用户名: 密码: 验证码:
基于ICA方法的针刺效应网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针灸是中国传统医学的精华,是中国人民长期与疾病作斗争的经验和总结,它作为中华民族的宝贵文化遗产在中国已有数千年的临床实践史。针刺作为针灸疗法的重要组成部分可以治疗多种疾病,如关节炎、肥胖、中风后遗症、哮喘、药物成瘾等,也可以缓解各种疼痛。其显著的疗效和很少的副作用,使得针刺疗法得到了推广和普及并逐步被国际医学界认可。然而,尽管目前已经有140多个国家和地区采用了针刺疗法,其作用机理却始终不明确。如何明确的阐述针刺的作用机理已经成为制约其理论发展的重要因素。作为针刺疗法的发源地,中国具有先天的优势率先揭开针刺治病的机理,以便把针刺更好的应用于医疗实践中,从而弘扬祖国医学,推广祖国优秀的传统文化。现代医学影像技术的发展使得研究针刺的方法和手段越来越多,近十余年来,功能磁共振成像(fMRI)技术因其具有非侵入的特点以及可实时反映大脑特定功能区域在外部刺激下的活动状态的特性,被国内外广泛应用于视觉、听觉方面以及思维、情绪等高级认知方面的研究,各种研究成果已获得国际上的普遍认可。
     本论文以传统中医理论为指导,运用现代医学的观点和功能磁共振成像技术,从实验设计模式和数据处理方法等方面对针刺作用的神经机制进行了初步探索。本文的创新工作如下:
     根据以往的实验设计模式,研究了传统的基于多组块设计的针刺机理。通过分析传统多组块针刺实验过程中各阶段(捻针与静息)包含的效应,发现不同阶段存在差异;创新的将独立分量分析这种数据驱动方法引入针刺足三里的磁共振成像研究中,将针刺时捻针状态下及针刺后静息状态下的大脑功能网络分别与针刺前静息状态下的大脑功能网络进行对比,发现大脑功能网络的变化,从而得到针刺过程中针刺效应存在时变特性的结论。
     以上述研究为基础,本文引入了非重复事件相关实验设计模式,综合种子点相关的功能连接度分析及独立分量分析这两种方法研究了静息状态下针刺视觉相关穴位(光明穴)和非视觉相关穴位(交信穴)对大脑功能网络的调节,发现针刺上述两个不同的穴位点虽然能够使得相似的大脑视觉皮层区域被激活,但表现出的时域特性却反向相关。也就是说针刺这两个不同的穴位点会诱发相似的空间激活模式,而引起的时域调节模式却存在着显著的差异。
     本文同时还研究了针刺对静息态下大脑功能网络的调节,发现针刺足三里穴主要调节了静息态下大脑网络群中“空间注意”网络以及视觉网络,而针刺光明和交信穴均调节了静息态下的“缺省模式”网络,发现最强的两个激活脑区位于后扣带回和楔前叶。同时还发现前扣带回与“缺省模式”网络的功能连接显著增强。从而推测这两个核团在针刺神经调节作用中发挥着重要的作用。
Acupuncture, as a valuable aspect of the cultural heritage of the Chinese nation, and the essence of Traditional Chinese Medicine (TCM), has a history of several thousand years in clinical practice. It can be used to treat a variety of diseases such as arthritis, obesity, stroke, asthma, drug addiction, and it can also mitigate chronic pain with very few side effects. Due to these advantages, acupuncture has been popularized and promoted, and also has been gradually recognized by the international community. There are currently over 140 countries and regions using acupuncture. However, along with the popularization and promotion of acupuncture, its scienctific validity has been questioned. Setting forth a clear mechanism of how acupuncture works has become a primary constraint in its development. Hence, it is a way for China to be the proponent of acupuncture and aid in the necessary research in revealing its mechanism. Modern medical imaging technology enables a more mechanistic approach to acupuncture: the emergence of functional magnetic resonance imaging (fMRI) technology has provided new ways and effective means for deeper exploration in the field of acupuncture. Due to its non-invasiveness and real-time capability to map the activity of specific brain regions induced by external stimulation, this technology has been widely used in vision, hearing, as well as other high-level cognitive research. In this paper, we used fMRI technology to study and analyze the brain response to acupuncture and combined the theory of TCM and modern medical means to explore neural regulating mechanisms. Specific aims included the following:
     Studied the acupuncture mechanism based on a multiple-block experimental design via analyzing the different effects included in the distinct experimental stage of the process (stimulation and restingstates). We found there existed discrepancies in different stages of acupuncture. The data-driven approach of independent component analysis was innovatively introduced into the fMRI study of acupuncture at ST 36 (Zusanli), and we compared the stimulation states with different resting states in the brain functional networks. Therefore, we concluded that there existed time variability during the course of acupuncture.
     Based on the research above, we introduced a novel experimental paradigm using a non-repeated event-related (NRER) design, combined the methods of seed correlated functional connectivity and ICA to study the brain functional network during resting state after acupuncture at vision-related acupoint GB 37 (Guangming) and nonvision-related acupoint KI 8 (Jiaoxin). We discovered that stimulation at these two acupoints induced the same activations in the occipital cortical areas (BA 17/18/19) in spatial distribution, but their temporal characteristics were negative. Our results support the proposition that acupuncture at vision and nonvision-related acupoints can induce similar activations in the visual cortex of the spatial domain, but have different modulation patterns in the temporal domain.
     This article also focused on the study of the brain functional network during the resting state under the regulation of acupuncture. Results showed that acupuncture at ST 36 mainly regulated the spatial attention and vision-related networks of the resting state networks (RSNs); meanwhile, stimulation at GB 37 activated the post cingulate cortex (PCC) and precuneus of the‘default-mode’network. The study also found that acupuncture at the two acupoints activated both the PCC and precuneus; these two nuclei are the core regions that reflect the neural regulation of acupuncture.
引文
[1]侯金文,黄蔚皓,王青等.针刺镇痛的脑功能MRI研究.中华放射学杂志. 2002, 36 (3): 206-210.
    [2] EJ. Mills, P. Wu, J. Gagnier, et al. Efficacy of acupuncture for cocaine dependence: A systematic review and meta-analysis. Harm Reduct Journal, 2005, 2 (1): 4.
    [3] T. Shiraishi, M. Onoe, TA. Kojima, et al. Effects of bilateral auricular acupuncture stimulation on body weight in healthy volunteers and mildly obese patients. Experimental Biology and Medicine (Maywood), 2003, 228 (10): 1201-1207.
    [4]艾林,戴建平,赵百孝等.针刺镇痛机制的功能磁共振成像研究.中国医学影像技术, 2004, 20 (8): 1197-1200.
    [5] BM. Berman. Clinical acupuncture. Springer, 2000.
    [6] RA. Moore, HJ. Mcquay, AD. Oldman, et al. BMA approves acupuncture, BMA report is wrong. BMJ, 2000, 321 (7270): 1220-1221.
    [7] Z.H. Cho, S.C. Chung, H.J. Lee, E.K. Wong, B.I. Min, Retraction new findings of the correction between acupoints and corresponding brain cortices using functional MRI, Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 10526-10527.
    [8]经络十讲.上海:上海人民出版社, 1999.
    [9]朱兵.针灸的科学原理.青岛:青岛出版社, 1998.
    [10] TD. Wager, JK Rilling, EE. Smith, et al. Placebo-Induced changes in fMRI in the anticipation and experience of pain. Science, 2004, 303 (2): 1162-1167.
    [11] JD. Greene, RB. Sommerville, LE. Nystrom, et al. An fMRI investigation of emotional engagement in moral judgment. Science, 2001, 293 (9): 2105-2108.
    [12] M. Barinaga, Neuroscience: fMRI provides new view of monkey brains. Science, 1998, 282 (11): 1397.
    [13] LQ. Uddin, JT. Kaplan, I. Molnar-Szakacs, et al. Self-face recognition activates a frontoparietal“mirror”network in the right hemisphere: an event-related fMRI study. Neuroimage, 2005, 25 (3): 926-935.
    [14] KA. Kiehl, MC. Stevens, KR. Laurens, et al. An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n=100) fMRI study of an auditory oddball task. Neuroimage, 2005, 25 (3): 899-915.
    [15]林昭庚.针灸医学史.北京:中国中医出版社, 1995.
    [16]王启才,高俊雄.经络的研究及临床应用.北京:中国古籍出版社, 1998.
    [17]曹小定.针刺符合麻醉的产生和发展.针刺研究, 1997, 22 (001): 9-11.
    [18]曹小定.针刺研究大有可为――从美国NIH召开针刺疗法听证会谈起.中国中西医结合杂志, 1998, 18 (8): 87-89.
    [19]韩济生.针刺机理研究的最新进展.针刺研究, 1988, 1: 9-11.
    [20]刘辉,赵鸿.近10年来针刺足阳明胃经对胃肠功能影响的研究.中国中西医信息杂志, 1999, 6 (12): 19-22.
    [21]尹岭,金香兰.针刺足三里穴PET和fMRI脑功能成像的初步探讨.中国康复理论与实践, 2002, 8 (9): 523-524.
    [22]山海经史科比较研究.中国边疆史地研究, 1996.
    [23] NIH consensus conference, acupuncture. The Journal of American Medical citationtion, 1998, 280: 1518-1524.
    [24] EC. Bell, MC. Willson, AH. Wilman, et al. Differential effects of chronic lithium and valproate on brain activation in healthy volunteers. Human psychopharmacology, 2005, 20(6): 415-424.
    [25] A. Amit, Y. Li, Y. Wang, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biological Psychiatry, 2005, 57(10): 1079-1077.
    [26] A. Amit, Y. Li, Y. Wang, et al. Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology, 2005, 30(7): 1334-1344.
    [27] S. Anders, N. Birbaumer, B. Sadowski, et al. Parietal somatosensory association cortex mediates affective blindsight. Nature Neuroscience, 2004, 7(4): 339-340.
    [28] S. Anders, M. Lotze, D. Wildgruber, et al. Processing of a simple aversive conditioned stimulus.in a divided visual field paradigm: an fMRI study. Experimental Brain Research, 2005, 162(2): 213-219.
    [29] AW. Anderson, RA. Heptulla, N. Driesen, et al. Effects of hypoglycemia on human brain activation measured with fMRI. Magn Reson Imaging, 2006, 24(6): 693-697.
    [30] AW. Anderson, R. Marois, ER. Colson, et al. Neonatal auditory activation detected by functional magnetic resonance imaging. Magnetic Resonance Imaging, 2001, 19(1): 1-5.
    [31] CW. Anderson, SB. Lowen, PF. Renshaw. Emotional task-dependent low-frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis. Journal of Neuroscience Methods, 2006, 151(1): 52-61.
    [32] CM. Anderson, LC. Maas, BB. Frederick, et al. Cerebellar vermis involvement incocaine-related behaviors. Neuropsychopharmacology, 2006, 31(6): 1318-1326.
    [33] IM. Anderson, L. Clark, R. Elliott, et al. 5-HT(2C) receptor activation by m-chlorophenylpiperazine detected in humans with fMRI. Neuroreport, 2002, 13(12): 1547-1551.
    [34] JR. Anderson, MV. Albert, JM. Fincham. Tracing problem solving in real time:Fmri analysis of the subject-paced tower of Hanoi. Journal of Cognitive Neuroscience, 2005, 17(8): 1261-1274.
    [35] ZH. Cho, TD. Oleson, D. Alimi. et al. Acupuncture: the search for biologic evidence with functional magnetic resonance imaging and positron emission tomography techniques. The Journal of Alternative and Complementary Medicine, 2002, 8(4): 399-401.
    [36] DC. Choo, G. Yue. Acute intracranial hemorrhage caused by acupuncture. Headache, 2000, 40(5): 397-398.
    [37] JS. Han. Acupuncture and endorphins. Neuroscience Letters, 2004, 361: 258-261.
    [38]尹岭,乔卫安.针刺足三里PET脑功能成像.中国针灸, 2003, 23(1): 27-28.
    [39] WT. Zhang, J. Zhen, GH. Cui, et al. Relation between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Research, 2003, 982(2): 168-178.
    [40] ZH. Cho, SC. Chung, JP. Jones, et al. New findings of the correlation between acupuncture and corresponding brain cortices using functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 2670-2673.
    [41] MT. Wu, JC. Hsieh, J. Xiong, et al. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain-preliminary experience. Radiology, 1999, 212(1): 133-141.
    [42] MT. WU, JM. Sheen, KH. Chuang, et al. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage, 2002, 16(4): 1028-1037.
    [43] KKS. Hui, J. Liu, N. Makris, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Human Brain Mapping, 2000, 9(1): 13-25.
    [44] KKS. Hui, J. Liu, O. Marina, et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST36 as evidenced by fMRI. Neuroimage, 2005, 27(3): 479-496.
    [45] CTW. Moonen, PA. Bandettini. Functional MRI. Berlin: Springer-Verlag, 1999.
    [46] KK. Kwong, JW. Belliveau, DA. Chesler, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 5675-5679.
    [47] S. Ogawa, DW. Tank, R. Menon, et al. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 5951-5955.
    [48] RP. Dhond, N. Kettner, V. Napadow. Neuroimaging acupuncture effects in the human brain. The Journal of Alternative and Complementary Medicine, 2007, 13(6): 603-616.
    [49] BR. Rosen, RL. Buckner, AM. Dale. Event-related functional MRI: past, present and future. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 773-780.
    [50] CJ. Aline. A conceptual overview and critique of functional neuroimaging technique in humans: I. MRI/fMRI and PET. Critical Reviews in Neurobiology, 1995, 9: 229-309.
    [51] PL. Nunez. Localization of brain activity with electroencephalography. In. Sato S, ed. Advances in Neurology, vol 54: Magnetoencephalography. New York: Raven Press, 1990, 39-65.
    [52] M. Hamalainen, R. Hari. Magnetoencephalographic characterization of dynamic brain activation: Basic principles and methods of data collection and source analysis in: AW. Toga, JC. Mazziotta, eds: Brain Mapping: The Methods, 2nd ed. San Diego: Academic Press, 2002.
    [53] E. Niedemeyer, F. Lopes Da Silva. Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 4th ed. Lippincott, Williams & Wikins, 2004.
    [54] K. Portin, S. Salcnius, R. Salmelin, et al. Activation of the human occipital and parietal cortex by pattern and luminance stimuli.:Neuromagnetic measurements. Cerabral Cortex, 1998, 8: 253-260.
    [55] CM. Gray, P. Konig, AK. Engel, et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 1989, 338: 334-337.
    [56] R. Salmelin, R. Hari. Spatiotemporal characteristics of sensorimotor neuromagneticrthythms related to thumb movement. Neuroscience, 1994, 60: 537-550.
    [57] V. Napadow, N. Makris, J. Liu, et al. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Human Brain Mapping, 2005, 24: 193-205.
    [58] JC. Hsieh, CH. Tu, FP. Chen, et al. Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neuroscience Letters, 2001, 307: 105-108.
    [59] SS.Yoo, EK. Teh, RA. Blinder, et al. Modulation of cerebellar activation by acupuncture stimulation: evidence from fMRI study. Neuroimage, 2004, 22: 932-940.
    [60] J. Pariente, P. White, RS. Frackowiak, et al. Expectancy and belief modulate the neuronal substrated of pain treated by acupuncture. Neuroimage, 2005, 25: 1161-1167.
    [61] DH. Zald. The human amygdala and the emotional evaluation of energy stimuli. Brain Research., 2003, 41: 88-123.
    [62] G. Biella, ML. Sotgiu, G. Pellegata, et al. Acupuncture produces central activations in pain regions. Neuroimage, 2001, 14: 60-66.
    [63] KL. Casey. Forebrain mechanisms of nociception and pain: analysis through imaging. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 7668-7674.
    [64] B. Pomeranz. Acupuncture analgesia: Basic research. In: G. Stux, R. Hammerschlag, ed. Clinical Acupuncture: Scientific Basis. Berlin: Springer, 2001, 1-28.
    [65] S. McMahon, M. Koltzenburg, et al. Wall and Melzack’s Textbook of Pain, 5th ed. Churichill Livingstone, 2005.
    [66] R. Harris, J. Scott, G. Naylor, et al. Longitudinal changes in pressure pain sensitivity vary with insular neuronal activity in Fibromydalgia patients. In: Washington. DC: American College of Rheumatology, 2006.
    [67] V. Napadow, JM. Webb, N. Pearson, et al. Neurobiological correlates of acupuncture: November 17-18, 2005. The Journal of Alternative and Complementary Medicine, 2006.
    [68] DD. Price, A. Rafii, LR. Watkins, et al. Apsychophysical analysis of acupuncture analgesia. Pain, 1984, 19: 27-42.
    [69] R. Melzack, PD. Wall. Pain mechanisms: a new theory. Science, 1965, 150: 971-979.
    [70] N. Vamauchi, N. Okazzari, T. Sato, et al. The effects of electrical acupuncture on human somatosensory evoked potentials and spontaneous brain waves. Yonago Acta Medica, 1976, 20: 88-100.
    [71] CJ. Czura, KJ. Tracey. Autonomic neural regulation of immunity. Journal of Internal Medicine, 2005, 257: 156-166.
    [72] K. Nishijo, H. Mori, K. Yosikawa, et al. Decreased heart rate by acupuncture stimulation in humans via facilitation of cardiac vagal activity and suppression of cardiac sympathetic nerve. Neuroscience Letters, 1997, 227: 165-168.
    [73] S. Knardahl. M. Elam, B. Olausson, et al. Sympathetic nerve activity after acupuncture in humans. Pain, 1998, 75: 19-23.
    [74] KJ. Tracey. The inflammatory reflex. Nature, 2002, 420: 853-859.
    [75] V. Napadow, RP. Dhond, P. Purdon, et al. Correlating acupuncture fMRI in the human brainstem with heart rate variability. Proc. of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conf, 2005, 5: 4496-4499.
    [76] F. Bloch. Nuclear induction. Physical Review, 1946, 70(7-8): 460-474.
    [77] G. William. Introduction to interventional MRI. Journal of Medical Imaging, 2002, 12(2).
    [78] N. Technology. Revolution of MRI in Medicine: The introduction of the 2003 Nobel Prize in Physiology or medicine. Progress in Biochemistry and Biophysics, 2003, 30(6).
    [79] W. Narozny, J. Mechlinska-Baczkowska, B. Kowalska. Introduction of MRI in pre-operative assessment of parotid tumours: our experience. Otolaryngol, 1999, 53: 620-623.
    [80] PC. Lauterbur. Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature, 1973, 242(5394): 190-191.
    [81] AD. Kumar, et al. Buildup rates of the nuclear overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. Journal of the American Chemical Society, 1981, 103(13): 3654-3658.
    [82] AD. Kumar, D. Welti, RR. Ernst. NMR fourier zeugmatography. Journal of Magnetic Resonance, 1975, 18(1): 6983.
    [83] V. Pejcev, D. Rassi, KJ. Ross. High-resolution ejected-electron spectrum of cadmium autoionising levels following two-electron excitation by low-energy impact. Journal of Physics B: Atomic, Molecular, and Optical Physics, 1977, 10(16): 1629-1633.
    [84] PC. Lauterbur, MH. Mendonca-Dias, AM. Rudin. Augmentation of tissue water proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. Frontiers of Biological Energetics. New York: Academic Press, 1978, 752-759.
    [85] JR. Mallard. The evolution of medical imaging. Perspectives in Biology and Medicine, 2003, 46(3): 349-370.
    [86] WA. Edelstein, JMS. Hutchison, G. Johnson, et al. Spin warp NMR imaging and application to human whole-body imaging. Physics in Medicine and Biology, 1980, 25: 751-756.
    [87] CL. Dumoulin, Methods of. and pulse sequences for. The suppression of undesired resonances by generation of quantum coherence in NMR imaging and spectroscopy. European Patent EP0239724, 1990.
    [88] D. Limitations. Manatee Population Estimates for the State of Florida.
    [89] P. Jezzard, PM. Matthews, SM. Smith. Functional MRI: An Introduction to Methods. Oxford Uninversity Press, USA, 2003.
    [90] MA. Yassa. Functional MRI User’s Guide. 2005. (http://pni.med.jhu.edu/intranet/fmriguide)
    [91] MD. Fox, AZ. Snyder, JL. Vincent, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 9673-9678.
    [92] MS. Cohen, SM. Kosslyn, HC. Breiter, et al. Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 1996, 119(89): 100.
    [93] GK. Aquirre, E. Zarahn, M. D’esposito. The variability of human, BOLD hemodynamic responses. Neuroimage, 1998, 8(4): 360-369.
    [94] HJ. Aizenstein, KA. Clark, MA. Butters, et al. The BOLD hemodynamic response in healthy aging. Journal of Cognitive Neuroscience, 2004, 16(5): 786-793.
    [95] HA. Al-Hallaq, X. Fan, M. Zamora, et al. Spectrally inhomogeneous BOLD contrast changes detected in rodent tumors with high spectral and spatial resolution MRI. NMR in Biomedicine, 2002, 15(1): 28-36.
    [96] J. Alvares-Linera, P. Martin-Plasencia, F. Maestu-Unturbe, et al. Hemispheric dominance for language and fuctional magnetic resonance a comparison of three tasks. Revista de. Neurologia., 2002, 35(2): 115-118.
    [97] A. Amedi, R. Malach, A. Pascual-Leone, et al. Negative BOLD differentiates visual imagery and perception. Neuron, 2003, 48(5): 859-872.
    [98] DJ. Amd, S. Romani. Search for fMRI BOLD signals in networks of spiking neurons. The European Journal of Neuroscience, 2007, 25(6): 1882-1892.
    [99]钱银峰.脑磁共振功能成像的基本原理及应用.国外医学:神经病学.神经外科学分册, 2000, 27(6): 327-329.
    [100]肖学宏.平面回波成像(EPI)技术的基本原理及应用.国外医学:临床放射学分册, 1997, 20(6): 347-351.
    [101]刘虎,张权,张云亭等. BOLD-fMRI在视觉研究中的应用.国外医学:临床放射学分册, 2004(4): 209-212.
    [102] A. Nakagoshi, M. Fukunaga, M. Umeda, et al. Somatotopic representation of acupoints in human somatosensory cortex.:An fMRI study. Magnetic Resonance in Medical Sciences, 2005, 4: 187-189.
    [103] G. Li, H.L.Liu, R.T. Cheung, Y.C. Hung, K.K. Wong, G.G. Shen, Q.Y. Ma, E.S. Yang. An fMRI study comparing brain activation between word generation and electrical stimulation of language-implicated acupoints. Human Brain Mapping, 2003, 18: 233-238.
    [104] B. Yan, K. Li, JY. Xu, et al. Acupoint-specific fMRI patterns in human brain. Neuroscience Letters, 2005, 383: 236-240.
    [105] CM. Siedentopf, SM. Golaszewski, FM. Mottaghy, et al. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neuroscience Letters, 2002, 327: 53-56.
    [106] G. Litscher, D. Rachbauer, S. Ropels, et al. Acupuncture using laser needles modulates brain function: first evidence from functional transcranial Doppler sonography and functional magnetic resonance imaging. Lasers in Medical Science, 2004, 19: 6-11.
    [107] IK. Gareus, MD. Lacour, AC. Schulte, et al. Is there a BOLD response of the visual cortex on stimulation of the vision-related acupoint GB 37? Journal of Magnetic Resonance Imaging, 2002, 15: 227-232.
    [108] J. Kong, TJ. Kaptchuk, JM. Webb, et al. Functional neuroanatomical investigation of vision-related acupuncture point specificity-a multisession fMRI study. Human Brain Mapping. 2009, 30(1): 38-46.
    [109] TB. Parrish, A. Schaeffer, M. Catanese, et al. Functional magnetic resonance imaging of real and sham acupuncture: Noninvasively measuring cortical activation from acupuncture. IEEE engineering in medicine and biology magazine, 2005, 24: 35-40.
    [110] KM. Hu, CP. Wang, HJ. Xie, et al. Observation on activating effectiveness of acupuncture at acupoints and non-acupoints on different brain regions. [Chinese] Zhongguo Zhen Jiu, 2006, 26: 205-207.
    [111] G. Li, HL. Liu, RT. Cheung, et al. An fMRI study comparing brain activation between word generation and electrical stimulation of language-implicated acupoints. Human Brain Mapping, 2003, 18: 233-238.
    [112] H. Wei, CH. Tu, PP. Chen, et al. Early-latency somatosensory evoked potentials elicited acupuncture after needling acupoint LI-4. Clinical EEG Electroencephalography, 2000, 31: 160-164.
    [113] A. Li, J. Zhang, Y. Xie. Human acupuncture points mapped in rats are associated with excitable muscle/skin-nerve with enriched nerve endings. Brain Research., 2004, 1012: 154-159.
    [114] CA. Vincent, PH. Richardson, JJ. Black, et al. The significance of needle placement site in acupuncture. Journal of Psychosomatic Research, 1989, 33: 489-496.
    [115] AC. Gaw, LW. Chang, LC. Shaw. Efficacy of acupuncture on ostearthritic pain: a controlled double-blind study. The New England Journal of Medicine, 1975, 293(8): 375-378.
    [116] J. Kleinhenz, K. Streitberger, J. Windeler, et al. Randomized clinical trial comparing the effects of acupuncture and a newly designed placebo needle in rotator cuff tendonitis. Pain, 1999, 83(2): 235-241.
    [117] J. Hesse, B. Mogevang, H. Simonsen. Acupuncture versus metoprodol in migtaine prophylaxis: a randomized trial of trigger point deactivation. Journal of Internal Medicine, 1994, 235(5): 451-456.
    [118] L. Lao, S. Bergman, R. Anderson, et al. The effect of acupuncture on postoperative oral surgery pain: a pilot study. Acupuncture in Medicine, 1994, 12: 13-17.
    [119] EK. Farran, C. Jarrold, SE. Gathercole. Block design performance in the Williams syndrome phenotype: a problem with mental imagery? Journal of Child Psychology and Psychiatry, 2001, 42(6): 719-728.
    [120]贾富仓,翁旭初.事件相关功能磁共振成像.生理科学进展, 2001, 32(4): 368-370.
    [121] J. Ashburner, K. Friston, W. Penny. Human Brain Function, second edition. Academic Press, London, 2004.
    [122] MM. Monti. Statistical analysis of fMRI time-series: a critical evaluation of the GLM approach.
    [123] YC. Hong, F. Hua, DZ. Yao. A new general linear convolution model for fMRI data process. Journal of Electronic Science and Technology of China, 2005, 3(1):68-71.
    [124] DG. Leibovici, S. Smith. Comparing groups of subjects in fMRI studies: a review of the GLM approach. Technical report, www.fmrib.ox.ac.uk/analysis/techrep, 2000.
    [125] IR. Keck, FJ. Theis, P. Gruber, et al. 3D spatial analysis of fMRI data: a comparison of ICA and GLM analysis on a word perception task. International Joint Conference on Neural Networks, 2004, 2495-2499.
    [126] S. Hayasaka, et al. Parametric cluster size tests: a comparision between SPM package and fMRI stat package.
    [127] J. Talairach and P. Tournoux, "Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System - an Approach to Cerebral Imaging", Thieme Medical Publishers, New York, 1988.
    [128]杨福生,洪波.独立分量分析的原理与应用.北京:清华大学出版社, 2006.
    [129] A. Hyvarinen, J. Karhunen, E. Oja. Independent component analysis. New York: John Wiley & Sons INC, 2001.
    [130] MJ. Mckeown, S. Makeig, GG. Brown, et al. Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 1998. 6(3): 160-188.
    [131] KJ. Friston. Modes or models: a critique on independent component analysis for fMRI. Trends in Neurosciences, 1998, 2(10): 373-375.
    [132] MJ. Mckeown, S. Makeig, G. Brown, et al. Modes or models: A critique on independent component analysis for fMRI-reply to commentary by Prof Friston. Trends in Cognitive Sciences, 1998, 2(10): 375.
    [133] MJ. Mckeown, TP. Jung, S. Makeig, et al. Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 803-810.
    [134] MJ. Mckeown, TP. Jung, S. Makeig, et al. Spatial independent activity patterns in functional MRI data during the stroop color-naming task. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(3): 803-810.
    [135] BB. Biswal, JL. Ulmer. Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. Journal of computer assisted tomography, 1999, 23(2): 265-271.
    [136] CH. Mortiz, et al. Whole brain functional MR imaging activation from a finger-tapping task examined with independent component analysis. AmericanJournal of Neuroradiology, 2000, 21: 1629-1635.
    [137]李可,闫镔,单保慈.功能磁共振图像处理的ICA方法综述.中国图像图形学报, 2005, 10(5): 561-567.
    [138] B. Biswal, FZ. Yetkin, VM. Haughton, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetica Resonance Medicine, 1995, 34(4): 537-541.
    [139] G. Kruger, GH. Glover. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magnetic Resonance Medical, 2001, 46(4): 631-637.
    [140] JH. Gao, I. Miller, S. Lai, et al. Quantitative assessment of blood inflow effects in functional MRI signal. Magnetic Resonance Medical, 1996, 36(2): 314-319.
    [141] VD. Calhoun, T. Adali, GD. Pearlson. Independent components analysis applied to fMRI data: A generative model for validating results. Journal of VLSI Signal Processing Systems, 2004, 37(2): 281-291.
    [142] MD. Greicius, G. Srivastava, AL. Reiss, et al. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 4637-4642.
    [143] TD. Wager, TE. Nichols. Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage, 2003, 18(2): 293-309.
    [144] JR. Amaro, GJ. Barker. Study design in fMRI: Basic Principles. 2006.
    [145] E. Zarahn, GK. Aguirre, M. D’Esposito. A trial-based experimental design for fMRI. Neuroimage, 1997, 6(2): 122-138.
    [146]张怀岭,张宏杰,包尚联.血氧水平依赖磁共振脑功能成像.北京生物医学工程, 2004, 23(2): 150-151.
    [147] WT. Zhang, Z. Jin, F. Luo, et al. Evidence from brain imaging with fMRI supporting functional specificity of acupoint in humans. Neuroscience Letters, 2004, 354: 50-53.
    [148] RP. Dhond, C. Yeh, K. Park, et al. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain, 2008, 136(3): 407-418.
    [149]秦伟.基于功能磁共振的针刺机理初步研究-从问题到方法.博士学位论文,中国科学院自动化研究所,北京, 2007.
    [150] ME. Raichle, AM. MacLeod, AZ. Snyder, et al. A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 676-682.
    [151] MD. Greicius, B. Krasnow, AL. Reiss, et al. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(1): 253-258.
    [152] KJ. Friston, J. Asbburner, CD. Frith, et al. Spatial registration and normalization of images. Human Brain Mapping., 1995(2): 165-189.
    [153] AJ. Bell, TJ. Sejnowski. An information-maximization approach to blind separation and blind deconvolation. Neural Computation, 1995, 7: 1129-1159.
    [154] MJ. Mckeown, S. Makeig, GG. Brown, et al. Analysis of fMRI data by blind separation into independent spatial compoents. Human Brain Mapping, 1998, 6: 160-188.
    [155] VD. Calboun, T. Adali, GD. Pearlson, et al. A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 2001, 14: 140-151.
    [156] VD. Calboun, JJ. Pekar, VB. McGinty. Different activation dynamics in multiple neural systems during simulated driving. Human Brain Mapping, 2002, 16: 158-167.
    [157] JR. Duann, TP. Jung, WJ. Kuo. Single-trial variability in event-related BOLD signals. Neuroimage, 2002, 15:823-835.
    [158] Y. Li, T. Adali, VD. Calboun. Estimating the number of independent component for fMRI data. Human Brain Mapping, 2007, 28:1251-1266.
    [159] M, Corbetta, GL. Shulman. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 2002, 3: 201-215.
    [160] C. Grefkes, GR. Fink. The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy., 2005, 207(1): 3-17.
    [161] C. Sorg, V. Riedl, M. Muhlau, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47):18760-18765.
    [162] O. Devineky, MJ. Morrell, BA. Vogt. Contributions of anterior cingulate cortex to behavior. Brain, 1995, 118(1): 279-306.
    [163] SW. Derbyshire, AR. Jones, F. Gyulai, et al. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain, 1997, 73(3): 431-445.
    [164] LR. Becerra, HC. Breiter, M. Stojanovic, et al. Human brain activation under controlled thermal stimulation and habituation to noxious heat.: an fMRI study.Magnetic Resonance in Medicine, 1999, 41(5): 1041-1057.
    [165] BV. Manyam, JR. Sancher-Ramos. Traditional and complemantary therapies in Parkinson’s disease. Advances in neurology, 1999, 80: 565-574.
    [166] Y. Zhang, W. Qin, P. Liu, J. Tian, J.M. Liang, K.M. von Deneen, Y.J. Liu, An fMRI study of acupuncture using independent component analysis, Neuroscience Letters 449 (2009) 6-9.
    [167] W. Qin, J. Tian, L.J. Bai, X.H. Pan, L. Yang, P. Chen, J.P. Dai, L. Ai, B.X. Zhao, Q.Y. Gong, W. Wang, K.M. von Deneen, Y.J. Liu, FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network, Molecular Pain 2008 4:55 doi: 10.1186/1774-8069-4-55.
    [168] GW. Liu. Acupoints of three Yang meridians of foot, A complementary work of present acupuncture and moxibustion. Tianjin: Huaxia Publishing House, 1997, 327-479.
    [169] XM. Su. The foundations of Chiese Medicine. A complementary text for acupuncturists and herbalists. Edinburgh Churchill Livingtone, 1989, 367-380.
    [170] T. Kent, D. Bibitchkov, M. Tsodyks, et al. Spontaneous emerging cortical representation of visual attributes. Nature, 2003, 425: 954-956.
    [171] K. Christoff, JM. Ream, JDE. Gabrieli. Neural basis of spontaneous thought process. Cortex, 2004, 40: 623-630.
    [172] PE. Roland, B. Gulyas. Visual imagery and visual representation. Trends in Neuroscience, 1994, 17: 281-287.
    [173] A. Ishai, D. Sagi. Common mechanism of visual imagery and perception. Science, 1995, 268: 1772-1774.
    [174] K. Wang, TZ. Jiang, CS. Yu, et al. Spontaneous activity associated with primary visual cortex: a resting-state fMRI study. Cerebral Cortex, 2008, 18(3): 697-704.
    [175] H.L. Fields, A.L. Basbaum, Central nervous system mechanisms of pain modulation. In: P.D. Wall and R. Melzack (eds), Textbook of Pain, London: Churchill Livingstone 1999: 309–329.
    [176] R. Peyron, B. Laurent, L. Garcia-Larrea, Functional imaging of brain responses to pain. A review and meta-analysis, Clinical Neurophysiology 30 (2000) 263-288.
    [177] GL. Shulman, JA. Fiez, M. Corbetta, et al. Common blood flow changes across virtual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 1997, 9: 648-663.
    [178] JR. Binder, JA. Frost, TA. Hamumeke, et al. Conceptual processing during the conscious resting state: a functional MRI study. Journal of CognitiveNeuroscience, 1999, 11: 80-93.
    [179]田丽霞.基于功能磁共振成像的静息状态脑活动及功能连接度分析.博士学位论文,中国科学院自动化研究所,北京, 2006.
    [180] MJ. Low, BJ. Mock, JA. Sorenson. Functional connectivity in single and multislice echoplanar imaging using resting state fluctuation. Neuroimage, 1998, 7: 119-132.
    [181] J. Xiong, LM. Parsons, JH. Gao. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Human Brain Mapping, 1999, 8: 151-156.
    [182] D. Cordes, V. Haughton, K. Arfanakis, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology, 2000, 21: 1636-1644.
    [183] D. Cordes, V. Haughton, K. Arfankis, et al. Frequencies contributing to functional connectivity in the cerebral cortex in“resting-state”data. American Journal of Neuroradiology, 2001, 22: 1326-1333.
    [184] P. Fransson. Spontaneous low-frequency BOLD signal fluctuations– an fMRI investigation of the resting state default mode of brain function hypothesis. Huaman Brain Mapping, 2005, 26: 15-29.
    [185] SJ. Li, Z. Li, GH. Wu, et al. Alzheimer’s disease: evaluation of a functional MR imaging index as a marker. Radiology, 2002, 225: 253-259.
    [186] MJ. Low, MD. Phillips, JT. Lurito, et al. Multiple scleronsis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity-initial results. Radiology, 2002, 224: 184-192.
    [187] L. Wang, YF. Zang, Y. He, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage, 2006, 31: 496-501.
    [188] AB. Waites, RS. Briellmann, MM. Saling, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Annals Neuraology, 2006, 59: 335-343.
    [189] DA. Seminowicz, KD. Davis. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. Journal of Neurophysiology, 2007, 97: 3651-3659.
    [190] E. Andrea, Cavanna, R. Michael. The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006, 129: 564-583.
    [191] RL. Bluhm, J. Miller, RA. Lanius, et al. Spontaneous low-frequency fluctuationsin the BOLD signal in Schizophrenic patients: Anomalities the default network. Schiophr Bull, 2007, 33: 1004-1012.
    [192] DP. Kennedy, E. Courchesne. The intrinsic functional organization of the brain is altered in autism. Neuroimage, 2008, 39: 1877-1885.
    [193] P. Frasson, G. Marretec. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage, 2008, 42(3): 1178-1184.
    [194] Y. Nir, U. Hasson, I. Levy, et al. Widespread functional connectivity and fMRI fluctuations in human cortex in the absence of visual stimulation. Neuroimage, 2006, 30: 1313-1324.
    [195] Y. Miyashita. Neural correlate of visual associated long-term memory in the primate temporal cortex. Nature, 1988, 335: 817-820.
    [196] BA. Vogt. Pain and emotion interactions in subregions of the cingulate gyrus . Nature Reviews Neuroscience, 2005, 6: 533-544.
    [197] KL. Casey, P. Svensson, TJ. Morrow, et al. Selective opiate modulation of nociceptive in the human brain. Journal of Neurophysiology, 2000, 84: 525-533.
    [198] CL. Kwan, AP. Crawley, DJ. Mikulis, et al. An fMRI study of the anterior cingulated cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli. Pain, 2000, 85: 359-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700