用户名: 密码: 验证码:
双幅有源箝位谐振直流环节逆变器的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有源箝位谐振直流环节逆变器(ACRDCLI)是一种简单高效的软开关逆变电路,并且把系统的电压峰值箝位在1.2-1.6倍的电源电压,降低了器件的电压应力。双幅控制的ACRDCLI电路(TAC-RDCLI)进一步减小了谐振元件与箝位器件的损耗,提高了系统性能,扩展了ACRDCLI在大功率的场合的应用。
     本文首先回顾了并联型谐振直流环节逆变器的发展,即从最初的谐振直流环节逆变器RDCLI→ACRDCLI→TAC-RDCLI,特别研究了双幅控制思想的本质。在详细分析有源箝位串联谐振直流环节逆变器(ACS-RDCLI)的工作原理及存在问题的基础上,将双幅控制思想对偶应用,提出了双幅控制的有源箝位串联谐振直流环节逆变器(TACS-RDCLI),从而完成了串联型谐振直流环节逆变器的发展链,即从最初的串联谐振直流环节逆变器SRDCLI→ACS-RDCLI→TACS-RDCLI。
     接着讨论了TACS-RDCLI的工作过程与实现条件,用软件仿真验证了分析,并与传统的ACS-RDCLI做了性能比较。然后从减小谐振环节损耗角度对主电路参数进行了优化,给出了具体实施电路。采用电流调节Delta调制(CRDM)策略构建了一台500W样机,验证控制策略的可行性。理论分析与实验结果表明,TACS-RDCLI不仅保持了原有电路的优点,还进一步减小了电路损耗,提高了系统性能。
     论文在回顾功率因数校正(PFC)电路的二极管反向恢复问题与现有解决方案的基础上,利用ACRDCLI或TAC-RDCLI的拓扑特性,提出了一类结构与控制简单、效率高、电压应力小的PFC电路,详细分析了它的工作原理、影响因素、以及联系后级逆变器的参数设计。最后给出了一台1600W样机的实验结果,验证了电路性能。该PFC与TAC-RDCLI的联合使用将大大促进谐振直流环节型软开关逆变器的工业应用。
     最后在总结论文的基础上,提出了进一步工作的设想。
The actively clamped resonant dc link inverter (ACRDCLI) is a kind of soft-switched converter with simple topology and high efficiency, where the system peak voltage is clamped to 1.2-1.6 times dc source to lower voltage stress of power devices. The two-amplitude controlled ACRDCLI (TAC-RDCLI) further reduces the power losses on resonant elements and clamping device, and improves the whole system performance, making ACRDCLI more suitable for high power application.
    Based on the review of developing history of parallel resonant dc link inverter (RDCLI), i.e. from the basic RDCLI^ACRDCLI->TAC-RDCLI, this thesis studies the essence of two-amplitude control method. The actively clamped series resonant dc link inverter (ACS-RDCLI) is discussed on its operation principle and problems, whereafter the two-amplitude control method is implemented by duality to it. Thus a two-amplitude controlled ACS-RDCLI, or TACS-RDCLI, is presented, completing the similar developing chain, i.e. from the basic SRDCLI -籄CS-RDCLI -?TACS-RDCLI.
    Next operation process and design requirements of TACS-RDCLI are discussed. Simulations are done to verify the analysis, and to give performance comparison between TACS-RDCLI and ACS-RDCLI. The circuit parameters are optimized to minimize system power loss. With the current regulation delta modulation (CRJDM) control, a 500W prototype is developed in accordance with theoretical analysis. TACS-RDCLI not only inherits the advantages of ACS-RDCLI, but further reduces power loss and improves the system performance.
    The traditional power factor correction (PFC) circuit has the problem of rectifier diode's reverse recovery, and many solutions have been given as yet. By utilizing the topological characteristics of ACRDCLI or TAC-RDCLI, a new family of PFC circuits is presented, with simple structure and control, high efficiency and low voltage stress. The principle and design considerations are discussed in detail and a 1600W prototype is developed to verify the performance. The combination of this PFC circuit and TAC-RDCLI will make resonant-dc-link based inverter more suitable for industry application.
    Finallv research conclusion is made and further works are listed.
引文
[01] B. K. Bose, "Power electronics and motion control-technology status and recent trends", IEEE-PESC, 1992, pp. 3-10
    [02] K. H. Liu and F. C. Lee, "Resonant Switch-A Unified Approach to Improve Performance of Switching Converters," in Proc. IEEE International Telecommunications Energy Conf., 1984, pp. 334-351
    [03] M. D. Bellar, T. S. Wu, A. Tchamdjou, J. Mahdavi, and M. Ehsani, "A Review of Soft-Switched DC-AC Converters," IEEE Transactions on Industry Applications, Vol.34, No.4, pp.847-860, July 1998
    [04] D. M. Divan, "The resonant DC link converter - A new concept in static power conversion", IEEE Transactions on Industrial Applications, Vol. 25, No. 2, 1989, pp. 317-325
    [05] D. M. Divan, and G. Skibinski, "Zero Switching Loss Inverters for High Power Applications," in Conf. Rec. IEEE-IAS Annu. Meeting, 1987, pp.627-634
    [06] J. He and N. Mohan, "Parallel Resonant DC Link Circuit—A Novel Zero Switching Loss Topology with Minimum Voltage Stresses," in Conf. Rec. IEEE PESC'89, 1989, pp.1006-1012
    [07] A. Chibani and M. Nakaoka, "A New State-Feedback Control Based 3 Phase PWM Inverter with Improved Parallel Resonant DC Link," IAS'92, 1992, pp.802-808
    [08] J. G. Cho, H. S. Kim, and G. H. Cho, "Novel Soft Switching PWM Converter Using A New Parallel Resonant DC Link," PESC'91, 1991, pp.241-247
    [09] M. Kheraluwala and D. M. Divan, "Delta Modulation Strategies for Resonant Link Inverters," IEEE PESC'87, pp.271-278
    [10] L. Malesani, P. Tenti, P. Tomasin, and V. Toigo, "High Efficiency Quasi Resonant DC Link Converter for Full-Range PWM," in IEEE APEC'92, pp.472-478
    [11] L. Malesani, P. Tenti, D. M. Divan, and V. Toigo, "A Synchronized Resonant DC Link Converter for Soft-Switched PWM," IEEE IAS'89, pp.1037-1044
    [12] J. P. Ying, G. Z. Li, D. H. Zhang and Z. S. Wang, "A novel two amplitudes scheme for the actively clamped resonant DC link inverter", Proc. IEEE PEDS, 1999, pp. 1096-1101
    [13] 刘茜,“双幅双环有源箝位谐振直流环节逆变器的研究”,[硕士学位论文],浙江大学,2001年
    [14] 李爱文 张承慧,《现代逆变技术及其应用》,科学出版社,2000年9月第一版
    [15] 王聪,《软开关功率变换器及其应用》,科学出版社,2000年1月第一版
    [16] D. H. Zhang, J. P. Ying, T. Liu, Q. Liu and F. B. Wang, "Analysis and Design of Two-Amplitude Actively Clamped Resonant DC-Link Inverter", INTELEC, 2001
    [17] 刘茜,应建平,刘腾,张德华,“双环控制的双幅有源箝位谐振直流环节逆变器的研究”,电力电子技术,2001年第1期,Vol.35,No.1,pp.24-25
    [18] Jong-Woo Choi, and Seung-Ki Sul, "Resonant link Bidirectional Power Converter: Part 1-Resonant Circuit", IEEE Transactions on PE, Vol. 10, No. 4, July 1995, pp. 683-688
    [19] Deepapraj M. Divan, Gary Skibinski, "Zero-switching-loss inverters for high-power applications", IEEE Transactions on Industrial Applications, Vol. 25, No. 4, 1989, pp. 634-643
    [20] Jianping Ying, Klemens Heumann, "Two amplitudes active clamped resonant DC link inverter", Proc. IPEMC, 1997, pp. 554-559
    [21] P. Sood and T. A. Lipo, "Power conversion distribution system using a resonant high-frequency AC Link", IEEE-IAS, pp. 533-541, 1986
    
    
    [22] Y. Murai, T. A. Lipo, "High frequency series resonant DC link power conversion", IEEE-IAS, 1988, pp. 772-779
    [23] Y. Mural, S. G. Abeyratne, T. A. Lip and P. Caldeira, "Current peak limiting for a series resonant DC link power conversion using a saturable core", EPE Conf. Rec., 1991, pp. 8-12
    [24] R. C. Castanheira, B. J. Cardoso F., B. R. Menezes, P. D. Garcia and A. F. Morira, "A control technique to eliminate irregular current and voltage pulses in resonant DC link power converters", IEEE-PESC, 1994
    [25] S. G. Abeyratne, E. R. Da Silva, Y. Murai, "PWM series resonant DC-link converter with current clamping by the use of saturable core", IEEE Transactions on Power Electronics, Volume 14 Issue 1, Jan. 1999, pp. 82-89
    [26] R. C. Castanheira, B. J. Cardoso Fo., B. R. Menezes, P. Donoso Garcia, and A. F. Moreira, "An active current clamping circuit for a series resonant DC link power converter", IEEE-PESC, 1994, pp. 659-663
    [27] 宋征,林勇,王保东,谢国锋,《Mathcad7.0入门及其工程应用》,人民邮电出版社,1999年12月
    [28] 林渭勋等,《电力电子技术基础》,机械工业出版社,1990年10月第一版
    [29] In-Hwan Oh, Young-Seok Jung, and Myung-Joong Youn, "A Source Clamped Resonant Link Inverter for a Discrete Time Current Control", IEEE proc. PESC'98, pp.443-449
    [30] Tomas G. Habetler, and Deepakraj M. Divan, "Performance Characterization of a New Discrete Pulse-Modulated Current Regulator", IEEE Transactions on IA, Vol. 25, No. 6, November/December 1989, pp. 1139-1148
    [31] M. Kheraluwala, D. M. Divan, "Delta Modulation Strategies for Resonant Link Inverters", IEEE-PESC, 1987, pp. 271-278
    [32] M. Kheraluwala and D. M. Divan, "Optimal Discrete Pulse Modulation Waveforms for Resonant Link Inverter", Conf. Record PESC'88, pp.567-574
    [33] Thomas G. Habetler, D. M. Divan, "Performance characterization of a new discrete pulse modulation current regulator", IEEE Tran. Ind. Appl. 1989, pp. 1139-1148
    [34] G. Venkataramanan, D. M. Divan, "Discrete time integral sliding mode control for discrete pulse modulated converters", IEEE-PESC, 1990, PP. 67-73
    [35] D. M. Divan, G. Venkataramanan, and R. W. A. A. Dedoncker, "Design methodologies for soft switched inverters", IEEE Transactions on Industry Applications, 1993, pp. 126-135
    [36] P. Caldeira, T. A. Lipo, Y. Murai, and S. Mochizuki, "deisgn and control of a series resonant dc link power conerter drive," in Proc. IPEC conf. Rec. 1990, pp.397-404
    [37] K.W. Marschke, P.P.A.Caldeira, T.A. Lipo, "Utilization of the series resonant DC link converter as a conditioning system for SMES", IEEE Transactions on Power Electronics, Volume 7 Issue 3, July 1992 pp. 506-513
    [38] Jianping Ying, Dehua Zhang, Fanbin Wang, Teng Liu, "Two-amplitude Series Actively Clamped Resonant DC link Inverter", IEEE-IAS, 2001
    [39] M. A. Rahman, T. S. Radwan, A. M. Osheiba, and A. E. Lashine, "Analysis of Current Controllers for Voltage-Source Inverter," IEEE Transactions on Industrial Electronics, Vol.44, No.4, pp.477-485, Aug. 1997
    [40] J. S. Lai, R.W. Young, and J.W. Mckeever, "Efficiency Consideration of DC-Link Soft-Switching Inverters for Motor Drive Applications", IEEE proc. PESC'94, pp. 1003-1008
    [41] 张占松,蔡宣三,《开关电源的原理与设计》,电子工业出版社,1998年6月第一版
    [42] PHILIP C. TODD, "UC3854 Controlled Power Factor Correction Circuit Design", Unitrode APPLICATION NOTE U134, pp. 269-288
    [43] 杨志华,“开关电源中二极管反向恢复的电压浪涌与损耗”,通信电源技术,1998,pp.5-8
    [44] B. Mammano, L. Dixon, "Choose the optimum topology for high power factor supplies", PCIM Magazine, 1991, pp. 8-18
    
    
    [45] Y. Khersonsky, M. Robinson, D. Gutierrez, "New fast recovery diode technology cuts circuits losses, improves reliability", PCIM, 1992, pp. 16-25
    [46] R. Streit, D. Tollik, "High efficiency telecom rectifier using a novel soft-switched boost-based input current shaper", INTELEC, 1991, pp. 720-726
    [47] G. Hua, C. S. Leu, F. C. Lee, "Novel zero-voltage-transition PWM converters", IEEE-PESC, 1992, pp. 55-61
    [48] D. C. Martins, F. J. M. De Seixas, J. A. Brilhante, I. Barbi, "A family of DC-to-DC PWM converters using a new ZVS commutation cell", IEEE-PESC, 1993, pp. 524-530
    [49] J. Bassert, "New, zero voltage switching, high frequency boost converter topology for power factor correction", INTELEC, 1995, pp. 813-820
    [50] M. M. Jovanovic, "A technique for reducing rectifier reverse-recovery-related losses in high-voltage, high-power boost converters", IEEE-APEC, 1997, pp. 1000-1007
    [51] C. M. Da Cunha Duarte, Ivo Barbi, "A new ZVS-PWM active-clamping high power factor rectifier: analysis, design, and experimentation", IEEE-APEC, 1998, pp. 230-236
    [52] Jindong Zhang, Milan M. Jovanovic, Fred C. Lee, "Comparison between CCM single-stage and two-stage boost PFC converters", IEEE-APEC, 1999, pp. 335-341
    [53] I. Lindroth, P. Melchert, T. Sahlstrom, "Methods of improving efficiency in wide input range boost converters at low input voltages ", INTELEC, 2000, pp. 424-431
    [54] R. W. A. Dedoncker, D. M. Divan, and T. A. Lipo, "High Power Soft Switching Inverters", IEEE PESC 91 Tutorial
    [55] K.M. Smith Jr., K.M. Smedley, "Engineering design of lossless passive soft switching methods for PWM converters. I. With minimum voltage stress circuit cells", IEEE-PESC, 1998, PP. 1055-1062
    [56] K.M. Smith Jr., K.M. Smedley, "Engineering design of lossless passive soft switching methods for PWM converters. II. Nonminimum voltage stress circuit cells", INTELEC 1998, pp. 669-677
    [57] C.M.C. Duarte, I. Barbi, "A family of ZVS-PWM active-clamping DC-to-DC converters: synthesis, analysis, and experimentation", INTELEC, 1995, pp. 502-509
    [58] Liu Ping, Kang Yong, "Design and performance of an AC/DC voltage source converter", INTELEC, 2000, pp. 419-423
    [59] Pit-Leong Wong, Fred C. Lee, "Interleaving to reduce reverse recovery loss in power factor correction circuits", IEEE-IAS, 2000, pp. 2311-2316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700