用户名: 密码: 验证码:
大豆寡糖对肠道微生态与免疫功能的调控作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
婴幼儿消化生理功能尚未发育成熟,断奶或食物的改变常引起肠道免疫应激和功能紊乱,致使消化吸收不良,导致生长发育迟缓。大豆寡糖来源丰富、无有害残留,且具有明显的益生素作用,但对其调节肠道微生态和免疫功能的作用了解不多。由于仔猪断奶时期的生理特点与婴幼儿非常接近,本研究以断奶环江香猪作为试验动物,通过体内、体外试验分析大豆寡糖对肠道微生态及免疫功能的调节作用,并探讨其机制,为改善婴幼儿的营养供给提供新思路,同时为大豆寡糖的综合开发利用提供理论依据。
     1.大豆寡糖对小肠形态与营养物质代谢的影响:选用体重为3.19kg左右的21日龄断奶环江香猪,随机分成2组加以不同处理,每个处理6个重复,单栏饲养,分别饲喂基础日粮(对照组)和添加大豆寡糖的基础日粮(大豆寡糖组),自由采食和饮水,试验期为14d。记录每天的采食量,分别于试验开始和结束时称取空腹体重并采集血液,肝素抗凝,离心分离血浆,测定生化参数和游离氨基酸的浓度;采血后,按常规方法进行屠宰,采集小肠组织,测定基因表达、并观察组织形态;再选用10头环江香猪,随机分为2组,处理同前。预试期4d,正试期3d,收集粪样,指示剂法测定粗蛋白和粗脂肪的表观消化率。结果表明,与对照组相比,大豆寡糖组仔猪生长性能无显著变化(P>0.05);血浆甘油三酯、尿素氮和血氨浓度显著下降(P<0.05),总蛋白浓度显著升高(P<0.05);血浆甘氨酸、组氨酸、赖氨酸、精氨酸和蛋氨酸的浓度均显著升高(P<0.05);空肠SGLT1、 GLUT2mRNA的表达量显著高于回肠(P<0.05),并显著高于对照组(P<0.05);小肠绒毛高度与隐窝深度之比显著升高(P<0.05);大豆寡糖组仔猪粗蛋白和粗脂肪的表观消化率均有提高趋势(P>0.05)。
     2.大豆寡糖对肠道微生物区系及其代谢产物的影响:收集空肠、回肠、盲肠和结肠内容物,测定断奶环江香猪肠道微生物区系、肠道内容物中部分细菌数量变化及其代谢产物的含量。结果表明,大豆寡糖组仔猪回肠和结肠内容物中微生物的多样性增加,其中双歧杆菌、短双歧杆菌、罗氏菌属和产丁酸菌(梭杆菌属)等有益菌群的数量及其代谢产物丙酸、丁酸等短链脂肪酸的含量均显著增加(P<0.05),大肠杆菌、梭菌属和链球菌等有害细菌的数量及异丁酸、异戊酸和氨等蛋白质分解代谢产物显著减少(P<0.05)。
     然后进行体外发酵试验,厌氧收集环江香猪的空肠、回肠、盲肠和结肠内容物作为接种物,分别以0(对照组)、0.5%、1.0%、2.0%、5.0%、8.0%大豆寡糖(大豆寡糖组)、2.0%葡萄糖(葡萄糖组)为底物体外发酵。于接种后0、1、2、4、6、8、10、12、14、16、18、20、22、24、30、36和48h记录产气量,用产气动力学方程分析大豆寡糖的发酵特性,并于发酵48h结束后检测发酵液pH值、NH3-N和短链脂肪酸的浓度以及微生物区系。结果表明:各添加剂量的大豆寡糖组最大理论产气量和产气速率均显著高于对照组、显著低于葡萄糖组(P<0.05),接种回肠内容物的大豆寡糖组产气速率显著低于葡萄糖组,但在结肠内容物发酵液中却显著高于葡萄糖组(P<0.05),接种结肠和盲肠内容物的大豆寡糖组和葡萄糖组的体外发酵延滞产气时间均显著低于对照组(P<0.05);各肠段内容物的大豆寡糖组发酵液pH值、NH3-N浓度均低于、短链脂肪酸浓度均高于对照组,其中乙酸浓度随大豆寡糖添加剂量的增加呈减少趋势、丙酸和丁酸浓度呈增加趋势,2.0%大豆寡糖组结肠发酵液中丁酸浓度最高;随着大豆寡糖添加量的增加,肠道微生物区系与有益细菌数量先增加再减少,而有害细菌数量呈先减少后增加的趋势。
     3.大豆寡糖对免疫功能与肠道紧密连接的影响:测定血浆中免疫球蛋白和细胞因子的浓度;采集脾脏、回肠和结肠组织,分析免疫相关基因和肠道紧密连接基因的mRNA表达。结果表明:大豆寡糖增加了血浆免疫球蛋白IgG和IL-10的浓度,减少了血浆中IL-1p的浓度(P<0.05):脾脏、回肠和结肠TNF-α、IL-1β和IL-8mRNA以及TLR2-NF-KB mRNA的表达降低,结肠和脾脏中IL-10mRNA的表达显著升高(P<0.05);回肠和结肠紧密连接蛋白ZO-1mRNA的表达水平显著提高(P<0.05)。
     综上所述,大豆寡糖可显著增加肠道微生态的多样性,提高肠道有益菌的数量、抑制有害菌的增殖,从而减少了蛋白质在大肠中的分解代谢;改善肠道形态结构,调节免疫功能,增强肠黏膜屏障功能,促进了营养物质的代谢。
Owing to digestive physiology has not yet mature in infant, after weaning or food changes, the infant often show a series of negative phenomena due to intestinal immune stress and dysfunction, which result in digestive function disorders, growth delay. Soybean oligosaccharide (SBOS) has rich source, no harmful residues and obvious probiotic effect, however, there is much limited information regarding the effects of SBOS on immune function and intestinal microecology. In post-weaning pigs, an experimental model which is considered as more relevant for human nutrition extrapolation than rodents, especially infant. In that overall context, the aim of this study was to investigate the probiotic effect of SBOS as a dietary additive on intestinal microecology and immune function in vivo and in vitro, and its underlying mechanism for weaned piglets were used as animal models. These results provide a new way to improve nutrition supply for the infant and theoretical basis for comprehensive development and utilization of SBOS.
     1. Effects of SBOS on small intestinal morphology and nutrient metabolism: Twelve Huanjiang mini-piglets weaned at21d of age with an average body weight of3.19kg were randomly allocated into two groups with six replicates in the feeding trial. The piglets were fed with a0.5%of corn starch (control group), or0.5%of SBOS in a corn-and soybean meal-based diet for14days. Feed intake per piglet was recorded daily, and the body weight was got at the beginning or end of this trail, as well as collecting the blood. The plasma were separated by centrifugation and used for measuring biochemical parameters and concentrtions of free amino acids. And then, the jejunum and ileum were collected for histological analysis, the mRNA expression abundances of sodiuml glucose cotransporter (SGLT1) and glucose transporfer (GLUT2) in jejunum and ileum were determined by relative quantitative RT-PCR respectively. And then Ten Huanjiang mini-piglets were randomly assigned to two groups receiving either dietary supplementation with0.5%of corn starch (control group), or0.5%of SBOS in a corn-and soybean meal-based diet as same as the feeding trial in the digestion trial. After4d pretrial and3d official test, the feces were collected to determine the digestibility of dry matter, crude protein and crude fat by indicator method. The results showed:compared with the control group, dietary supplementing SBOS decreased (P<0.05) the plasma concentrtions of triglyceride, urea nitrogen and ammonia, while increased (P<0.05) the plasma content of total protein, and the plasma contents of glycine, histidine, lysine, arginine and metione; the mRNA expression of SGLT1and GLUT2in jejunum of SBOS group were higher (P<0.05) than ileum, as well as than that of the control group (P<0.05); SBOS increased the ratio of villus height and fossae depth in small intestinal (P<0.05); SBOS increased (P>0.05) the apparent digestibility of crude protein and crude fat in comparison with the control group (P>0.05).
     2. Effects of SBOS on intestinal microflora and its metabolite:the jejunum, ileum, cecum and colon and their contents were collected to determine the concentrations in the luminal contents of ammonia and short-chain fatty acid (SCFA), as well as gut microflora composition. The results showed that dietary supplementation with SBOS increased the diversity of ileum and colon microflora, and promoted (P<0.05) the amounts of some presumably beneficial intestinal bacteria (Bifidobacterium, Faecalibacterium prausnitzii, Fusobacterium prausnitzii and Roseburia) as well as the amounts of SCFAs in the intestinal luminal content, while diminishing (P<0.05) bacteria with pathogenic potential(Escherichia Coli, Clostridium and Streptococcus) and the amount of several protein-derived catabolites (isobutyrate, isovalerate and NH3-N).
     And then in vitro, sterile jejunum, ileum, cecum or colon content as the inoculum were collected from Huanjiang pigs to conduct in vitro fermentation using SBOS at the concentrations of0,0.5,1.0,2.0,5.0and8.0%, and2.0%glucose as the substrates. The gas production at0,1,2,4,6,8,10,12,14,16,18,20,22,24,30,36and48h, pH, and the contents of NH3-N, acetic acid, propanoic acid, butyric acid and microflora in the fermentation broth were determined after48h fermentation in an anaerobic system. Results indicated that the maximum amount and rate of gas production in the fermentation broth supplemented with SBOS were higher than those of the control group, lower than glucose group (P<0.05), while an obvious lag in gas-producing time was observed in fermentation broth of colon or cecal group supplemented with SBOS and glucose were lower than the control group (P<0.05); The pH and NH3-N concentration in fermentation broth supplemented with2.0%SBOS were lower (P<0.05) than the control group (P<0.05); The concentration of short chain fatty acids (SCFA) in the groups supplemented with SBOS and glucose was higher than that of the control group (P<0.05), the concentration of acetic acid was decreased due to the addition of SBOS, while the concentration of propionate acid and butyrate acid exhibited a gradual increase. The maximum content of butyrate acid was observed in the fermentation broth of colon group supplemented with2.0%SBOS; With the additive amount of SBOS increased, the microflora diversity and beneficial bacteria have increased and then decreased, while bacterial pathogens has suppressed as the concentration of SBOS increased and then enriched. Therefore, SBOS is beneficial to gut health as functional food or feed additives to promote the intestinal microbial fermentation, increase the proportion of butyric acid in the fermented broth, reduce the pH and concentration of NH3-N.
     3. Effects of SBOS on the immune function and intestinal barrier:the spleen, ileum and colon were collected to determine the expression levels in mRNA of cytokines and tight junctions-associated proteins, as well as the concentrations of immune globulin and cytokines in the plasma. The results indicated that dietary supplementation with SBOS increased (P<0.05) concentrations of immunoglobulins and IL-10in plasma, expression levels of IL-10mRNA in colon and spleen, and ZO-1mRNA in ileum and colon; while decreased (P<0.05) concentrations of IL-1β in plasma, expression levels of TNF-a, IL-1β and IL-8mRNA in spleen, ileum and colon, as well as TLR2-NF-κB mRNA levels.
     These findings suggested that dietary supplementation with SBOS could effectively promote the diversity of intestinal microflora, enrich beneficial intestinal microflora and suppress bacterial pathogens in intestine, and resulte to reduce the protein catabolism in the large intestine; improve the intestinal morphology, immune function, enhance the barrier function of the intestinal mucosa, promote metabolism of intestinal nutrients.
引文
[1]Wershil B K, Furuta G T. Gastrointestinal mucosal immunity [J]. Journal of Allergy and Clinical Immunology,2008,121(2):S380-S383.
    [2]Baumgart D C, Sandborn W J. Gastroenterology 2-Inflammatory bowel disease:clinical aspects and established and evolving therapies [J]. Lancet,2007,369(9573):1641-1657.
    [3]Lalles J P, Bosi P, Janczyk P, et al. Impact of bioactive substances on the gastrointestinal tract and performance of weaned piglets:a review [J]. Animal,2009,3(12):1625-1643.
    [4]Gibson G R, Roberfroid M B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics [J]. Nutrition,1995,125:1401-1412.
    [5]Yazawa K, Tamura Z. Search for sugar sources for selective increase of Bifidobacteria [J]. Bifidobacteria and Microflora,1982,1:39-44.
    [6]Lu J H, Teh C, Kishore U, et al. Collectins and ficolins:sugar pattern recognition molecules of the mammalian innate immune system [J]. Biochimica et Biophysica Acta,2002,1572(2-3): 387-400.
    [7]Ziemer C J, Gibson G R. An overview of probiotcs, prebiotics and synbiotics in the functional food concept:Perspectives and future strategies [J]. International Dairy Journal,1998,8: 473-479.
    [8]Sako T, Matsumoto K, Tanaka R. Recent progress on research and applications of non-digestible galacto-oligosaccharides [J]. International Dairy Journal,1999,9:69-80.
    [9]Sangeetha P T, Ramesh M N, Prapulla S G. Recent trends in the microbial production, analysis and application of fructooligosaccharides [J]. Trends in Food Science & Technology,2005, 16:442-457.
    [10]Yun J W. Fructooligosaccharides-occurrence, preparation and application [J]. Enzyme and Microbial Technology,1996,19:107-117.
    [11]Lina B A R, Jonker D, Kozianowsky G Isomaltulose (Palatinose):A review of biological and toxicological studies [J]. Food and Chemical Toxicology,2002,40:1375-1381.
    [12]Singh M, Sharma R, Banerjee V C. Biotechnological applications of cyclodextrins [J]. Biotechnology Advances,2002,20:341-359.
    [13]Johansen H N, Glitso V, Knudsen K E B. Influence of extraction solvent and temperature on the quantitative determination of oligosaccharides from plant materials by high-performance liquid chromatography [J]. Journal of Agricultural and Food Chemistry,1996,44:1470-1474.
    [14]Villamiel M, Corzo N, Foda M I, et al. Lactulose formation catalysed by alkaline-substituted sepiolites in milk permeate [J]. Food Chemistry,2002,76:7-11.
    [15]Park Y K, Almeida M M. Production of fructooligosaccharides from sucrose by a transfructosylase from Aspergillus niger [J]. World Journal of Microbiology and Biotechnology,1991,7:331-334.
    [16]Crittenden R G, Playne M J. Production, properties and applications of food-grade oligosaccharides [J]. Trends Food Science Technology,1996,7:353-361.
    [17]Kaneko T, Kohmoto T, Kikuchi H, et al. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria [J]. Bioscience, Biotechnology, and Biochemistry,1994,58:2288-2290.
    [18]Karr-Lilienthal L K, Kadzere C T, Grieshop C M, et al. Chemical and nutritional properties of soybean carbohydrates as related to non-ruminants [J]. Livestock Production Science,2005, 97:1-12.
    [19]Roberfroid M, Slavin J. Nondigestible oligosaccharides [J]. Critical Reviews in Food Science and Nutrition,2000,40:461-480.
    [20]Vazquez M J, Alonso J L, Dominguez H, et al. Xylooligosaccharides:Manufacture and applications [J]. Trends in Food Science & Technology,2000,11:387-393.
    [21]Rivero-Urgell M, Santamaria-Orleans A. Oligosaccharides:Application in infant food [J]. Early Human Development,2001,65:S43-S52.
    [22]Delzenne N M, Roberfroid M R. Physiological effects of nondigestible oligosaccharides [J]. Food Science and Technology,1994,27:1-6.
    [23]Manning T S, Gibson G R. Prebiotics [J]. Best Practice & Research Clinical Gastroenterology, 2004,18:287-298.
    [24]Bielecka M, Biedrzycka E, Majkowska A, et al. Effect of non-digestible oligosaccharides on gut microecosystem in rats [J]. Food Research International,2002,35:139-144.
    [25]Bouhnik Y, Flourie B, Riottot M, et al. Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans [J]. Nutrition Cancer,1996,26:21-29.
    [26]Christi S U, Gibson G R, Cummings J H, et al. Role of dietary sulphate in the regulation of methanogenesis in the human large intestine [J]. Gut,1992,33:1234-1238.
    [27]Kolida S, Tuohy K, Gibson G R. Prebiotic effects of inulin and oligofructose [J]. The British Journal of Nutrition,2002,87(2):193-197.
    [28]Gibson G R, Beatty E B, Wang X, et al. Selective stimulation of bifidobacteria in the human colon by fructo-oligofructoses (GFn+Fm) and inulin [J]. Gastroenterology,1995,108: 975-982.
    [29]Gibson G R, Wang X. Bifidogenic properties of different types of fructooligosaccharides [J]. Food Microbiol,1994,11:491-498.
    [30]Oyarzabal O A, Conner D E. In vitro fructooligosaccharide utilization and inhibition of Salmonella spp. by selected bacteria [J]. Poultry Science,1995,74:1418-1425.
    [31]Bailey J S, Blankenship L C, Cox N A. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine [J]. Poultry Science,1991,70:2433-2438.
    [32]Chadwick R W, George S, Claxton L D. Role of the gastrointestinal mucosa and microflora in the bioactivation of dietary and environmental mutagens or carcinogens [J]. Drug Metabolism Reviews,1992,24:425-492.
    [33]Gorbach S L, Goldin B R. The intestinal microflora and the colon cancer connection [J]. Review of Infectious Diseases,1990,12:252-2611.
    [34]Christiane M, Christian P, Michael W P, et al. Inulin and probiotics in newly weaned piglets: effects on intestinal morphology, mRNA expression levels of inflammatory marker genes and haematology [J]. Archives of animal nutrition,2010,64(4):304-321.
    [35]Rastall R A, Gibson G R, Gill H S, et al. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health:an overview of enabling science and potential applications [J]. FEMS Microbiol Ecology,2005,52(2): 145-152.
    [36]Buddington R K, Williams C H, Chen S C, et al. Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects [J]. American Journal of Clinical Nutrition,1996,63:709-716.
    [37]Tzortzis G, Goulas K, Gee M, et al. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo [J]. Journal of Nutrition,2005,135(7):1726-1731.
    [38]Blachier F, Mariotti F, Huneau J F, et al. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences [J]. Amino Acids,2007,33: 547-562.
    [39]Challa A, Rao D R, Chawan C B, et al. Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats [J]. Carcinogenesis,1997,18: 517-521.
    [40]Ballongue J, Schumann C, Quignon P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity [J]. Scandinavian Journal of Gastroenterology,1997,32:41-44.
    [41]Vulevic J, Drakoularakou A, Yaqoob P, et al. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers [J]. American Journal of Clinical Nutrition,2008,88(5):1438-1446.
    [42]Alles M S, Katan M B, Salemans J M J L, et al. Bacterial fermentation of fructooligosaccharides and resistant starch in patients with an ileal pouch-anal anastomosis [J]. American Journal of Clinical Nutrition,1997,66:1286-1292.
    [43]Andriamihaja M, Davila A M, Eklou-Lawson M, et al. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high protein diet [J]. American Journal of Physiology,2010,299:G1030-G1037.
    [44]Andriamihaja M, Chaumontet C, Tome D, et al. Butyrate metabolism in human colon carcinoma cells:implications concerning its growth-inhibitory effect [J]. Journal Cell Physiology,2009,218:58-65.
    [45]Sakaguchi E, Sakoda C, Toramaru Y. Caecal fermentation and energy accumulation in the rat fed on indigestible oligosaccharides [J]. British Journal of Nutrition,1998,80:469-476.
    [46]Delzenne N M, Williams C M. Prebiotics and lipid metabolism [J]. Current Opinion in Lipidology,2002,13(1):61-67.
    [47]Cheng H H, Lai M H. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats [J]. J Nutrition,2000,130(8):1991-1995.
    [48]Dora I A, Pereira G, Gibson R. Effects of Consumption of Probiotics and Prebiotics on Serum Lipid Levels in Humans [J]. Critical Reviews in Biochemistry and Molecular Biology,2002, 37(4):259-281.
    [49]Fiordaliso M F, Kok N, Desager J P, et al. Oligofructose-supplemented diet lowers serum and VLDL concentrations of triglycerides, phospholipids and cholesterol in rats [J]. Lipids,1995, 30:163-167.
    [50]Chonan 0, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats [J]. Bioscience Biotechnology Biochemistry,1995,59:236-239.
    [51]Delzenne N M, Kok N. Effects of fructans-type prebiotics on lipid metabolism [J]. America J Clinic Nutrition,2001,73(1):456S-458S.
    [52]Jerkins A A, Liu W, Lee S, et al. Characterization of the murine mitochondrial glycerol-3-phosphate acetyltransferase promoter [J]. Journal of biological chemistry,1995, 270:1416-1421.
    [53]Brittany M V B, David C H, Thomas W B, et al. Carbohydrate s blended with polydextrose lower gas production and short-chain fatty acid production in an in vitro system [J]. Nutrition Research,2009,29:631-639.
    [54]John L R. Investigations of short-chain fatty acids in humans [J]. Clinical Nutrition Supplements,2004,1:19-23.
    [55]Niot I, Poirier H, Tran T T T, et al. Intestinal absorption of long-chain fatty acids:evidence and uncertainties [J]. Progress in Lipid Research,2009,48:101-115.
    [56]Preter V D, Hamer H M, Windey K, et al. The impact of pre-and/or probiotics on human colonic metabolism:Does it affect human health? [J] Molecular Nutrition & Food Research, 2011,55:46-57.
    [57]Younes H, Garleb K, Behr S, et al. Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum [J]. Journal of Nutrition,1995, 125:1010-1016.
    [58]Takahara A, Morohashi T, Sano T, et al. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats [J]. Journal of Nutrition,2000,130: 1792-1795.
    [59]孙晓红.菊粉和低聚果糖可增加钙的吸收利用[J].中国骨质疏松杂志,2003,9(1):83-85.
    [60]Minoru K, Kozo K, Takashi S. Dietary lactosucrose affects calcium content in scales of juvenile red sea bream pagrus major under artificial rearing [J]. Aquaculture Science,2007, 55(2):271-278.
    [61]Scharrer E, Lutz T. Effects of short chain fatty acids and K on absorption of Mg and other cations by the colon and caecum [J]. Zeitschrift fur Ernahrungswissenschaft,1990,29 (3): 162-168.
    [62]Ohta A, Ohtsuki M, Uehara M, et al. Dietary fructooligosaccharides prevent postgastrectomy anemia and osteopenia in rats [J]. Journal of Nutrition,1998,128(3):485-489.
    [63]Coudray C, Bellanger J, Castiglia-Delavaud C, et al. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men [J]. European Journal of Clinical Nutrition,1997,51:375-380.
    [64]杨继远,袁仲.大豆低聚糖保健功能及其在食品工业中的应用[J].食品工业科技,2008,29(10):291-295.
    [65]Tomomatsu H. Health effects of oligosaccharides [J]. Food Technology,1994,48:61-65.
    [66]Spiegel J E, Rose R, Karabell P, et al. Safety and benefits of fructo oligosaccharides as food ingredients [J]. Food Technology,1994,48:85-89.
    [67]Gibson G R. Fibre and effects on probiotics (the prebiotic concept) [J]. Clinical Nutrition Supplements,2004,1:25-31.
    [68]Remaud-Simeon M, Willemot R, Sarcabal P, et al. Glucansucrases:Molecular engineering and oligosaccharide synthesis [J]. Journal of Molecular Catalysis B:Enzymatic,2000, 10(1-3):117-128.
    [69]Goulas A K, Fisher D A, Grimble G K, et al. Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase [J]. Enzyme and Microbial Technology,2004,35:327-338.
    [70]Del Valle E M M. Cyclodextrins and their uses:A review [J]. Process Biochemistry,2004,39: 1033-1046.
    [71]Van Laere K M J, Hartemink R, Bosveld M, et al. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria [J]. Journal of Agricultural and Food Chemistry,2000,48:1644-1652.
    [72]Lequart C, Nuzillard J, Kurek B, et al. Hydrolysis of wheat bran and straw by an endoxylanase:Production and structural characterization of cinnamoyl-oligosaccharides [J]. Carbohydrate Research,1999,319:102-111.
    [73]Charalampopoulos D, Wang R, Pandiella S S, et al. Application of cereals and cereal components in functional foods:A review [J]. International Journal of Food Microbiology, 2002,79:131-141.
    [74]Onishi N, Tanaka T. Purification and properties of a galacto-and gluco-oligosaccharide producing β-glycosidase from Rhodotorula minuta IF0879 [J]. Journal of Fermentation and Bioengineering,1996,82:439-443.
    [75]Kontula P, von Wright A, Mattila-Sandholm T. Oat bran-gluco-and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria [J]. International Journal of Food Microbiology,1998,45:163-169.
    [76]Delattre C, Michaud P, Lion J M, et al. Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain [J]. Journal of Biotechnology, 2005,118:448-457.
    [77]Kim S, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS):A review [J]. Carbohydrate Polymers,2005,62:357-368.
    [78]Ming M, Kuroiwa T, Ichikawa S, et al. Production of chitosan oligosaccharides by chitosinase directly immobilized on an agar gel-coated multidisk impeller [J]. Biochemical Engineering Journal,2006,28:289-294.
    [79]Wang J, Jiang X, Mou H, et al. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium [J]. Journal of Applied Phycology,2004,16:333-340.
    [80]Perugino G, Trincone A, Rossi M, et al. Oligosaccharide synthesis by glycosynthases [J]. Trends in Biotechnology,2004,22:31-37.
    [81]Endo T, Koizumi S. Large-scale production of oligosaccharides using engineered bacteria [J]. Current Opinion in Structural Biology,2000,10:536-541.
    [82]Smits C H M, Annison G. Non-starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination[J]. World's Poultry Science Journal, 1996,52:204-221.
    [83]Igbasan F A, Guenter W, Slominski B A. The effect of pectinase and agalactosidase supplementation on the nutritive value of peas for broiler chickens [J]. Canadian Journal of Animal Science,1997,77:537-539.
    [84]Smiricky M R, Grieshop C M, Albin D M, et al. The influence of soy oligosaccharides on apparent and true ileal amino acid digestibilities and fecal consistency in growing pigs [J]. Journal of Animal Science,2002,80:2433-2441.
    [85]Leblanc J G, Garro M S, Silvestroni A, et al. Reduction of a-galactooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722:In vitro and in vivo evaluation of fermented soyamilk [J]. Journal of Applied Microbiology,2004,97:876-881.
    [86]Donkor O N, Henriksson A, Vasiljevic T, et al. Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk [J]. Food Chemistry,2007,104: 10-20.
    [87]Kim S, Kim W, Hwang I K. Optimization of the extraction and purification of oligosaccharides from defatted soybean meal [J]. Journal of food science & technology, 2003,38:337-342.
    [88]Choct M. Feed Non-Starch Polysaccharides:Chemical Structures and Nutritional Significance [J]. Feed Milling International,1997,6:13-26.
    [89]王晓,张孝范.保健功能因子大豆低聚糖及其开发[J].西部粮油科技,1999,24(1):31-33.
    [90]张振红,黄仁录.大豆低聚糖的研究及其在饲料中的应用[J].兽药与饲料添加剂,2005,10(4):14-16.
    [91]Han I H, Baik B K. Oligosaccharide Content and Composition of Legumes and Their Reduction by Soaking, Cooking, Ultrasound, and High Hydrostatic Pressure [J]. Cereal Chemistry,2006,83(4):428-433.
    [92]马莺.大豆低聚糖的提取及酶改性的研究[D].东北农业大学,2000.
    [93]金华丽.大豆低聚糖制取及纯化工艺的研究[J].郑州工程学院学报,2001,(2):35-38.
    [94]郑建仙.功能性低聚糖[M].北京:化学工业出版社,2004,306-328.
    [95]赵贵兴,陈霞,刘忠云.大豆低聚糖制备工艺的研究[J].黑龙江农业科学,2001,2:13-15.
    [96]刁小琴,关海宁.大豆低聚糖的开发及应用前景[J].中国食物与营养,2008,11:16-18.
    [97]Salminen S, Wright A, Morelli L, et al. Demonstration of safety of probiotics-a review [J]. International Journal of Food Microbiology,1998,44(20):93.
    [98]Freter R. Facters affecting the mirco ecology of the gut Probiotics [J]. Probiotics,1992,5: 111-114.
    [99]张延坤.大豆低聚糖的特性及其生理功能[J].解放军预防医学杂志,1996,14(1):75-78.
    [100]程玉倩,张志发,张翠菊.大豆低聚糖的功效[J].中国甜菜糖业,2002,(2):35-36.
    [101]Choct M, Dersjant-Li M, McLeish J, et al. Soy Oligosaccharides and Soluble Non-starch Polysaccharides:A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry [J]. Asian-Aust J Animal Science,2010,23(10):1386-1398.
    [102]Smiricky-Tjardes M R, Grieshop C M, Flickinger E A, et al. Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentive characteristics of growing pigs [J]. J Animal Science,2003b,81:2535-2545.
    [103]王宝维,任慧英,朱新产,等.低聚糖对雏鸡大肠粪便NH3-N含量及肠道菌群的影响[J].中国家禽,2003,25(8):8-10.
    [104]Mosenthin R, Bauer E. The potential use of prebiotics in pig nutrition [J]. Asian-Aust. J Animal Science,2000,13:315-325.
    [105]Spring P, Wenk C, Dawson K A, et al. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks [J]. Poultry Science,2000,79:205-211.
    [106]Iji P A, Tivey D R. Natural and synthetic oligosaccharides in broiler chick diets [J]. World's Poultry Science Journal.1998,54:129-143.
    [107]Irish G G, Balnave D. Non-starch polysaccharides and broiler performance on diets containing soyabean meal as the sole protein concentrate [J]. Australian Journal of Agricultural Research,1993,44(7):1483-1499.
    [108]王修启,谭会泽,束刚,等.不同基因型肉鸡十二指肠SGLT1和GLUT2 mRNA表达的发育性变化[J].农业生物技术学报,2006,14(3):334-340.
    [109]黄志毅,王修启,邹仕庚,等.肠道葡萄糖转运载体研究进展[J].中国畜牧杂志,2009,45(3):57-62.
    [110]Stuart W, Paul T. Glucose transporters (GLUT and SGLT):expanded families of sugar transport proteins [J]. British Journal of Nutrition,2003,89:3-9.
    [111]Reimer R A, Field C J, McBurney M I. Ontogenic changes in proglucagon mRNA in BB diabetes prone and normal rats weaned onto a chow diet [J]. Diabetologia.1997,40:871-878.
    [112]Yin F G, Liu Y L, Yin Y L, et al. Dietary supplementation with astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets [J]. Amino Acids,2009,37:263-270.
    [113]Pluske J R, Thompson M J, Atwood C S, et al. Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning [J]. British Journal of Nutrition,1996,76 (3):409-422.
    [114]杨倩,毛卫华,赵如茜,等.太湖猪与大白猪小肠发育及其免疫功能形态学比较[J].南京农业大学学报,2001,24(4):75-78.
    [115]Gu X H, Li D F, She R P. Effect of weaning on small intestinal structure and function in the piglet [J]. Archives of Animal Nutrition,2002,56 (4):275-286.
    [116]NRC. Nutrient Requirements of Swine (10ed). Washington. DC; Nail Acad Press.1998.
    [117]刘俊峰,吴琛,孔祥峰,等.精氨酸对妊娠环江香猪胎儿生长发育的影响[J].中国农业科学,2011,44(5):1040-1045.
    [118]潘杰,黄瑞林,孔祥峰,等.不同氮,磷水平日粮对肥育猪生长性能及营养物质代谢的影响[J].家畜生态学报,2008,29(4):43-50.
    [119]傅国栋,薛惠琴,杭恰琼.低聚寡糖对仔猪生产性能的影响[J].畜牧与兽医,2003,35(3):1-3.
    [120]LeMieux F M, Southern L L, Bidner T D. Effect of mannan oligosaccharides on growth performance of weanling pigs [J]. J Animal Science,2003,81:2482-2487.
    [121]邹志恒,宋琼莉,文虹.F0S+MOS on growth performance of piglets [J].江西农业学报,2004,16(2):60-63.
    [122]虞泽鹏,谢启轮,唐举,等.益生素对断乳仔猪生产性能的影响[J].动物科学与动物医学,2002,19(3):49-50.
    [123]赵拴平,王睿琪,唐中林,等.3个地方品种猪血液生化指标分析[J].中国畜牧兽医,2012,39(2):96-101.
    [124]D'Mello F. Amino acid in farm animal nutrition metabolism, partition and consequences of imbalance [J]. Feed Compounder,1995,15(11):28-29.
    [125]Chen H Y, Miller P S, Lewis A J, et al. Changers in plasma urea concentration can be used to determine protein requirements of two populations of pigs with different protein accretion rates [J]. Journal Animal Science,1995,73:2631-2639.
    [126]刘燕强,韩正康.粗酶制剂添加于大麦日粮中对鸡生长和血液生化值的影响[J].动物营养学报,1999,11(2):30-37.
    [127]周笑犁,刘星达,孔祥峰,等.山药对环江香猪营养物质消化代谢的影响[J].天然产物研究与开发,2012,24:672-676.
    [128]罗洪明.饲粮不同蛋白水平对早期断奶仔猪生产性能、血液生化指标及免疫机能的影响[D].四川农业大学,2005.
    [129]李莉,俞红贤,沈明华.不同发育期耗牛血清钙、无机磷和碱性磷酸酶的测定及分析[J].青海大学学报(自然科学版),2007,25(1):70-72.
    [130]姚军虎,王康宁,宋代军,等.肉仔鸡血浆游离氨基酸浓度变化规律的研究[J].西北农业大学学报,1999,27(6):97-101.
    [131]王墨清.普氏野马血液氨基酸测定与分析[J].甘肃畜牧兽医,1996,26(3):10-11.
    [132]胡琴,印遇龙,孔祥峰,等.中药复方对早期断奶仔猪血清游离氨基酸含量的影响[J].广西农业生物科学,2008,27(1):55-59.
    [133]Wu G, Meininger C J, Knabe D A, et al. Arginine nutrition in development, health and disease [J]. Current Opinion in Clincal Nutrition and Metabolic Care,2000,3:59-66.
    [134]聂立欣,于博.猪不同肠段肠绒毛与肠腺形态的测量研究[J].试验研究,2010,6:28-29.
    [135]黄玉章,林旋,王全溪,等.黄芪多糖对罗非鱼肠绒毛形态结构及肠道免疫细胞的影响[J].动物营养学报,2010,22(1):108-116.
    [136]Thoreux K, Balas D, Bouley C, et al. Diet supplemented with yoghurt or milk fermented by Lactobacillus casei DN-114001 stimulates growth and brush-border enzyme activities in mouse small intestine [J]. Digestion,1998,59 (4):349-359.
    [137]王子旭,余锐萍,陈越,等.日粮锌硒水平对肉鸡小肠黏膜结构的影响[J].中国兽医科技,2003,33(7):18-21.
    [138]王修启,张兆敏,张磊,等.日粮添加木聚糖酶对肉鸡小肠葡萄糖吸收及其转运载体基因表达影响[J].农业生物技术学报,2005,13:497-502.
    [139]任重,牛伟新.小肠上皮单糖转运体GLUT5与SGLT1的基本生理和功能[J].国际病理科学与临床杂志,2006,26(6):536-540.
    [140]Dong R, Srai S K, Debnam E, et al. Transcriptional and translational control over sodium-glucose-linked transporter(SGLT1) gene expression in adult rat small intestine [J]. Federation of European Biochemical Societies,1997,406(1-2):79-82.
    [141]Yu L CH. Lps/Cd14 activatio triggers SGLT1 mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3 [J]. Experimental cell research,2006,312(17):3276-3286.
    [142]Coady M J, Jalal F, Bissonnette P, et al. Functional studies of a chimeric protein containing portions of the Na+/glucose and Na+/myo-inositol cotransporters [J]. Biochimica et BiophysicaActa,2000,1466(122):139-150.
    [143]张帅,刘婷婷,周琳,等.断奶仔猪小肠钠葡萄糖转运蛋白1和葡萄糖转运蛋白2 mRNA表达变化及饲粮添加谷氨酰胺对其的影响[J].动物营养学报,2011,23(6):983-990.
    [144]舒安利.葡萄糖转运载体研究进展[J].国外医学:生理、病理科学与临床分册.1996,16(3):187-190.
    [145]连国琦,周笑犁,孔祥峰,等.壳寡糖对环江香猪生化参数及肠道菌群组成的影响[J].天然产物研究与开发,2012,24:1605-1609.
    [146]Hppper L V, Wong M H, Thelin A, et al. Molecular analysis of conunensal host-mierobial relationships in the intestine [J]. Science,2001,291:881-884.
    [147]Wangner D, Thomas P. Influence of diets containing rye or Pectin on intestinal flora of chicks [J]. Poultry Science,1978,57:971-975.
    [148]Hillman K. Manipulaion of the intestinal microflora for improved health and growth in Pigs [C]. Proceedings of the World's Poultry Science Association Spring Meeting Searborough, 1999,22-24:59-61.
    [149]张宇喆,孔祥峰,印遇龙,等.4种山药多糖的体外发酵特性比较研究[J].天然产物研究与开发,2009,1:30-35.
    [150]李万坤,郭福存,赵兴绪,等.多糖和寡糖的体外发酵特性及其对鸡盲肠微生物菌群的影响[J].动物营养学报,2007,19(3):277-282.
    [151]Flint H J, Bayer E A, Rincon M T, et al. Polysaccharide utilization by gut bacteria:potential for new insights from genomic analysis [J]. Nature Reviews Microbiology,2008,6(2): 121-131.
    [152]Valeria A, Kathy O, Maylene L, et al. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism [J]. Applied and Environmental Microbiology,2008,74:783-791.
    [153]Waldron L, Ferrari B, Gillings M, et al. Terminal restriction fragment length polymorphism for identification of cryptosporidium species in human feces [J]. Applied and Environmental Microbiology,2009,75:108-112.
    [154]詹彦,支兴刚.短链脂肪酸的再认识[J].实用临床医学,2007,8(1):134-138.
    [155]Mauricio R M, Mould F L, Dhanoa M S, et al. A semi-automated in vitro gas production technique for ruminant feed stuff evaluation [J]. Animal Feed Science,1999,79(4): 321-330.
    [156]Fliekinger E A, Woif B A, Garleb K A, et al. Glucose-based oligosaccharides exhibit different in vitro fermentation Patterns and affect in vivo apparent nutrient digestibility and microbial population in dogs [J]. J Nutrition,2000,130:1267-1273.
    [157]Barry J L, Hoebler C, Macfarlane G T, et al. Estimation of the fermentability of dietary fibre in vitro:a European interlaboratory study [J]. British J Nutrition,2007,74(3):303-322.
    [158]汤少勋,黄瑞林,谭支良,等.不同品种燕麦秸秆体外发酵产气特性的研究[J].广西农业生物科学,2006,25(4):330-335.
    [159]Guo Y Q, Liu J X, Lu Y, et al. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms [J]. Letters in Applied Microbiology,2008,47:421-426.
    [160]Gong J, Forster R J, Yu H, et al. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken cecal and comparison with bacteria in the cecal lumen [J]. FEMS Microbiology Letters,2002,20:1-7.
    [161]Walter J, Tannock G W, Tilsala-Timisjarvi A, et al. Detection and identification of gastrointestinal Lacobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers [J]. Applied Environmental Microbiology,2000,66:297-303.
    [162]Peter A E, Thomas M S, Richard P B, et al. Phylogenetic Analysis of Aquaspirillum magnetotacticum Using Polymerase Chain Reaction-Amplified 16S rRNA-Specific DNA [J]. International Journal of systematabica cteriologay,1991,41(2):324-325.
    [165]Schofiel D P, Pitt R E, Pell A N. Kinetics of fiber digestion from in vitro gas production [J]. J Animal Science,1994,72:2980-2991.
    [166]俞晓辉,王潇,姚文,等.饲喂发酵豆粕仔猪粪样对仔猪日粮体外发酵的影响[J].畜牧与兽医,2008,40(2):8-11.
    [163]Castillo M, Martin-Orue S M, Nofrarias M, et al. Changes in caecal microbiota and mucosal morphology of weaned pigs [J]. Veterinary Microbiology,2007,124:239-247.
    [164]Hobjerg O, Canibe N, Poulsen H D, et al. Influence of Dietary Zinc Oxide and Copper Sulfate on the Gastrointestinal Ecosystem in Newly Weaned Piglets [J]. Applied and environmental microbiology,2005,71(5):2267-2277.
    [167]Armougom F, Henry M, Vialettes B, et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients [J]. PLoS ONE,2009,4:e7125.
    [168]Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S rRNA-Gene-Targeted Species-Specific Primers for Analysis of Human Intestinal Bifidobacteria [J]. Applied and Environmental Microbiology,2004,70(1):167.
    [169]Verma R, Verma A K, Ahuja V, et al. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India [J]. Journal of Clinical Microbiology,2010,48: 4279-4282.
    [170]Matsuki T, Watanabe K, Tanaka R, et al. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers [J]. Applied Environmental Microbiology,1999,65:4506-4512.
    [171]Huijsdens X W, Linskens R K, Mak R, et al. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR [J]. Journal of Clinical Microbiology,2002,40: 4423-4427.
    [172]Bartosch S, Fite A, Macfarlane G T, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota [J]. Applied Environmental Microbiology,2004,70(6):3575-3581.
    [173]Ramirez-Farias C, Slezak K, Fuller K, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii [J]. BritishJournal Nutrition,2009,101:541-550.
    [174]Rinttila T, Kassinen A, Malinen E, et al. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR [J]. Journal Applied Microbiology,2004,97:1166-1177.
    [175]Huang Y K, Wu Y, Liu H, et al. Effect of high-dose methotrexate chemotherapy on intestinal Bifidobacteria, Lactobacillus and Escherichia coli in children with acute lymphoblastic leukemia [J]. Experimental Biology and Medicine,2012,237:305-311.
    [176]Larsen N, Vogensen F N, van den Berg F W J, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults [J]. PLoS ONE,2010,5:e9085.
    [177]Kleessen B, Hartmann L, Blaut M. Fructans in diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated Bifidobacteria in gnotobiotic rats [J]. British Journal Nutrition,2003,89:597-606.
    [178]Jumpertz R, Le D S, Turnbaugh P J, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans [J]. American Journal of Clinical Nutrition,2011,94:58-65.
    [179]Thomas D, Leser R, Jensen T K, et al. Changes in Bacterial Community Structure in the Colon of Pigs Fed Different Experimental Diets and after Infection with Brachyspira hyodysenteriae [J]. Applied and Environmental Microbiology,2000,8:3290-3296.
    [180]Hogbergl B N, Lindbergl J E, Thomas L, et al. Influence of Cereal Non-Starch Polysaccharides on Ileo-Caecal and Rectal Microbial Populations in Growing Pigs [J]. Acta Veterinaria Scandinavica.2004,45:87-98.
    [181]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,2006,46(2):331-335.
    [182]马悦欣,Holmstr M C, Webb J, et al.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用[J].生态学报,2003,23(8):1561-1569.
    [183]Rinttila" T, Kassinen A, Malinen E, et al. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR [J]. Journal of Applied Microbiology,2004,97,1166-1177.
    [184]Russell D A, Ross R P, Fitzgerald G F, et al. Metabolic activities and probiotic potential of bifidobacteria [J]. International Journal Food Microbiology,2011,149(1):88-105.
    [185]Lan Y, Williams B A, Verstegen M W A, et al. Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens [J]. Animal Feed Science and Technology,2007,133(3-4):286-297.
    [186]Salyers A A. Bacteroides of the human lower intestinal tract [J]. Annual Reviews in Microbiology,1984,38:293-313.
    [187]van Tongeren S P, Slaets J P, Harmsen H J, et al. Fecalmicrobiota composition and frailty [J]. Applied and Environmental Microbiology,2005,171:6438-6442.
    [188]Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects [J]. Obesity,2010,18:190-195.
    [189]Macfarlane G T, Macfarlane S. Human colonic microbiota:ecology, physiology and metabolic potential of intestinal bacteria [J]. Scandinavian Journal Gastroenterology Supplement,1997,222:3-9.
    [190]Samuel B S, Hansen E E, Manchester J K, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut [J]. Proceedings of the National Academy of Sciences of the USA,2007,104(25):10643-10648.
    [191]Duncan S H, Lobley G E, Holtrop G, et al. Human colonic microbiota associated with diet, obesity andweight loss [J]. International Journal of Obesity,2008,32:1720-1724.
    [192]Canh T T, Sutton A L, Aarnink A J, et al. Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs [J]. J Animal Science,1998, 76:1887-1895.
    [193]Tellez G, Dean C E, Corrier D E, et al. Effect of dietary lactose on cecal pH, morphology, organic acids and Salmonella enteritidis organ invasion in leghorn chicks [J]. Poultry Science,1993,72:636-642.
    [194]Wong J M, de Souza R, Kendall C W, et al. Colonic health:fermentation and short chain fatty acids [J]. Journal Clinical Gastroenterology,2006,40:235-243.
    [195]Le Blay G, Michel C, Blottiere H M, et al. Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats [J]. Jounral Nutrition,1999,129:2231-2235.
    [196]Delzenne N M, Williams C M. Prebiotics and lipid metabolism [J]. Current opinion in lipidology,2002,13:61-67.
    [197]Roediger W E W. Utilization of nutrients by isolated epithelial cells of the rat colon [J]. Gastroenterology,1982,83:424-429.
    [198]Cotter P, Cotter D, Hill C. Surviving the acid test:responses of gram-positive bacteria to low pH [J]. Microbiology and Molecular Biology Reviews,2003,67:429-453.
    [199]Andriamihaja M, Chaumontet C, Tome D. Butyrate metabolism in human colon carcinoma cells:implications concerning its growth-inhibitory effect [J]. Journal of Cellular Physiology,2009,218:58-65.
    [200]Saemann M D, Bohmig G A, Osterreicher C H, et al. Antiinflammatory effects of sodium butyrate on human monocytes:potent inhibition of IL-12 and up-regulation of IL-10 production [J]. The journal of the federation of American societies for experimental biology, 2000,14:2380-2382.
    [201]Vinolo M A, Hatanaka E, Lambertucci R H, et al. Effects of short chain fatty acids on effector mechanisms of neutrophils [J]. Cell Biochemistry and Function,2009,27:48-55.
    [202]Louis P, Flint H J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine [J]. FEMS Microbiology Letters,2009,294:1-8.
    [203]O'Neill D, Phillips V. A review of the control of odour nuisance from livestock buildings: Part 3. Properties of the odorous substances which have been identified in livestock wastes or in air around them [J]. Journal of Agricultural Engineering Research,1992,53:23-50.
    [204]Mouille B, Robert V, Blachier F. Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion [J]. American Journal Physiology,2004,287:G344-G351.
    [205]Birkett A, Muir J, Phillips J, et al. Resistant starch lowers fecal concentrations of ammonia and phenols in humans [J]. American Journal Clinical Nutrition,1996,63:766-772.
    [206]Swanson K S, Grieshop C M, Flickinger E A, et al. Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs [J]. Journal Nutrition,2002,32:3721-3731.
    [207]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method [J]. Methods,2001,25(4):402-408.
    [208]Jensen B B, Jorgensen H. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs [J]. Applied & Environmental Microbiology,1994,60(6):1897-1904.
    [209]包雨洪.沙葱多糖对绵羊瘤胃发酵、纤维素降解及血液生化指标的影响[D].内蒙古农业大学,2009.
    [210]杭苏琴,毛胜勇,于卓腾,等.甘露寡糖和甜菜渣对断奶仔猪肠道微生物体外发酵的影响[J].南京农业大学学报,2007,30(1):79-53.
    [211]张学峰,瞿明仁,王立阁,等.寡糖对瘤胃微生物区系的影响[J].动物营养学报,2008,3:355-359.
    [212]凌宝明,瞿明仁,卢德勋,等.利用体外法研究功能性寡糖对生长绵羊瘤胃发酵特性的影响[J].动物营养学报,2007,2:129-134.
    [213]Lengsfeld C, Faller G, Hensel A. Okra polysaccharides inhibit adhesion of Campylobacter jejuni to mucosa isolated from poultry in vitro but not in vivo [J]. Animal Feed Science and Technology,2007,135(1-2):113-125.
    [214]曾艳华,张宁,吴希阳,等.通过体外发酵研究不同聚合度的大蒜多糖对人体肠道菌群的影响[J].食品与发酵工业,2009,10:10-13.
    [215]Kihara M, Sakata T. Production of short-chain fatty acids and gas from various oligosaccharides by gut microbes of carp (Cyprinus carpio L.) in micro-scale batch culture [J]. Comparative Biochemistry and Physiology part A,2002,132:333-340.
    [216]Cummings J H, Rombean J L, Sakata T. Physiological and clinical aspects of short chain fatty acids [J]. Cambridge:Cam bridge University Press,1995,38:156-157.
    [217]Lupton J R, Kurtz P P. Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats [J]. J Nutrition,1993,123:1522-1530.
    [218]刘兵,瞿明仁,张学峰,等.瘤胃灌注大豆寡糖对绵羊消化道内营养物质流通与消化的影响[J].畜牧兽医学报,2008,7:915-922.
    [219]Boila R J, Salomon M D, Milligan L P, et al. The effect of dietary propionic acid on cholesterol synthesis in swine [J]. Nutrition Reports International,1981,23:1113-1121.
    [220]David J M, Judith A M. Rat cecal inocula produce different patterns of short-chain fatty acids than fecal inocula in in vitro fermentations [J]. J Nutrition,1995,125:2463-2470.
    [221]Baumgart D C, Sandborn W J. Gastroenterology 2-Inflammatory bowel disease:clinical aspects and established and evolving therapies [J]. Lancet,2007,369(9573):1641-1657.
    [222]Yan G L, Yuan J M, Guo Y M, et al. Effect of saccharomyces cerevisiae mannan oligosaccharides on intestinal microflora and immunity in broilers [J]. Journal of China Agricultural university,2008,13(6):85-90.
    [223]Kari S, Mulvey G L, Armstrong G D, et al. Prebiotic galactooligosaccharides reduce Adherence of enteropathogenic escherichia coli to tissue culture cells [J]. Infection and Immunity,2006,74(12):6920-6928.
    [224]Hoarau C, Lagaraine C, Martin L, et al. Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway [J]. Journal of Allergy and Clinical Immunology,2006,117(3):696-702.
    [225]李红云,姚咏明,盛志勇.Toll样受体与脓毒血症的研究进展[J].中华烧伤杂志,2002,18(5):314-317.
    [226]Ribeiro C M S, Hermsen T, Taverne-Thiele A J, et al. Evolution of Recognition of Ligands from Gram-Positive Bacteria:Similarities and Differences in the TLR2-Mediated Response between Mammalian Vertebrates and Teleost Fish [J]. Journal of Immunology,2010,184(5): 2355-2368.
    [227]Deng Z Y, Zhang J W, Wu G Y, et al. Dietary supplementation with polysaccharides from Semen cassiae enhances immunoglobulin production and interleukin gene expression in early-weaned piglets [J]. Journal of the Science of Food and Agriculture,2007,87(10): 1868-1873.
    [228]Hou B D, Reizis B, De Franco A L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and-extrinsic mechanisms [J]. Immunity,2008, 29(2):272-282.
    [229]Sarah L D, Luke A J. Toll-like receptors:From the discovery of NF-κB to new insights into transcriptional regulations in innate immunity [J]. Biochemical Pharmacology,2006,72(9): 1102-1113.
    [230]Salminen A, Huuskonen J, Ojala J, et al. Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging [J]. Aging Research Reviews, 2008,7(2):83-105.
    [231]陈胜,邹开芳,杨天,等.Toll样受体(TLR)2、TLR4和TLR9在大鼠结肠炎模型结肠组织中的表达及其意义[J].胃肠病学,2007,12(6):339-344.
    [232]Dogi C A, Galdeano C M, Perdigon G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria:Comparison with a probiotic strain [J]. Cytokine,2008,41(3): 223-231.
    [233]Cai S R, Bay B H, Lee Y K, et al. Live and lyophilized Lactobacillus species elicit differential immunomodulatory effects on immune cells [J]. FEMS Microbiology Letters, 2010,302(2):189-196.
    [234]Wang D Y, Li X R, Xu L X, et al. Immunologic synergism with IL-2 and effects of cCHMIs on mRNA expression of IL-2 and IFN-y in chicken peripheral T lymphocyte [J]. Vaccine, 2006,24:7109-7114.
    [235]Huang RL, Deng ZY, Yang CB, et al. Dietary oligochitosan supplementation enhances immune status of broilers [J]. Journal of the Science of Food and Agriculture,2007,87(1): 153-159.
    [236]吴志洪.Thl和Th2细胞的检测方法探讨[J].数理医学杂志,2003,16(2):174-175.
    [237]李大军.低聚糖的功能及对断奶仔猪生产性能和非特异性免疫功能的影响[D].东北农业大学,2003.
    [238]Mizubuchi H, Yajima T, Aoi N, et al. Isomalto-oligosaccharides polarize Th1-like responses in intestinal and systemic immunity in mice [J]. Journal of Nutrition,2005,135(12): 2857-2861.
    [239]Hosono A, Ozawa A, Kato R, et al. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer's patch cells [J]. Bioscience, Biotechnology, and Biochemistry,2003,67(4):758-64.
    [240]Guigoz Y, Rochat F, Perruisseau-Carrier G, et al. Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people [J]. Nutrition Research,2002,22: 13-25.
    [241]刘崇海,杨锡强,刘恩梅,等.抗生素诱导小鼠肠道菌群失调对免疫功能和Toll样受体2、4基因表达的影响[J].重庆医科大学学报,2007,32:839-843.
    [242]Spindler-Vesel A, Bengmark S, Vovk I, et al. Synbiotics, prebiotics, glutamine, or peptide in earlyenteral nutrition:a randomized study in trauma patients [J]. Journal of Parenteral Enteral Nutrition,2007,31:119-126.
    [243]Zyrek A A, Cichon C, Helms S. Molecular mechanisms underlying the probiotic effects of E. coli Nissle1917 invovle ZO and PK.C zeta redistribution resulting intight junction and epithelial barrier repair [J]. Cell Microbiology,2007,9:804-816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700