theconstitutive relations between masonry, concrete and steel, according to judgement whetherthe masonry arch bridge has horizontal crack or not, the formulas of normal section flexuralload-bearing capacity of masonry arch bridge reinforced by composite arch circle are deduced with a masonry arched bridge reinforced ribbed section as example. The bearingcapacity of every section can be calculated fastly by means of a mapple software which iseasy to be adopted by engineers. A numerical example shows that an error between calculatedvalues by fomula measured values by test is within9%. This provides a theoretical support forpractical engineering application of that derivation formulas, and shows that the derivationformulas are coMParatively comformable to practical engineering application. The derivationformulas are suitable to big and small excursion compressive members, so that these formulasare of high suitability.
     5. This paper in detail puts forward a reinforcement design process from section designto section check on the basis of a plane section assumption, composite material constitutiverelation and formulas of normal section flexural load-bearing capacity of masonry arch bridgereinforced by composite arch circle. It is proved that the deductive composite materialconstitutive relation and formulas of normal section flexural load-bearing capacity in thepaper can be safely applied to the calculation of normal section flexural load-bearing capacityof a masonry arch bridge reinforced by composite arch circle through a complete designexample of masonry arch bridge reinforced by composite arch circle. The combination oftheoretical analysis with project practice can help the promotion of the result to theengineering project.
     In a word, three innovative points of this paper are summed up:
     1. Plane section assumption of reinforced section from loading to failure is certified onthe basis of analysis of experimental data. Section’s strain distribution isn’t able to meet planesection assumption in initial stages of loading due to deformation asynchrony of masonry andconcrete. Along with the increase of loading, the composite section stress will be redistributed,masonry and concrete will be coordinately deformed and costressing. While loading is up to0.9Pu, the strain distribution of section is able to approximatly meet plane section assumption.Therefore, it can be seen that the deformation of composite section is able to approximatlymeet the plane section assumption.
     2. According to the assumed conditions that a composite arch circle meet the planesection assumption, four kinds of the composites material constitutive relations are deducedrespectively by four different kinds of concrete’s constitutive relation and one kind of masonry’s constitutive relation. When the four kinds of the composites material constitutiverelations are used for finite element simulation model of specimens, and the finite elementnumerical value is compared with the measured value, the result shows that the finite elementnumerical of ultimate bearing capacity is close to the measured value by using the compositesmaterial constitutive relations of the concrete Rüsch model of quadratic parabola plushorizontal line. If this composite material constitutive relation is applied to finite elementanalysis on engineering example, ultimate bearing capacity can be accurately calculatedconsidering both simplify finite element model and calculation work.
     3. In combination of the initial stress of reinforcement structure with the reinforcedmaterials nonlinear, and based on an judgement whether the masonry arch bridge withoutreinforcement has horizontal crack or not, the formulas of normal section flexuralload-bearing capacity are deduced and verified by test. The result shows that an error betweencalculated values by fomula and measured values is within9%, load-bearing capacity of everysection is accurate and can be rapid calculated. When the formulas of normal section flexuralload-bearing capacity are applied to engineering example, finite element calculation is thesame as that of formulas, the result shows that derivation formulas is coMParativelycomformable to practical engineering application.
引文
[1]周建庭,刘思孟,李跃军.石拱桥加固改造技术[M].北京:人民交通出版社,2008:1-3
    [2]蒙云,卢波.桥梁加固与改造[M].北京:人民交通出版社,2004:1-2
    [3]杨文渊,徐犇.桥梁维修与加固[M].北京:人民交通出版社,1989:2-4
    [4] Zhao Zhi Meng.Analysis and evaluation on strengthening and widening of acatenary stone arch bridge with solid spandrels [A].20132nd Global Conference on Civil,Structural and Environmental Engineering,GCCSEE2013[C].Shenzhen,China,TransTechPublications Ltd,2014:1042-1047
    [5] Dubey, R.S.Rebuilding of stone arch bridge by constructing a reinforced cementconcrete curved box for south western railway[J].Indian Concrete Journal,2011,85(6):56-60
    [6]林立成,林晓芳.浅谈石拱桥加固的方法和体会[J].交通科技,2008,(227):42-44
    [7]张开鹏,蒋玉龙,曾雪芳.桥梁加固的发展和展望[J].公路,2005,8:299-301
    [8]王岗,余绍宾.圬工拱桥设计及施工[J].工业建筑,2012,42:759-763
    [9]范立础主编.桥梁工程[M].北京:人民交通出版社,2005,1-234
    [10]蔡斌.服役石拱桥加固技术研究[D].长沙:中南工业大学,2009
    [11] Rong,Alex.Structural Analysis of an Ancient Arch Bridge Using modernTechnology[A].Proceedings of the2004Structures Congress-Building on the Past: Securingthe FutureStructures[C].Nashville,TN,United states,American Society of Civil Engineers,2004:303-310
    [12]王本毅,赵宁.公路危旧石拱桥的加固利用[J].山东交通科技,2013,3:53-57
    [13]欧智菁,陈宝春.国际铁路联盟项目铁路石拱桥的评估检查和维护[J].世界桥梁,2008,3:52-57
    [14] Oliveira, D.V,Louren o, P.B.Repair of a historical stone masonry arch bridge
    [A].3rd International Conference on Bridge Maintenance, Safety and Management-BridgeMaintenance,Safety,Management,Life-Cycle Performance and Cost [C].Nashville,TPorto,Portugal,Taylor and Francis/Balkema,2006:1059-1060
    [15]王葆茜,王冲.公路拱桥常见病害与加固技术应用[J].道路工程,2013,4:25-27
    [16]刘克礼,黄凤姣,张丽新.砖石石拱桥常见病害及处治技术[J].交通标准化,2008,6:153-155
    [17]邢明峰.石拱桥病害调查与加固方案设计[J].养护工程,2010,1:38-42
    [18] Drosopoulosa G A,Stavroulakis G E,Massalas C V.Limit analysis of a single spanMasonry bridge with unilateral frictional contact interfaces [J].Engineering Structures,2006,28(13):1864-1873
    [19]赵清华.石拱桥上部结构加固技术研究[J].公路工程,2009,34(4):42-48
    [20]周东兴.省道漳下线新罗大吉石拱桥加固方法[J].交通科技,2009,4:52-54
    [21]卢玉华,王月刚,王松根等.内套拱圈加固法在石拱桥加固中的应用研究[J].山东科技大学学报(自然科学版),2008,27(1):44-51
    [22]王远洋.套拱法加固大跨径空腹式石拱桥设计分析[J].养护工程,2012,7:44-47
    [23]全恩懋.石拱桥加固中植筋技术设计方法的讨论[J].桥梁隧道,2007,4:112-113
    [24]全恩懋,周长晓,王云莉.植筋技术在石拱桥加固设计中的应用探讨[J].公路交通技术,2008,1:97-100
    [25]李金棉.钢套拱加固石拱桥受力分析[J].养护工程,2012,8:118-120
    [26]祝小龙,赵春华.加固减载法在石拱桥加固处治中的应用[J].中外公路,2010,30(3):194-197
    [27]姜慷康.钢筋混凝土套箍加固石拱桥受力性能研究[D].西南交通大学硕士学位论文,2009
    [28] Garmendia, L,San-José,J.T,García,D.Rehabilitation of masonry arches withcoMPatible advanced composite material[J].Construction and Building Materials,2011,25(12):4374-4385
    [29]杨云安,曾革助,傅家林.预应力技术在石拱桥加固中的应用[J].水运工程,2009,7:205-207
    [30] JTG/T J222008,公路桥梁加固设计规范[S].北京:人民交通出版社,2008
    [31]张新旺.锚喷混凝土加固改造石拱桥技术[J].路基工程,2010,3:223-225
    [32]冯仲仁,余丹丹.拱桥加固方案的模糊优选[J].武汉理工大学学报(交通科学与工程版),2008,32(1):160-163
    [33]李治学.“释能法”提高拱桥承载力有限元计算分析[D].重庆:重庆交通大学,2009
    [34]包世华.结构力学[M].湖北:武汉理工大学出版社.2004:51-56
    [35]魏红一.桥梁施工及组织管理[M].北京:人民交通出版社.2008.200-211
    [36]庄一舟.模型砖砌体力学性能的试验研究[J].建筑结构,1997,27(2):22-25
    [37]陈荣刚,郑振飞.石拱桥极限承载能力分析[J].福州大学学报,2002(2):92-97
    [38]张欣.拱桥加固技术研究与实践[D].重庆大学,2005
    [39]冯浩雄.石拱桥加固施工中应注意的几个问题[J].建筑结构,2007,37:68-70
    [40] Chen Y,Ashour A F,Garrity S W.Modified four-hinge mechanism analysis forMasonry arches strengthened with near-surface reinforeement[J].Engineering Struetures,2007,29(8):1864-1871
    [41]吴跃梓,章劲松.增大截面法加固石拱桥的技术应用[J].合肥学院学报,2012,22(3):79-82
    [42]蒋海飞.公路危旧石拱桥病害分析及加固方法的研究[D].重庆:重庆交通大学,2010
    [43]龚晓进.石拱桥病害分析及维修加固方法研究[D].成都:西南交通大学,2007
    [44]朱永,刘红.石拱桥主拱圈病害机理的研究[J].华东公路,2012,2:20-22
    [45]黎宗勇.钢筋混凝土套箍加固石拱桥承载力计算方法研究[D].重庆:西南交通大学硕士学位论文,2009
    [46]谭勇,周建庭,沈小俊等.常用拱式桥梁加固技术及适用特点分析[J].重庆交通学院学报,2007,26(4):29-31
    [47]杨汉文,刘刚新.公路砖石拱桥加固原理及实效分析[J].交通科技.2005(5):81-82
    [48] Garmendia, Leire,San-José,osé-Tomás,et al.Innovative strengthening solutionbased on Textile Reinforced Mortar for stone masonry arches[J].Structural Analysis ofHistoric Constructions: Strengthening and Retrofitting,2010,133-134:849-854,
    [49] GB/T50081-2002,普通混凝土力学性能试验方法标准[S].北京:人民交通出版社,2002
    [50] JGJ/T70-2009,建筑砂浆基本性能试验方法标准[S].北京:人民交通出版社,2009
    [51] GB/T50129-2011,砌体基本力学性能试验方法标准[S].北京:人民交通出版社,2011
    [52] GB/T228-2002,金属材料室温拉伸试验方法[S].北京:人民交通出版社,2002
    [53] GB/T50152-2012,混凝土结构试验方法标准[S].北京:人民交通出版社,2012
    [54] GBJ129-90,砌体基本力学性能试验方法标准[S].北京:中国建筑工业出版社,1991,6-19
    [55]施楚贤.砌体结构设计的基本规定[J].建筑结构,2003,33(3):65-67
    [56] GB50203-2002,砌体工程施工质量验收规范[S].北京:中国建筑工业出版社,2002
    [57] GB50003-2002,砌体结构设计规范[S].北京:中国建筑工业出版社,2002
    [58]高根红.浅谈植筋工艺在老桥加宽施工中的应用[J].西部探矿工程,2005,3(2):11-25
    [59]杨波.既有拱桥增大截面法加固改造技术研究[J].湖南交通科技,2010,36(2):93-95
    [60]崔海琴.碳纤维约束空心薄壁墩抗震性能试验研究[D].西安:长安大学,2010
    [61]谭勇,周建庭,沈小俊等.常用拱式桥梁加固技术及适用特点分析[J].重庆交通学院学报,2007,26(4):29-31
    [62]孙潮,刘明,陈宝春等.下套拱加固石拱桥复合主拱圈极限承载力研究[J].福州大学学报(自然科学版),2012,40(3):376-382
    [63]邓连升,张朝明,李跃军.钢筋混凝土套箍封闭主拱圈加固石拱桥技术的研究[J].湖南交通科技,2010,36(1):77-80
    [64]江世永,龚崇斌,白绍良等.大偏心受压围套加固钢筋混凝土柱正截面承载力的理论分析[J].重庆建筑大学学报,1999,21(5):27-30
    [65]高丽,曾晓云,王勇.基于ANSYS的钢筋混凝土梁非线性分析若干问题研究[J].水利与建筑工程学报,2011,9(2):92-97
    [66]杨勇,郭子雄.基于ANSYS程序的钢筋混凝土梁非线性数值模拟[J].福建工程学院学报,2005,3(6):628-632
    [67]倪玲.增大截面法加固拱桥承载力验算方法研究[D].重庆:重庆交通大学,2009
    [68] Marefat,Mohammad-S,Ghahremani-Gargary, Esmaeel,Ataei, Shervan.Load testof a plain concrete arch Railway bridge of20-m span[J].Construction and BuildingMaterials,2004,18(9):661-667
    [69] The first author.Calculating Analysis of Reinforcing Layer Utilization on StoneArch Bridge Strengthened by Composite Main Arch Circle Method[A].2012InternationalConference on Vibration, Structural Engineering and Measurement, ICVSEM2012[C].Shanghai,China,Trans Tech Publications,2012:1539-1542
    [70]王茜,王恩营,徐岳.公路旧桥加固设计方法研究[J].公路交通科技,2006,23(4):81-86
    [71]黄海东,向中富,刘剑锋等.基于组合截面内力分配的拱桥加固内力计算方法[J].重庆交通大学学报,2008,27(2):200-247
    [72]周建庭,黎小刚,屈建强等.复合拱圈加固石拱桥力学性态分析[J].重庆交通大学学报(自然科学版),2010(29):849-851
    [73]周磊,周建庭,黄灿等.复合拱圈加固石拱桥关键技术研究[J].重庆交通大学学报(自然科学版),2011(30):747-750
    [74]庞国栋,周建廷,李跃军.复合拱圈加固石拱桥的承载力计算模式研究[J].重庆交通学院学报,2006,25:16-18
    [75]张晶,钱永久.套箍法加固石拱桥主拱圈的正截面承载力的理论分析[J].公路交通科技,2008,25(6):76-80
    [76]阳伟光.石拱桥增大截面加固机理分析[D].长安大学硕士学位论文,2008
    [77]乔文靖,陈书生.复合拱圈加固石拱桥弹塑性本构关系研究[J].广西大学学报,2013,38(1):100-105
    [78]吴姗姗,马永才,周浩等.增大截面加固法的计算方法对比分析[J].黑龙江科技信息,2010,27:286
    [79]蒋渭.现役桥梁增大截面加固法研究[D].西安:长安大学,2011
    [80]陈军,黄光清.增大截面法加固石拱桥检算分析实践[J].交通标准化,2011,2:114-116
    [81]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003:219-229
    [82]施楚贤.砌体材料及其强度取值[J].建筑结构,2003,33(2):66-68
    [83]曾晓明,杨伟军,施楚贤.砌体受压本构关系模型的研究[J].四川建筑科学究,2001(9):8-10
    [84]刘桂秋,施楚贤.砌体受压应力-应变关系.现代砌体结构[M].北京:中国建筑工业出版社,2000,12-18
    [85]施楚贤.砌体结构理论与设计[M].北京:中国建筑工业出版社,2003,l-93
    [86] Rafiee, A, Vinches, M.Mechanical behaviour of a stone masonry bridge assessedusing an implicit discrete element method [J].Engineering Structures,2013,48:739-749
    [87]庄一舟.模型砖砌体力学性能的试验研究[J].建筑结构,1997,27(2)22-25
    [88] Elmalich,Dvir, Rabinovitch,Oded. Nonlinear analysis of masonry archesstrengthened with composite materials[J].Journal of Engineering Mechanics,2010,136(8):996-1005
    [89] Caporale, A,Luciano, R.Limit analysis of masonry arches with finite compressivestrength and externally bonded reinforcement[J].Composites Part B: Engineering,2010,43(8):3131-3145
    [90]雷运华.宁德天池大桥主拱施工技术[J].桥梁建设,2008,(3):47-50
    [91]周海华.采用套拱加固石拱桥[J].中国水运,2009,09(1):203-204
    [92]叶见曙.结构设计原理[M].北京:人民交通出版社.2002:328-345
    [93]严建科,贺栓海.钢管混凝土杆系结构拉压不对称弹塑性本构关系[J].长安大学学报(自然科学版),2008,28(6):46-50
    [94]王永岗,陈晓霞,刑静忠.ANSYS7.0分析实例与工程应用[M].北京:机械工业出版社,2004,5:1-7
    [95]陈旭勇,樊建平,张斌.加固后双曲拱桥有限元分析与试验研究[J].武汉理工大学学报(自然科学版),2010,34(2):246-249
    [96]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.778:2-8
    [97]解瑄本,赵宁,王月刚.基于ANSYS的圆弧拱石拱桥套拱厚度分析[J].公路交通科技(应用技术版),2012,(86):57-60
    [98]黄炎生,宋欢艺,蔡健.钢筋混凝土偏心受压构件增大截面加固后可靠度分析[J].工程力学,2010,27(8):146-151
    [99] Briccoli Bati,S. Rovero, L,Tonietti, U.Strengthening masonry arches withcomposite materials [J].Journal of Composites for Construction,2007,11(1):33-41
    [100] Chen, Xu Yong,Xie, Xiao. Research on masonry arch-bridge's reinforcementand reconstruction methods[A].3rd International Conference on Civil Engineering andTransportation [C].Kunming,China,Trans Tech Publications Ltd,2013:1152-1156
    [101]张胜民.基于有限元软件ANSYS7.0的结构分析[M].清华大学出版社,2003:1-5
    [102]刘佳昌.双曲拱桥加固机理数值分析[D].西安:长安大学,2008
    [103]王茂龙等.有限元法在砌体分析结构中的应用[J].沈阳建筑大学学报,2006.(2):40-41
    [104]龚曙光.ANSYS基础应用及范例解析[M].机械工业出版社,2004:29-80
    [105]刘志辉,蒲嘉薇,乔为国.大跨石拱桥结构计算及承载力评定[J].甘肃科技,2007.23(2):171-172
    [106] Garmendia,L,San-José,J.T,García,D, Larrinaga,P.Rehabilitation of masonryarches with coMPatible advanced composite material[J]. Construction and BuildingMaterials,2011,25(12):4374-4385
    [107]欧智菁,陈宝春.钢管混凝土柱极限承载力的统一算法[J].土木工程学报,2012,45(7):80-85
    [108]王新敏主编.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:479-485
    [109]夏旻,肖汝诚,吴剑波.钢管混凝土拱桥极限承载力的参数研究[J].华中科技大学学报(自然科学版),2007,35(4):106-109
    [110]彭益清.锚喷钢筋混凝土在拱桥加固中的应用[J].湖南交通科技,2003,29(1):74-75
    [111]刘来君,赵小星.桥梁加固设计与施工技术[M].北京:人民交通出版社,2004:1-9
    [112]陈宝春.拱桥技术的回顾与展望[J].福州大学学报(自然科学版),2009,37(1):94-105
    [113]廖碧海,王国鼎.拱桥加固新方法的研究及应用[J].公路,2006(10):34-37
    [114]廖碧海.拱桥评估与加固的理论和实践研究[D].武汉:华中科技大学,2009
    [115]刘来君,秦煜,张艳等.二次受力对粘贴钢板加固梁承载力的影响[J].长安大学学报,2011,31(1):46-50
    [116]程进,江见鲸,肖汝诚等.拱桥结构极限承载力的研究现状与发展[J].公路交通科技.2002,19(4):57-59
    [117]卢颖,张磊,杜建华.肋板套箍加固技术在宽石拱桥加固中的应用[J].工程技术,2010,(21):77
    [118] JTG/T J232008,公路桥梁加固施工技术规范[S].北京:人民交通出版社,2008
    [119] Chou, Karen C,Yuan, Jie1,Fuzzy-Bayesian.Approach to Reliability of ExistingStructures[J].Journal of structural engineering,2007:3276-3290
    [120] LiaoBi-hai,WangYuan-han.Test and reinforeing old arch bridges[J].InternationalConference on Health Monitoring of Environment Strueture,Material,2007:934-940
    [121]黄灿,刘思孟,周建庭等.基于组合截面分析的拱桥加固效果评价[J].重庆交通大学学报(自然科学版),2012,31(3):373-376
    [122]张文远.增大截面法加固石拱桥设计参数优化分析[D].西安:长安大学,2012
    [123]乔文靖,陈书生.复合主拱圈加固石拱桥极限承载力参数研究[J].科技导报,2013,31(15)65-68
    [124]周磊,周建庭,黄灿等.复合主拱圈加固石拱桥关键技术研究[J].重庆交通大学学报(自然科学版),2011,30(4):747-750
    [125]陈荣刚,郑振飞.石拱桥极限承载能力分析[J].福州大学学报,2002(2):92-97
    [126]王技,钟海辉.石拱桥剩余承载力的理论研究[J].公路交通技术,2005,3:94-97
    [127]吴子超.上部结构与地基基础共同作用的研究[D].广东:广东工业大学,2009
    [128]胡崇武,周卫.丹河石拱桥设计施工与科研特点[J].公路,2001,(2):5-10
    [129]邓连升,张朝明,李跃军.钢筋混凝土套箍封闭主拱圈加固石拱桥技术的研究[J].湖南交通科技,2010,36(1):77-80
    [130]余天庆,蒋永红.拱式桥梁加固技术的研究与应用[J].世界桥梁,2006,(1):74-76
    [131]黄海东,向中富.旧实腹式拱桥承载力估计方法研究[J].公路交通技术,2005,3(6):70-88
    [132]刘士林,向中富.特大跨径石拱桥研究与实践[M].北京:人民交通出版社,2006:44-63
    [133]孙浩.钢筋混凝土拱桥检测与加固技术研究[D].合肥:合肥工业大学,2006
    [134]林阳子,黄侨,任远等.既有石板拱桥的评估及鉴定方法研究[J].公路交通科技,2008,25(4):89-93
    [135]刘向华,周安,杨庆印.南陵石拱桥的试验分析与加固研究[J].合肥工业大学学报(自然科学版),2010,33(8):1208-1211
    [136]杨善红,张广山.复合加固法在古旧石拱桥中的应用[J].公路交通技术,2005,20(4):119-121
    [137] JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规[S].北京:人民交通出版社,1985
    [138] JTJ021-85,公路桥涵设计通用规范[S].北京:人民交通出版社,1985
    [139]胡崇武,范立础.大跨度分步施工石拱桥仿真分析[J].中国公路学报,2002,(2):55-56
    [140]魏召兰,蒲黔辉,施洲.基于有限元分析的实腹式石拱桥合理计算模式研究[J].铁道建筑,2010,9:9-12
    [141]周岑,郑凯锋,范立础.大跨度石拱桥的全桥结构仿真分析研究[J].土木工程学报,2004,37(3):89-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700