用户名: 密码: 验证码:
浅埋暗挖水下隧道管棚作用机理及开挖的扰动效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是地下工程的世纪,隧道往往成为跨海和跨江河的首选穿越方案。传统浅埋暗挖方法在水下隧道施工中遇到许多问题,成为隧道工程界的难点和热点问题。本文结合长沙市科技计划项目“水下软岩隧道浅埋暗挖矿山法施工的关键控制技术开发应用”、中铁隧道集团立项的科技攻关项目“浅埋暗挖水下隧道施工关键技术研究”和国家自然科学基金(50878213),以浏阳河水下隧道为背景,展开浅埋暗挖水下隧道管棚预支护作用机理、水渗流作用下开挖的扰动效应研究。研究过程中,针对隧道不同位置,即浅埋暗挖小间距段和分离段,分别展开研究。主要工作内容为:
     1)对目前国内外隧道管棚预支护理论进行较系统的总结。结合水下隧道,研究管棚预支护作用机理及有待进一步研究的问题。在此基础上,运用管棚预支护理论分析水下隧道浅埋暗挖中支护结构的设计参数;
     2)以连续地基梁理论为基础,建立管棚支护结构与围岩相互作用模型;推导管棚结构的挠度方程、转角、弯矩方程及地基反力方程,建立了基于连续地基梁反力方程的隧道开挖面边坡稳定评价模型。
     3)小间距隧道开挖的扰动效应,即:
     (1)分析隧道在不同施工方法和不同开挖顺序开挖后围岩变形的空间效应;
     (2)确定隧道开挖管棚支护后引起的围岩变形的幅度和范围;
     (3)找出隧道开挖最不利荷载工况和结构薄弱部位,为施工方案的制定提供理论依据和决策支持;
     4)水下洞身浅埋暗挖段隧道开挖的扰动效应,即:
     (1)从渗流连续性方程和渗流运动方程出发,在多孔介质中的饱和渗流的基本方程的基础上,并基于Biot固结理论,推导求解水下隧道围岩与水耦合问题的渗流微分方程组及定解条件;
     (2)综合考虑流固耦合效应以及围岩与管棚支护结构共同作用,改进了以往数值方法在反映隧道流固耦合效应方面的不足,建立能同时反映岩土体力学特性和水体流动规律的流固耦合模型;
     (3)针对三维有限差分程序FLAC3D的流固耦合计算功能,系统研究FLAC3D求解流固耦合问题的建模方法,并对FLAC3D进行二次开发,确保流固耦合相互作用的各个方程在FLAC3D中得到实现。在此基础上,采用FLAC3D模拟浏阳河水下隧道施工,分析不同水位下,动态开挖对围岩稳定性及地表沉陷的扰动影响。
In 21st century, underground engineer will be very common, and the tunnel across sea or river will be first selection schedule. Many technical problems caused by excave under shallow layer will become the hot point which focused by researchers. Combined with the projects "study on key problem and its application of construction in thin soft rock layer under water"(sponsored by Changsha Bureau of science)、"study on key problem of construction in thin soft rock layer under water"(sponsored by China Tunnel limited Group) and Chinese Natural found(No.50878213),with the background Liuyanghe under river tunnel engineering, the principle of roof supporting tube and the influence on rockmass stability deduced by water penetration is analyzed in this disseration. In the period of research, consideration of different site, i.e tunnels in small distance or separated state, the research work are singlely done. The main content includes followings:
     1) Summary of reinforcement principle of roof pre-supporting tube is made. Combined with the underwater tunnel, and on the base of detail analysis,the selection of supporting structure and parameters of roof pre-supporting tube is realized.
     2) Depended on continuous beam theory, the interaction model of roof pre-supporting tube and surrounding rockmass is founded. With interruption format,turning angel and tension moment and anti-force fonnat of roof pre-supporting tube, the analysis model of excave face stability is established.
     3)Construction method about tunnels construction in small distance and realibity of roof pre-supporting tube are studied, i.e.:
     (1)The space effect of rockmass deduced by excave in different construction methods and different construction schedule.
     (2) the height and scope of space effect of rockmass after reinforcemented by roof supporting tube is determined.
     (3) After the disadvantage of loads combination and weak site in tunnel during excave being obtained, the theoretical clue and decision policy of construction schedule will be got.
     4) Construction method about tunnels construction in separated state and realibity of roof pre-supporting tube are studied, i.e.
     (1) Expounded the basic equation for saturated seepage in porous media basing on the seepage continuity equation and the seepage movement equation, and gave forth a group of partial differential equations for seepage in fluid-solid coupling cases and the deterministic condition of solution inferred from the Biot Consolidation Theory.
     (2) Simulated the construction of Liuyang River Underwater Tunnel basing on FLAC-3D numerical methods, improved upon the traditional numerical methods in representing fluid-solid coupling effects, taking accounts of both the fluid-solid coupling effects and the combined action of wall rocks and shoring structures, established fluid-solid coupling models to represent soil-rock mechanical characteristics and water flow, and analyzed the mechanical effects of the underwater tunnel during each construction stage.
     (3) With the second development of F1AC-3D, the representation of each equation for fluid-solid coupling interaction in the three-dimensional differential procedure FLAC-3D, and the general modeling methods in FLAC-3D for solution is realized. And then the, the stability of excave face and surface settlement caused by excave in different water levels, are all acquired.
引文
[1]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [2]王梦恕.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [3]Eisenstein Z.Large undersea tunnels and the progress of tunneling technology[J]. Tunneling and Underground Space Technology,1994,9(3):283~292.
    [4]Vandebrouk P.The channel tunnel:the dream becomes reality[J].Tunneling and Underground Space Technology,1995,10(1):17~21.
    [5]张鹏.海底隧道衬砌水压力分布规律和结构受力特征模型试验研究[D].北京:北京交通大学,2008:45-48.
    [6]Hsi J P and Small J C. Simulation of excavation in a poro-elastic material[J]. Int. J. Numer. Anal. Meth. Geomech.1992,16:25~43.
    [7]关宝树.隧道施工的技术特性、理念及其发展[J].铁道建筑技术,2003,3:1-3.
    [8]洪开荣.广深港大断面特长水下盾构隧道的技术难点分析[J].中国中铁集团2007年水底隧道专题技术交流大会论文集.洛阳,2007:52-55.
    [9]李廷春.厦门海底隧道顶板厚度选择及其开挖稳定性分析[J].岩土力学,2005,26(12):2010-2014.
    [10]张有天.岩石隧道衬砌外水压力问题的讨论[J].现代隧道技术,2003,40(3):1-4.
    [11]Valore C.(1997).A simplified analysis of the stability of tunnels with a preinstalled protective shell.Proc.14th Int. conf. on Soil Mechanics and Foundation Engineering,Hamburg,Vol.3:pp.1547-1550.
    [12]Oreste, P.P,Peila.D.(1998).A new theory for steel pipe umbrella design in tunnels and Metropolises.(eds Negro Jr&Ferreira):pp.1033-1039
    [13]Peila,D,(1994). A theoretical study of reinforcement influence on the stability of a tunnel face.Geotechnical and Geological Engineering.12:pp.145-168
    [14]Dias,D, Kastner,R,et al (1998). Behavior of a tunnel face reinforced by bolts: Comparison between models.Proc. The geotechnics of Hard Soils-Soft Rocks, (eds Evangelists & Picarclli). Balkcnra. pp.961-972
    [15]Henry Wong, Didier subrin, et al.(2000).Extrusion movement sofa tunnel head reinforced by finite length bolts-a closed-form solution using homogenization approach. Int.J.Numer.Anal.Meth Geomech,2000,24:533-565
    [16]陶龙光、侯公羽.超前锚杆的预支护机理的力学模型研究[J].岩石力学与工程学报,1996,15(3):242-249.
    [17]齐明山.厦门海底隧道围岩—支护系统相互作用时效数值分析[J].建筑科学,2006,22(5):30-33.
    [18]李术才.海底隧道衬砌结构选型及参数优化研究.岩石力学与工程学报[J].2005,24(21):3894-3902.
    [19]Arild P.The challenge of subsea tunneling[J].Tunneling and Underground Space Technology,1994,9(2):145~150.
    [20]Eisenstein Z.Large undersea tunnels and the progress of tunneling technology[J].Tunneling and Underground Space Technology,1994,9(3):283~ 292.
    [21]Vandebrouk P. The channel tunne:the dream becomes reality[J]. Tunneling and Underground Space Technology,1995,10(1):17-21.
    [22]Hagelia P.Semi-quantitative estimation of water shielding requirements and optimization of rock cover for sub-sea road tunnels [J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995,32 (3):485-492.
    [23]Palmstrom.A and Skogheim A. New Milestones in subsea blasting at water depth of 55 m[J] Tunneling and Underground Space Technology,2000, 15(1):65~68.
    [24]章根德,王羽,石占中.地质材料中的流固耦合研究[J].岩石力学与工程学报,2000增刊:856-859.
    [25]张伟.渗流场及其与应力场的耦合分析和工程应用[D].武汉:武汉大学,2004:45-47.
    [26]章梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社,1995: 130-135.
    [27]魏加华、崔亚莉、邵景力.基于MODFLOW的地面沉降模型研究——以北京市区为例[J].工程勘察,2003,05:17-21.
    [28]黄涛,杨立中.渗流、应力、温度祸合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999,34(5):554-559.
    [29]X. Yi. R.Kerry Rowe, K. M.Lee.Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Can. Geotech. J.1993.30: 476-490.
    [30]Y. Murad. Abu-Farsakh, George Z. Voyiadjis.Computational model simulation of the shield tunneling process in cohesive soils[J]. Int. Mech. Geomech,1999, 23:23~24.
    [31]J. H. Shin, groundwater T. I. Addenbrooke, D, M, Potts. A numerical study the effect of movement on long-term tunnel behavious[J].Geotechnique,2002. 52 (6):391~403
    [32]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报,1988,(1):8-14.
    [33]熊伟.流固耦合渗流规律研究[D].河北:中国科学院渗流流体力学研究所,2000:17-19.
    [34]席锦州.富水地层隧道开挖引起地表沉降的数值模拟研究[D].成都:西南交通大学,2005:26-38.
    [35]富海鹰.地铁隧道非降水法施工引起的地表沉降的研究[D].成都:西南交通大学,2006:25-30.
    [36]余学彦.考虑流固耦合的城市隧道施工稳定性及地表沉降分析[D].南京:河海大学,2006:19-26.
    [37]徐曾和.论矿业工程中的流-固耦合渗流问题.中国矿业,1996:1-3.
    [38]毛昶熙,段祥宝,李祖贻.渗流数值计算与程序应用[M].河海大学出版社,1998:49-50.
    [39]潘家铮等.水工建筑物的有限元分析[M].水利电力出版社,1990:126-127.
    [40]Oda M.An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses [J]. Water Resources Research.1986.22(13):1 845~1856.
    [41]陈崇希.地下水动力学[M]第1版,中国地质大学出版社,1999:55-56.
    [42]H.Darcy,Les fontaines publiques de La Ville deDijon,V.Dalmont,Paris,1856: 21-26.
    [43]Terzaghi K. Theoretical soil mechanics[M]. Wiley,New York,1943:2-5.
    [44]Biot M A. General theory of three dimensional consolidation[J]. J.Appl.Phys. 1941,12:155~164.
    [45]Biot M A. General solution of the equation of elasticity and consolidation for a porous material[J]. J. Appl. Mech.1956,78:91~96.
    [46]Itasca Consulting Group,Inc.FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimension,(Version 2.1).User's manual,2003:10~14.
    [47]Itasca Consulting Group,Inc.FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimension,(Version 2.1).Fluid-Mechanical Interaction,200330-34.
    [48]汪泳嘉,邢继波.离散单元法和拉格朗日元法及其在岩土力学中的应用[J].岩土力学,1995,16(2):1-14.
    [49]Detournay.E and A.H.D.Cheng. Poroelastic Response of a Borehole in a Non-Hydrostatic Stress Field[J].Rock Mech.Sci & Geomech.Abstr,1988, 25(3):171~182
    [50]Harr.M.E.Groundwater and Seepage[M].Dover,1991:3-18.
    [51]Kochina. I, N. Mikhailov and M. Filinov.Groundwater Mound Damping[J]. Engng.Sci,1983,21:413~421.
    [52]Polubarinova-Kochina, P. Y. Theory of Groundwater Movement[M]. Princeton: Princeton University Press,1962:33~37.
    [53]Biot.M.A. General Solutions of the Equations of Elasticity and Consolidation for a Porous Materia [J].Appl.Mech,Trans.ASME,1956;78:91~96.
    [54]Crank.J.The Mathematics of Diffusion[M].2nd Ed.Oxford:Oxford University Press,1975:21-27.
    [55]胡斌,张倬元,黄润秋,许强.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [56]Dahlquist.GandA.Bjorck.Numerical Methods[M].Prentice Hall,1974:21~29.
    [57]Voller.V,S.Peng and Y.Chen. Numerical Solution of Transient, Free Surface Problems in Porous Media[JJ.Numer. Meth. Engng,1996:2889~2906.
    [58]Itasca Consulting Group,Inc. FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimension,(Version 2.1).Structural Elements;2003:123~134.
    [59]Itasca Consulting Group.Inc.FLAC3D.Fast Lagrangian Analysis of Continua in 3 Dimension:(Version 2.1).FISH in FLAC3D,2003:33~45.
    [60]In-Mo Lee.Seok-Woo Nam. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J].Tunneling and Underground Space Technology,2001,16:31 ~40
    [61]Lee I.M, Nam S.W.Lee M.J.Analysis and design of soft-ground tunnels subject to steady-state groundwater flow[J],Korean Geotech Soc,1994,10(2):41~56
    [62]Seok-Won Lee aJong-Won Jung b,Seok-Woo Nam c,In-Mo Lee.The influence of seepage forces on ground reaction curve of circular opening[J].Tunneling and Underground Space Technology,2006,22:28~28
    [63]In-Mo Lee a.Jae-Sung Lee b,Seok-Woo Nam.Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J].Tunneling and Underground Space Technology,2004,19:561~565.
    [64]Dimitrios Kolymbas,Peter Wagner.Groundwater ingress to tunnels-The exact analytical solution[J].Tunneling and Underground Space Technology,2007,22: 23-27
    [65]李俊才,张倬元,许强.深基坑开挖变形的三维数值模拟研究[J].南京工业大学学报,2005,27(3):1-7.
    [66]李廷春,李术才,陈卫忠,邱祥波.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397-401.
    [67]陈平,张有天.裂隙岩体渗流与应力耦合[J].岩石力学与工程学报,1994,13(4):299-308.
    [68]L.V.Rabcewicz,The New Austrian Tunnelling Method[M]. Water Power, London, 1964~1965.
    [69]铁道部基本建设总局编写.铁路隧道新奥法指南[M].北京:中国铁道出版社,1988:111-123.
    [70]刘洪洲.新奥法建造隧道胡总围岩变形过程及规律研究[D].重庆:重庆大学,1993:78-79.
    [71]李晓红等.隧道新奥法及其量测技术[M].北京:科学出版社,2002:77-78.
    [72]徐洪彬.新奥法监测及其反分析在公路隧道中的应用研究[D].重庆:重庆 大学,1999:77-111.
    [73]地下铁道.轻轨交通工程测量规范(GB50308-1999).中国:计划出版社,2000:79-123.
    [74]中华人民共和国交通部.公路隧道设计规范(JTGD70-2004).北京:人民交通出版社:2004:46-49.
    [75]姜洪伟、赵锡宏、张保良.各向异性条件下软土深基坑抗隆起稳定性分析[J].岩土工程学报,1997,19(1):1-7.
    [76]朱汉华、王迎超等.隧道预支护原理与施工技术[M].北京:人民交通出版社,2008:345-355.
    [77]朱维申、何满潮.复杂条件下围岩稳定性与岩体动态施工力学.北京:科学出版社,1995:124-178.
    [78]于学馥、郑颖人等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.12:35-37.
    [79]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993:80-82.
    [80]关宝树、杨其新.地下工程概论[M].成都:西南交通大学出版社,2001:60-62.
    [81]刘芳.管棚对既有线的超前支护技术及其工程应用研究[D].北京:北京交通大学,2006.06:45-46.
    [82]毕俊丽.管棚预支护机理及数值模拟[D].北京:北京交通大学,2006.12:50-52.
    [83]王伟峰.软岩偏压双连拱隧道管棚预支护参数研究[D].北京:北京交通大学.2006.12:11-15.
    [84]刘建国.水平旋喷注浆技术在隧道施工中的应用.隧道网公路隧道建设:11-15.
    [85]钟新樵.隧道及地下工程专题技术—地下工程浅埋暗挖法[M].西南交通大学,1998.
    [86]关宝树.隧道施工要点集[M].北京:人民交通出版社.2003:1-5.
    [87]徐干才、白洪才、郑颖人等.地下工程支护结构[M].北京:中国水利水电出版社,2002:59-60.
    [88]何修仁.注浆加固与堵水[M].沈阳:东北工学院出版社.1990:19-21.
    [89]刘长武.膨胀软岩锚注加固机理及底臌控制中的应用[R].中国矿业大学, 1998:16-18.
    [90]杨新安,陆土良.软岩巷道锚注支护理论与技术的研究[J].煤炭学报,1997(1):7-11.
    [91]王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000:15-17.
    [92]Itasca Consulting Group, Inc. FLAC 5.0 Manual (Structural Elements). Minneapolis,2005:p1-50.
    [93]Kulhawy,Fred H.Stress Deformation Properties of Rock and Rock Discontinuities. Engineering Geology,1975(9):327~350.
    [94]Rosso, R. S. A Comparison of Joint Stiffness Measurements in Direct Shear, Triaxial Compression, and In Situ. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1976(13):167~172.
    [95]Bandis, S. C, A. C. Lumsden and N. R. Barton. Fundamentals of Rock Joint Deformation. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr,1983(20):249~ 268.
    [96]高大钊.土力学可靠性原理[M].北京:中国建筑出版社,1989:78-90.
    [97]李清富,高健磊,乐金朝.工程结构可靠性原理[M],郑州:黄河水利出版社,1999:46-50.
    [98]刘品.可靠性工程基础[M].北京:中国计量出版社,2002:37-38.
    [99]中国人民共和国住房和城乡建设部.工程结构可靠性设计统一标准(GB50153-2008).北京:中国建筑工出版社.2009:15-16.
    [100]王福楹,王福保.高等数学[M].北京:高等教育出版社,2001:17-19.
    [101]同济大学应用数学系.工程数学概率统计简明教程[M].北京:高等教育出版社,2003:13-16.
    [102]景诗庭.地下结构可靠度分析研究之进展[J].石家庄铁道学院学报.1995,8(2):13-19.
    [103]孙国卫.简述岩土工程中的可靠性理论[M].工程设计与研究,1989,2:17-22.
    [104]傅鹤林,韩汝才.隧道衬砌荷载计算理论及岩溶处治技术[M].2005.中南大学出版社:66-68.
    [105]傅鹤林,彭思甜,韩汝才,何贤锋.岩土工程数值分析新方法[M].2006.年 中南大学出版社:15-27.
    [106]傅鹤林,李凯等.梅关隧道工程施工技术[M].2009年科学出版社:33-36.
    [107]傅鹤林,郭磊等.大跨度隧道施工力学行为及衬砌裂缝产生机理[M].2009年科学出版社:88-89.
    [108]徐帮树,张宪堂,张芹.海底隧道涌水量预测及应用研究[J].武汉理工大学学报,2007,31(4):599-602
    [109]姬永红,项彦勇.水底隧道涌水量预测方法的应用分析[J].水文地质工程地质,2005,(4):84-87.
    [110]胡伏生,葛晓光等.因子分析法在矿井涌水来源判别中的应用[J].煤田地质与勘探,2007,35(5):54-58.
    [111]蒋建平,高广远等.隧道工程突水机制及对策[J].中国铁道科学,2006,27(5):76-82.
    [112]黄慷,杨林德.崇明越江盾构隧道工程耐久性失效风险研究[J].现代隧道技术,2004,41(2):8-13.
    [113]杨林德,黄慷.水底隧道管片构件耐久性失效风险研究[J].地下空间,2004,24(1):1-5.
    [114]Emanouil Atanassov, Ivan T.Dimov, "What Monte Carlo models can do and cannot do efficiently? ", Applied Mathematical Modelling 32(2008):1477~ 1500
    [115]B.J.Arends, S.N.Jonkman, J.K.Vrijling, P.H.A.J.M van Gelder, "Evaluation of tunnel safety:towards an economic safety optimum", Reliability Engineering and System Safety 90(2005):217~228
    [116]L.Schwarz, I.ReichI, H.Kirschner, K.P.Robl, "Risk and Hazards caused by groundwater during tunneling:geotechnical solutions used as demonstrated by recent examples from Tyrol, Austria", Original Article Environ Geol (2006) 49:858~864
    [117]Ioannis F Louis, Antonios P Vafidis, Filippos I. Louis, et al.2002. The use of geophysical prospecting for imaging the aquifer of Lakka carbonate. Mandoudi Euboea, Greece, Journal of the Balkan geophysical society, (3):217~220.
    [118]Michael zhiqiang yang, efic c. drum.2002. Stability evaluation for the siting of municipal landfills in karst. Engineering geology,65:185~195.
    [119]Pascal Fenart, Cat N N, Claude Drogue, et al.1999. Influence of tectonics and neotectonics on the morphogenesis of the peak karst of Halong Bay. Vietnam. Geodinamica Acta(Paris), (12):3~4.
    [120]Philipp Hauselmann, Pierre-Yves Jeannin, Thoms Bitterli.1999. Relationships between karst and tectonics:case-study of the cave system north of Lake Thun(Bern, Switzerland). Geodinamica ACTA 12:45~49.
    [121]Pitambar Gautam, Surendra Raj Pant, Hisao Ando.2000. Mapping of subsurface structure with gamma ray and electrical resistivity profiles:a case study from Pokhara valley, central Nepal. Journal of applied geophysics, 45:70~75.
    [122]Plan L, Decker K, Faber R.2003. Attributed sinks-a GIS-tool quantifying morphological vulnerability parameters in karstic catchment area. Geophysical research abstract,10280,(5),European geophysical society 2003:123~130.
    [123]Randall C Orndorff, David J Weary, Stanka Sebela.2001. Geologic framework of the ozarka of south-central Missouri-contributions to a conceptual model of karst, geological survey karst interest group proceedings. Water-resources investigations report 01-4011.
    [124]DUBLYANSKYYV. Speleogenetic history of the Hungarian hydrothermal karst. Environmental Geology.1995,25:24~25
    [125]Galdenzi S, Menichetti, M.. Occurrence of hypogenic caves in a karst region: Examples from central Italy, Environmental Geology.1995,25:39~47
    [126]刘之葵,梁金城,李晓峰.岩溶区土洞发育机制[J].工程地质学报,2000,12(1):45-49.
    [127]赵明阶,敖建华,刘绪华,王彪.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩土力学与工程学报,2004,23(2):213-217.
    [128]白明洲,许兆义,王连俊,王勐.复杂岩溶地区隧道施工突水地质灾害研究[J].中国安全科学学报,2006,16(1):114-118.
    [129]KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunneling and Underground Space Technology,2003,18(2/3):145~ 159.
    [130]KOSHIMA Y,KONDO N,INOUE M. Result of experiments using shield and segment models and application of the method in tunnel construction[J]. Tunneling and Underground Space Technology,1996,11(1):45~50.
    [131]ASAKURA T,KOJIMA Y,ANDO T.et al. Analysis of the behavior of tunnel lining--experiment and simulation on double track tunnel lining[J]. Railway Technical Research Institute,Quarterly Reports,1992,13(4):266~273.
    [132]Yamaguchi I Y,Kiritani Y.Study of ground tunnel interactions of four shield tunnels driven in close proximity[J].Tunnelling and Underground Space Technology,1998,13(3):289-304
    [133]Campbell C Warren.1996. Mohamed Abd El Latif, application of thermography to karst hydrology. Journal of cave and Krast studies,58(3).
    [134]Chris Grove, Joe Meiman, Joel Despain, et al.2002. Karst aquifers as atmospheric carbonsinks:An evolving global network of research sites, US geological survey karst interest group proceedings. Shepherdstown,20~22.
    [135]Franjo sumanovac Mario Weisser.2001. Evaluation of resistivity and seismic methods for hydrogeological mapping in Karst terrains. Journal of Applied geophysics, (7):13~38.
    [136]丁继辉等.浅基础工程及程序设计[M].水利水电出版社,2007:23-56.
    [137]李力.粉细砂地层注浆作用机理及在暗挖隧道施工中的应用[D].北京:北京交通大学,2007.4:27-29.
    [138]夏永旭、王永东.弹性结构力学计算.北京:人民交通出版社,2004.8:35-45.
    [139]姚海波.大断面隧道浅埋暗挖法下穿既有地铁构筑物施工技术研究[D].北京:北京交通大学,2005.6:19-23.
    [140]王梦恕.地下工程浅埋暗挖技术通论[M].安徽:安徽教育出版社,2004.4:17-22.
    [141]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报.2005.7.24(14):2565-2570.
    [142]李亮、魏丽敏.基础工程.湖南:中南大学出版社,2005.2:11-22
    [143]苟德明.既有公路下连拱隧道管棚变形测试与作用机理研究[D].长沙:长沙理工大学,2007.04:77-79.
    [144]朱国保.软弱破碎围岩隧道中管棚超前预支护技术研究[D].成都:西南交通大学,2007.04:29-35.
    [145]赵建平.浅埋暗挖隧道管棚预支护机理及其效用研究[D].长沙:中南大学,2005.05:26-29.
    [146]孔恒.城市地铁隧道浅埋暗挖法地层预加固机理及其应用研究[D].北京:北方交通大学,2003.08:16-18.
    [147]左永江.水平管棚注浆支护技术在穿过高速公路工程中的应用[J].建井技术,2002,23(3):39-41.
    [148]吴军民.管棚超前预加支护效果的数值分析[J].国外建材科技,2004,25(2):106-108
    [149]董新平,周顺华等.软弱地层管棚法施工中管棚作用空间分析[J].岩土工程学报,2006.28(7):841-846.
    [150]董新平,周顺华.软弱地层管棚荷载传递作用分析[J].现代隧道技术,2005,42(6):24-29.
    [151]Polubarinova-Kochina,P.Y.Theory of Groundwater Movement[M].Princeton: Princeton University Press,1962:55~56.,
    [152]Biot.M.A. General Solutions of the Equations of Elasticity and Consolidation for a Porous Materia [J].Appl.Mech,Trans.ASME,1956,78:91~96
    [153]Crank.J.The Mathematics of Diffusion[M].2nd Ed.Oxford:Oxford University Press,1975:47~51.
    [154]胡斌,张倬元,黄润秋,许强.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [155]Dahlquist.G and A.Bjorck.Numerical Methods[M].Prentice Hall,1974:14~19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700