用户名: 密码: 验证码:
天然气掺氢HCCI发动机燃烧与排放物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪六十年代后,世界经历了3次严重的石油危机。由此带来的全球环境污染问题严重影响到各个国家的发展。能源特别是石油资源的严重匮乏、全球环境的日益恶化成为了世界两大难题。为了解决此问题,新型发动机以及各类汽车代用燃料的研究越来越引起广大学者的关注。天然气掺氢(HCNG)燃料,是满足节能减排问题的车用气体替代燃料之一,也是实现从传统燃料汽车到氢能汽车过渡的最具可行性方案。本文的工作主要是围绕天然气掺氢燃料发动机的燃烧排放特性进行的。
     本文首先对天然气掺氢燃料发动机的研究动态以及存在的相关问题进行了综述。然后利用大型气相化学动力学软件CHEMKIN对美国加州大学开发的GRI(Gas Research Instiutte)3.0天然气(CNG)详细化学反应机理进行分析。在天然气详细化学反应动力学机理上,参考已有的简化模型及方法,通过对天然气均质压燃燃烧反应途径的分析,再结合敏感度分析法和反应速率分析法,构建天然气燃烧简化机理。对比分析所构建的简化机理和详细机理的模拟结果,计算结果显示,此简化模型对HC、CO、NOX以及CH20排放物的变化历程有较为准确的预测,可以用来代替详细模型进行计算分析。简化模型大大减少了计算时间,并且为化学动力学模型与CFD多维模型进行耦合提供了可行性。依据此机理再加上本文中选用的氢氧燃烧机理,建立天然气掺氢燃烧反应模型。此模型由上述两个机理中提取,其中化学反应速率常数未做出改变。
     理论上推导出HCNG燃料的质量掺氢比,HCNG混合燃料中各组分的含量计算,HCNG混合气的热值计算以及HCNG化学计量比的计算公式。利用计算流体动力学软件FLUENT建立以ZS195发动机燃烧室为原型的三维计算模型,并将此CFD多维模型分别和天然气简化化学机理、天然气掺氢化学动力学模型相耦合,对CNG发动机以及HCNG发动机HCCI燃烧过程、排放特性进行模拟分析。结果显示:在天然气中掺入氢气后,相对纯天然气而言,发动机缸内着火时刻提前,温度峰值增加,燃烧更加充分,后燃减小,缸内压力峰值也随之增加。随着掺氢比的增加,CO和NOX(主要是NO)排放量增加,HC(主要是CH4)、CH20排放量减小。
After the sixties of the last century, the world experienced three times'serious oil crisis.The global environmental resulted from the crisis severely affected the development of countries around the world. Energy, especially for the serious shortage of the oil resources and the deteriorating global environment have been regarded as the two difficulties around the world. To slove the problems, people pay more and more attention to the research on combustion innovative engine and alternative fuels. Hydrogen enriched natural gas is not only an alternative fuel meeting the demand of automobile developing "saving energy and reducing emission", but also act as feasible way to transform vehicle fule from conventional fuel to hydrogen gas. Good combustion and emission characteristics of HCNG engine are the focus of this thesis.
     Firstly this thesis summarizes the research trends, existent problems of Hydrogen enriched natural gas engines. According to the Gas Research Instiutte 3.0 natural gas detailed chemical kinetic mechanism of methane proposed by the University of California, this paper analyzes the natural gas detailed chemical kinetic mechanism by CHEMKIN. Based on the detailed chemical kinetics mechanism and existing simplified model, a new methane simplified chemical reaction mechanism is presented by sensitivity analysis and rate of production analysis. And then the comparative studies were given between the simplified model and the detailed model.The simulation results show that the simplified model can be used in place of the detailed model. It also can predict the variational courses of unregulated emissions such as formaldehyde, CO, NO and HC emission. The new simplified chemical kinetic model save more time for calculating, which provides a feasible way for the simulation of the chemical kinetics model coupled with the CFD multidimensional model.The paper plus hydrogen combustion mechanism based on the new methane simplified mechanism, then this thesis builds HCNG combustion reaction model. The model is extracted from the above two mechanisms that the chemical reaction rate constant isn't made changes.
     In theoretical part of the paper, the equations are carried out for computing H2/CNG ratio in mass, stoichiometric ratio, heat value of fuel-air mixture on various H2 fractions in volume and the content of each component of HCNG mixture. This paper builds a combustion chamber three-dimensional model made by ZS195 diesel engine.With the CNG and HCNG reduced model coupling with the CFD software FLUENT, then it calculates the combustion and emission characteristics of natural gas and Hydrogen enriched natural gas HCCI engine. Compared with CNG, it can be seen that as the hydrogen fractions increased, the temperature peak grow up, the combustion stabilize, the duration decrease, and emission temperature drop down, as the cylinder pressure peak grow up correspondingly. With increasing the hydrogen blend ratio, the NOx(mainly NO) and CO emissions increase, and HC(Methane)、CH2O emission decreases respectively.
引文
[1]Fuiton J, Lynch F. Hydrogen for Reducing Emissions from Alternative Fuel Vehicles. SAE 931813,1993.
    [2]刘海全,马凡华,殷勇.天然气掺氢发动机的研究现状和发展趋势[J].车用发动机,2006,4:1-5.
    [3]马凡华.氢气-天然气-空气混合气预混湍流研究,国家自然科学申请书.2005.
    [4]兼子弘.日本的天然气技术开发.2003天然气论坛论文集[C].2003.
    [5]陈燕.天然气汽车的动力性能与排放性能研究[J].烟台师范学院学报(自然科学版),2005,21(4):310-312.
    [6]殷勇.HCNG发动机掺氢比实验研究[D].北京:清华大学,2006:3-4.
    [7]Nagalinyam B, Duebel F, Schmillen K. Performance Study Using Natural Gas, Hydrogen-supplemented Natural Gas and Hydrogen in AVL Research Engine. International Journal of Hydrogen Energy, Brit-ain,1983,8(9):715-720.
    [8]Yusuf M J. In Cylinder Flame front Growth Rate Measurement of Methane and Hydrogen Enriched Methane Fuel in a Spark Ignited Internal Combustion Engine. USA:University of Miami,1990.
    [9]Yusuf M J. Lean Burn Natural Gas Fueled Engines Engine Modi 1 cation Versus Hydrogen Blending. USA:University of Miami,1993.
    [10]Hoekstra R L, Collier K, Mulligan N. Demonstration of Hydrogen Mixed Gas Vehicles.10th World Hydrogen Energy Conference, Cocoa Beach, USA:1994-06:20-24.
    [11]Hoekstra R L, Collier K, Mulligan N, et al. Experimental Study of a Clean Burning Vehicle Fuel [J]. International Journal of Hydrogen Energy,1995,20(9):737-745.
    [12]Sierens R, Rosseel E. Variable Composition Hydrogen/natural Gas Mixtures for Increased Engine Efficiency and Decreased Emissions. Transactions of the ASME, Journal of Engineering for Gas Turbine sand Power,2000,122(1):135-140.
    [13]Munshi S R, Nedelcu C, Harris J, et al. Hydrogen Blended Natural Gas Operation of a Heavy Duty Turbocharged Lean Burn Spark Ignition Engine. SAE 2004-01-2956.
    [14]解茂昭.内燃机计算燃烧学[M].大连:大连理工出版社,2005,308-316.
    [15]Zhi Wang, Shi-jin Shuai et al. Modeling of HCCI Combustion:From OD to 3D. SAE 2006-01-1364.
    [16]贾明,解茂昭.均质压燃发动机燃烧与排放的多区模型模拟[J].燃烧科学与技术,2005(3),261-267.
    [17]王玉君,张欣,李从心,等.耦合CFD和详细化学动力学的燃烧模拟及其并行计算的实现[J].燃烧科学与技术,2008,14(2):474-479.
    [18]Kong S C, et al. Modeling and experiments of HCCI engine combustion using detailed chemical kinetics and multidimensional CFD. SAE 2001-01-1026.
    [19]Song S C, Reitz R D. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties. Combust. Theory Modeling, 2003(7):417~433.
    [20]Kong S C, et al. Modeling the Effects of Geometry-Generated Turbulence on HCCI engine combustion. SAE 2003-01-1088,2003.
    [21]姚良山.以石油及天然气为燃料的HCCI燃烧过程三维数值模拟的研究[D].山东:山东大学,2007:13.
    [22]董刚,蒋勇,陈义良,等.大型气相化学动力学软件包CHEMKIN及其在燃烧中的应用[J].火灾科学,2000,9(1):27-33.
    [23]CHEMKIN-Getting Started Manual.Reaction design.
    [24]CHEMKIN-Tutorials Manual.Reaction design.
    [25]Magnus Sjoberg and JOHn E. Dee, Nieholas P. Cernansky. Potentia of Thermal Stratification and Conbustion Retard for Reducing Pressure—Rise Ratesin HCCI Engines, Based on Multi-Zone Modeling and Experiments. SAE2005-01-0113.
    [26]朱访君.内燃机工作过程数值计算及其优化[M],国防工业出版社.
    [27]何学良,李疏松. 内燃机燃烧学[M],机械工业出版社.
    [28]周祥军.柴油机受热零部件热负荷的实验研究及其数值仿真[D].武汉:武汉理工大学,2005.
    [29]Cathy K.W. Ng and Murray J. Thomson.A Computational Study of the Effect of Fuel Reforming,EGR and Initial Temperature on Lean Ethanol HCCI Combustion.SAE2004-01-0556.
    [30]董芳.内燃机燃烧过程的数值模拟[D].大连:大连理工大学,2004:19-20.
    [31]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001:320-400.
    [32]GRI-Mech.3.0.http://www.me.berkeley.edu/gri_mech/version30.
    [33]李耕.基于化学动力学的天然气一柴油电控双燃料发动机燃烧模型的研究[D].浙江:浙江大学,2004.
    [34]董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2008,8(1):44-48.
    [35]王云,王健平.甲烷及天然气HCCI的数值模拟[C].全国第十届计算流体力学会议论文集:155-160.
    [36]Yavzu I, Celik I, McMillian MH. Knoek predietion in reproaehing gas engine using detailed chemieal kineties. SAE Paper 2001-01-1012.
    [37]Soylu S, Combustion analysis of a natural gas engine.ICES 2003-563,2003 Spring Tch Conf of the ASME,Salzburg,Austria. May11-14,2003.
    [38]O'Connaire, M., H.J.Curran, J.M. Simmie, W. J. Pitz, and C.K.Westbrook, A Comprehensive Modeling Study of Hydrogrn Oxidation. "Int.J.chem.kinet.,2004,36:603-622.
    [39]Kee R J, Rupley F M, Coltrin M E et al. Chemkin collection, Release 4.0. Reaction Design, Inc., San Diego,2004.
    [40]Turanyi T. Applications of sensitivity analysis to combustion chemistry. Reliability Engineering and System Safety,1997,57(1):41-48.
    [41]王瑞金,张凯,等Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:1.
    [42]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992:14-20.
    [43]张建文,杨振亚,张政.流体流动与传热的数值模拟基础与应用[M].北京:化学工业出版社,2009:12-20.
    [44]马贵阳.内燃机缸内湍流流动的数值模拟-涡粘度模型再研究[D].大连:大连理工大学,2001.
    [45]马贵阳,解茂昭.用RNG k-ε模型计算内燃机缸内湍流流动[J].燃烧科学与技术,2002(8):171-175.
    [46]FLUENT 6.2 User's Guide. Fluent Inc.2005:720-770.
    [47]李昕.CA4102天然气发动机燃料过程的仿真研究[D].长春:吉林大学,2007:21-22.
    [48]黄为钧,彭亚平,郭英男,等.进气温度对乙醇燃料均质压燃燃烧过程的影响[J].车用发动机,2006(4):13-16.
    [49]FIRE Version 8 Examples. AVL FIRE, July 2003,70-71.
    [50]Todshi Narushma. Development of Ultra Low Emission Light Duty NGV.1993.2:23-30.
    [51]郭海涛,黄佐华,周龙保,等.火花点火式发动机未燃碳氢形成机理及影响因素的研究[J].内燃机工程,1996,17(4):14-20.
    [52]SALVADORM A, DANIELL F.A Multi-Zone Model for Prediction of HCCI Combustion and Emissions. SAE 2000-01-0327.
    [53]MARIAU A, PETER G. Formation and Destruction of CH2O in the Exhaust System of a Gas Engine. Environ SciTechno,2003,37:4512-4516.
    [54]刘海全HCNG发动机燃烧排放特性研究与准维模型计算[D].北京:清华大学,2007:8-12.
    [55]马凡华,孙宁.天然气掺氢燃烧及排放性能的元素势能法分析[J].车用发动机,2005,5(159):28-30.
    [56]王金华,方宇,黄佐华,等.直喷式发动机燃用天然气掺氢混合燃料放热规律与燃烧特征参数分析[J].燃烧科学与技术,2008,,14(2):107-112.
    [57]刘海全,马凡华,王宇等.不同掺氢比天然气发动机的燃烧排放特性[J].车农业机械学报,2008,39(8):1-4.
    [58]刘兵,黄佐华,曾科,蒋德明,等.天然气掺氢火花塞点火式发动机排放性能研究[J].西安交通大学学报,2008,42(2):243-247.
    [59]王爱红,高有出,等.HCNG发动机排放特性分析[J].车用发动机,2008(1):72-76.
    [60]刘永长.内燃机原理[J].武汉:华中科技出版社,2001.
    [61]Michael Fitzpatrick, Ralf Pechstedt. A new design of optical in-cylinder pressure sensor for automotive applications. SAE 2000-01-0539,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700