用户名: 密码: 验证码:
X-cor夹层结构制备工艺及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X-cor夹层结构是采用Z-Pinning技术增强的新型泡沫夹层结构,具有比蜂窝夹层复合材料更优越的性能。作为一种新型夹层结构,X-cor夹层结构的研究在国内刚刚起步,制造工艺和力学性能研究均处于探索阶段。本文在查阅国内外相关文献的基础上,自行研制了Pin数控植入机、Pin拉挤机和真空固化装置等设备,并研究了X-cor夹层结构成型工艺。为满足航空航天领域对材料耐热性的要求,研究了BMI-QC130双马树脂的反应动力学和流变特性,建立了该树脂的固化动力学模型以及黏度预测模型,模型预测结果与试验结果吻合良好,在此基础上确定了双马树脂拉挤工艺参数并成功拉挤出碳纤维/双马树脂复合材料Pin。
     制备了多种规格的X-cor夹层结构试样,分别研究了Pin直径、Pin植入角以及Pin分布密度等参数对X-cor夹层结构压缩性能、剪切性能的影响。结果表明,Pin可以大幅度提高X-cor夹层结构的压缩性能和剪切性能,同时提高了断裂韧性。X-cor夹层结构压缩性能和剪切性能主要取决于Pin的植入角和体积分数,随Pin植入角的提高,X-cor夹层结构压缩性能提高、剪切性能下降;同角度的Pin对X-cor夹层结构压缩性能和剪切性能的增强效果与Pin体积分数近似成正比。通过扫描电镜研究Pin与蒙皮的结合部连接结构,发现Pin与蒙皮结合部存在空隙以及纤维绕流,蒙皮对Pin的约束介于固支与铰支之间,小直径的Pin端部约束倾向于固支,大直径Pin端部约束倾向于铰支,导致相同植入角下,大直径Pin增强X-cor夹层结构压缩强度效率更高,小直径Pin对X-cor夹层结构压缩模量的增强效率更高。
     采用有限元分析软件ANSYS建立了X-cor夹层结构剪切模量分析模型,模型预测结果与实验值比较吻合,通过改变模型中Pin植入角以及Pin密度,获得了X-cor夹层结构剪切模量的完整设计曲线,为X-cor夹层结构的设计、应用奠定了基础。
X-cor sandwich is a new kind of foam sandwich reinforced by Z-Pinning techniques, which has more superior properties than honeycomb sandwich. As a rising sandwich material, X-cor sandwich’s research in China is at its starting point.The preparation processing and mechanical properties are still under exploration.Based on the literarures, Pin insertion machine, Pin pultrusion machine and vacuum-curing equipment were designed and manufactured.The forming processing of X-cor sandwich was studied. To meet the need of heat resistance for aviation, the curing kinetics and viscosity-temperature characteristics of BMI-QC130 resin were studied, and the curing degree predicting moldel and viscosity predicting moldel were established, the predicted values with both moldels are well coincide with the test values..Based on the two predicting moldels, the pultrusion parameters were set and carbon fiber/BMI composite Pin samples are successfully manufactured with pultrusion process.
     Several kinds of X-cor sandwich samples were made to study the influence of X-cor’s parameters which include Pin’s angle, Pin’s diameter and Pin’s distribution on its compression property and shear property. The results shows that Pin can significantly enhance X-cor’s compression property, shear property and failure energy. X-cor sandwich’s mechanical properties are determined by Pin’s volume fraction and angle.The compression property increases as the Pin’s angle increases, while the shear property decreases at the same time. The effect of Pin’s reinforcement is proportional to Pin’s volume fraction when Pin’s angle is certain. The joint part between Pin and face sheet of sandwich was studied by SEM, the SEM pictures show that void exists in the joint part and fiber bends around Pin, which weakens face-sheet’s constraint to Pin. Pin’s constraint condition lies between hinge support and clamped support.Big diameter Pin’s constraint is close to hinge support which leads to hight compression strength, while the constraint of small diameter Pin is close to clamped support that is beneficial to enhance X-cor’s compression modulus.
     The finite element analysis moldel was established to research X-cor sandwich’s shear modulus with ANSYS software. The shear modulus predicted by this moldel is well coincide with the test result.The whole design curve of X-cor sandwich’s modulus was obtained by changing Pin’s angle and density in mold, laying a good foundation for X-cor sandwich’s design and application.
引文
[1]颜鸣啤.现代飞机主要用材料[J].航空材料,1980,(4):l-7.
    [2]张广平.复合材料夹心板及应用[J].纤维复合材料,2000,(2):25-27.
    [3]李勇.直九用Nomex蜂窝研究[J].航空材料学报,1996,(3):47-54.
    [4]赵鑫.镁合金在卫星铝蜂窝夹层结构板中的应用[J].宇航材料工艺,2008,38(4):48-50.
    [5]王博.正交各向异性蜂窝材料多功能优化设计[J].复合材料学报,2008,25(3):202-209.
    [6]原崇新.蜂窝夹层结构真空袋共固化工艺过程实验研究[J].复合材料学报,2008,25(2)57-62.
    [7]周祝林.关于蜂窝夹层结构雷达罩连接的分析[J].纤维复合材料,2007,17(4):17-20.
    [8]王博.Kagome蜂窝夹层平板的多功能优化设计[J].复合材料学报,2007,24(3):109-115.
    [9]郑锡涛.全厚度缝合复合材料泡沫芯夹层结构力学性能研究与损伤容限评定[J].复合材料学报,2006,23(6):29-36.
    [10]邱克鹏.蜂窝夹层结构等效弹性常数的多步三维均匀化数值计算分析[J].西北工业大学学报,2006,24(4):514-518.
    [11]邱志平.蜂窝夹层复合材料结构非线性传热分析[J].复合材料学报,2005,22(5):147-154.
    [12] Michale D,Wood K,Xiannian SUN.The effect of stitch distribution on Mode I delamination toughness of stitched laminated compression:experimental results and FEA simulation[J].Composites Science and Technology,2007,67(6):1058-1072.
    [13] Gwo-Chuang Tsai,Jun Wei Chen.Effect of stitching on Mode I strain energy release rate[J].Composite Structures,2005,69(1):1-9.
    [14] Carstensen T , Cournoyer D , Kunkel E . X-Cor advanced sandwich core material[A] . Proceedings of the 33rd international SAMPE technical conference[C].Seattle,2001.
    [15] Freitas G . Z-Fiber technology and products for enhancing compositedesign[A].83rd Meeting of the AGARD SMP on“Bolted/ Bonded Joints in Polymeric Composites”[C].Florence,1996.
    [16] Kay B F.Airframe Technology-Foundation for the 21th Century [A].American Helicopter Socity 57th Annual Forum[C].Washington,2001.
    [17] O’Brien K T,Paris I L.Exploratory investigation of failure mechanisms in transition regions between solid laminates and X-Core truss sandwich[J] . Composite Structures,2002,57(2):189–204.
    [18] Vaidya U K,Kamath M V,Hosur M V.Low velocity and compression-after-impact response of Pin-reinforced sandwich composites[J] . Journal of Engineering Materials and Technology,2000,122(4):434-442.
    [19] Vaidya U K,Kamath M V,Hosur M V,et al.Low-velocity impact response of cross-ply laminated sandwich composites with hollow and foam-filled Z-Pin reinforced core[J].Journal of Composite Technology and Research,1999,21(2):84–97.
    [20] Palazotto A N,Gummadi L N B,Vaidya U K.Low velocity impact damage characteristics of Z-fiber reinforced sandwich panels—an experimental study[J].Composite Structures,1999,43(4):275–288.
    [21] Vaidya U K,Palazotto A N,Gummadi L N B.Low velocity impact and compression-after-impact response of Z-Pin reinforced core sandwich composites[J].Journal of Engineering Materials and Technology,2000,122(4):434–442.
    [22] Denis D,Cartié,Norman A Fleck.The effect of Pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels[J].Composites Science and Technology,2003,63(16):2401-2409.
    [13] Hoff N J.The dynamics of the buckling of elastic columns[J].Applied Mechanics,1951,18(1):68–74. [24 ]Hoff N,Narda S V,Erickson B.The maximum load supported by an elastic column in a rapid compression test [J].Proc 1st U.S National Congress in Applied Mechanics,1951,4(1):19–23.
    [25] Andrea I.Marascoa,Denis D R.Mechanical properties balance in novel Z-Pinned sandwich panels: Out-of-plane properties[J].Composites Part A: Applied Science and Manufacturing,2006,37(2):295-302.
    [26] Rice M C,Fleischer C A.Zupan M.Study on the Collapse of Pin-Reinforced FoamSandwich Panel Cores[J].Experimental mechanics,2006,46(2):197-204.
    [27] Kalidindi S R,Abusafieh A,El-Danaf E.Accurate characterisation of machine compliance for simple compression testing[J].Experimental mechanics,1997,37(2):210–215.
    [28] Hodgkinson J M.Mechanical testing of advanced fibre composites[M].Cambridge:Woodhead Publishing/CRC Press.2000:112-115.
    [29] O’Connor D J.A comparison of test methods for shear properties of the cores of sandwich construction[J].Journal of Testing and Evaluation,17(4):241–246.
    [30] Zenkert D.The handbook of sandwich construction[M].London:UK Engineering Materials Advisory Services Ltd/Chameleon Press Ltd,1997:87-94.
    [31] Gre′diac M,Dufort L.Experimental evidence of parasitic effects in shear test on sandwich beams[J].Experimental mechanics,2002,42(2):186–193.
    [32]田旭,肖军,李勇.X-cor夹层结构试制与性能研究[J].飞机设计,2004,(1),22-25.
    [33]杜龙.X-cor夹层复合材料力学性能研究[硕士学位论文].西安:西北工业大学,2007.
    [34]张剑.复合材料柱/泡沫塑料夹层结构加工设备及模具的研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2005.
    [35]刘天舒,张宝艳,陈祥宝.3234中温固化环氧树脂体系的固化反应动力学研究[J].航空材料学报,2005,25(1):45-52.
    [36]代晓青,曾竟成,刘钧.FRI用环氧树脂固化动力学研究[J].宇航材料工艺,2007,37(4):31-33.
    [37]于佳.RTM专用双马来酰亚胺树脂的固化动力学模型研究[J].宇航材料工艺,2003,33(5):31-34.
    [38] Skordos A A,Partridge I K.Cure kinetics modeling of epoxy resins using non-parametric numerical procedure[J].Polymer Engineering and Science,2001,41(5):793-805.
    [39]郑亚萍,宁荣昌.TDE-85/芳香族胺固化体系动力学研究[J].宇航材料工艺,2000,30(4):41-44.
    [40]吴晓青,李嘉禄.改性双马树脂固化反应动力学研究[J].天津大学学报,2002,35(2):227-230.
    [41]郝冬梅.环氧树脂/反应性聚碳酸酯体系的固化反应[J].上海交通大学学报2001,35(4):602-604.
    [42]王立新,袁金凤.环氧树脂/黏土纳米复合材料的制备及其固化动力学研究[J].河北工业大学学报,2000,29(4):22-26.
    [43]黄志雄,秦岩.耐高温乙烯基酯树脂固化反应动力学研究[J].华中科技大学学报,2002,30(7):68-70.
    [44] HE Kissinger.Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702-1706.
    [45]郭战胜,杜善义.先进树脂基复合材料基体双马来酰亚胺的固化动力学[J].哈尔滨工业大学学报,2004,36(10):1375-1377.
    [46]刑素丽.新型潜伏性环氧树脂体系固化动力学[J].国防科技大学学报,2006,28(2):31-34. [47 ]胡照会,王荣国.复合材料压力容器的树脂体系的固化动力学研究[J].玻璃钢/复合材料,2007,(6):6-8.
    [48]郭战胜,杜善义.先进复合材料用环氧树脂的固化反应和化学流变[J].复合材料学报,2004,21(4):146-151.
    [49]张国利,张鹏.RFI工艺用环氧树脂膜的植被机器化学流变特性[J].复合材料学报,2008,25(3):84-92.
    [50]梁志勇,段跃新.EPON862环氧树脂体系化学流变特性研究[J].复合材料学报,2001,18(1):16-19.
    [51]石凤,段跃新.RTM专用双马来酰亚胺树脂体系化学流变特性[J].复合材料学报,2006,23(1):56-62.
    [52] Kiuna N,Lawrece C J.A model for resin viscosity during cure in the resin transfer moulding process[J].Composites Part A: Applied Science and Manufacturing,2002,33(1):1497-1503.
    [53]尹昌平.苯并噁嗪树脂流变特性及工艺窗口预报研究[J].材料工程,2008,(6):5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700