用户名: 密码: 验证码:
斜齿轮多间隙非线性耦合系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮传动系统是机械传动系统的重要组成部分。随着科学技术的进步和机械行业的发展,对齿轮系统提出了更高要求,高转速、低噪声成为发展方向。加强对齿轮系统动力学的研究,是提高传动系统性能的重要途径。深入研究齿轮系统的动力学参数,对全面分析齿轮传动系统的动态特性,提高机械传动系统性能有重要意义。
     本文以斜齿圆柱齿轮传动系统为研究对象,以齿轮系统动力学理论为基础,在全面考虑时变啮合刚度、传递误差、齿侧间隙和轴承游隙等非线性因素下,建立了更符合实际情况的齿轮系统弯-扭-轴-摆多间隙耦合非线性模型。利用Runge-Kutta数值积分算法对系统动力学方程求解,得到系统动态响应结果,对结果进行分析比较,并讨论了多个动力学参数对系统动态特性的影响。
     首先,阐述了刚度激励和误差激励的产生机理,对啮合时变刚度进行了Fourier级数数值模拟,并分析了齿轮重合度以及转速与时变刚度的关系;对两种误差类型进行了分析,并作了数值模拟的近似处理。最终将两种激励进行合成,作为齿轮系统的输入。
     其次,分别研究了几种不同的建模方法和模型类型。采用集中质量法,建立了弯-扭-轴-摆的非线性动力学模型,并依据模型建立了动力学微分方程组。由于数值计算的需要,进行了间隙非线性描述函数的拟合和对微分方程组的无量纲化。
     第三,以固有特性数值计算的理论为基础,求解研究对象对应的无阻尼自由振动微分方程,得出固有频率的数值结果;与有限元方法的分析结果进行比较,说明了理论方法的可行性。
     第四,分析比较了多种动力学方程的求解方法,选用四阶定步长Runge-Kutta数值方法,对齿轮系统模型进行求解,得出系统振动响应的时域图、相图、Poincare图以及FFT图。分析了响应结果的特点,并分别从振动幅值和振动周期性两方面,研究讨论了齿轮侧隙、激励频率以及轴承游隙对系统响应结果的影响方式和影响程度,对参数数值的选择提出合理化的建议。
     最后,利用MATLAB的GUI开发平台,将以上关于齿轮系统动力学相关分析的研究方法,编写程序开发成能与用户交互的分析工具软件。
     本文针对斜齿轮传动系统展开动力学特性的研究,通过大量数值计算得出动态特性的相应结果,为进一步的理论研究和高性能齿轮系统的设计提供基础。
Gear transmission system is an important part of mechanical transmission system. With the scientific and technological progress and the development of machinery industry, the gear system put a higher requirement, high speed, low noise as the direction of development. Strengthen the dynamic study of gear system is an important way to improve the performance of transmission system. Depth study of gear system dynamic parameters, is important to comprehensive analyze the dynamic characteristics of gear transmission system and improve performance of mechanical transmission system.
     In this paper, helical gear transmission system was studied with gear system dynamics theory, and established a more realistic bend-torsion-axes-swing multi-gap nonlinear coupled gear system model, in full consideration of the nonlinear factors such as time-varying mesh stiffness, transmission error, backlash and bearing clearance. The dynamic equations of system was solved by use of Runge-Kutta numerical integration algorithm, to obtain the results of dynamic response, which were analyzed and compared, and discussed the affect of several dynamic parameters on the dynamic characteristics of system.
     Firstly, the mechanism of stiffness excitation and error excitation were elaborated, and the time-varying stiffness of meshing was numerical simulated by Fourier series method, to analyze the relationship between time-varying stiffness and gear contact ratio & speed; two types of errors were analyzed and made a numerical simulation. Ultimately two excitations were synthesized as the input of gear system.
     Secondly, each of several different types of modeling methods and models were analyzed. The bend-torsion-axes-swing nonlinear dynamic model was established by use of lumped parameter method, and the dynamic differential equations based on the model. As the need for numerical calculation, the clearance nonlinear describing function was fitted and the differential equations were dimensionless.
     Thirdly, based on the numerical theory of the inherent characteristics, the undamped free vibration equation was solved to obtain the numerical results of the natural frequency; and compare with the results of the finite element method to illustrate the theoretical feasibility of the method.
     Fourth, by comparing a variety of methods for solving the dynamic equations, the model of the gear system was solved by use of the fourth order fixed step Runge-Kutta numerical method to obtain the vibration response of the system, such as time-domain diagram, phase diagram, Poincare map and the FFT graph. Analyzing the characteristics of the response results, and discussing the affect way and level of the parameters, such as gear backlash, driving frequency and the bearing clearance from each two aspects of vibration amplitude and vibration periodicity, to propose reasonable suggestions for the choice of parameter values.
     Finally, by use of MATLAB's GUI development platform, the analysis tools software was developed including the above analysis methods on the gear system dynamics, which can be interacted with the user.
     In this paper, dynamic characteristics of helical gear transmission system was studied, and obtained the dynamic characteristics of the corresponding results by a large number of values calculated to provide the basis for further theoretical research and design of high-performance gear system.
引文
[1]唐定国,陈国民.齿轮传动技术的现状和展望[J].机械工程学报,1993,29(5):35-42.
    [2]彭文生,高性能·低噪声齿轮的设计与制造[C].第二届全国齿轮动力学会议论文集,1991.
    [3]李润方,王建军.齿轮系统动力学-振动·冲击·噪声[M].北京:科学出版社,1997.
    [4]H. Optiz. Dynamic Behavior of Spur and Helical Gears[C]. JSME Semi-International Symposium Papers,1967.
    [5]Nelson, H. D. and Mc Vaugh, J. M., et al. The Dynamics of Rotor-Bearing Systems Using Finite Elements[J]. ASME Journal of Engineering for Industry,1985(2):593-600.
    [6]K. umezawa. Vibration of Power Transmission Helical Gear with Narrow Face-width[J]. ASME Paper,1984,84-DET-159:150-159.
    [7]Kahraman A, Singh R. Interactions between time-varying meshing stiffness and clearance non-linear ties in a geared system[J]. Journal of Sound and Vibration, 1991,146.
    [8]T.Iwatsubo. Coupled lateral torsional vibration of rotor system trained by gears[J]. Bulletin of JSME,1994,27:271-277.
    [9]Velex P, Maatar M. A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior[J]. Journal of Sound and Vibration,1996,191:629-660.
    [10]Neriya V, Bhat R B, Sanker T S. Coupled tensional flexural vibration of a geared shaft system using finite element analysis[J]. The Shock and Vibration Bulletin,1998,55:25-58.
    [11]唐增宝,钟毅芳.多级齿轮传动系统的动态仿真[J].机械传动,1993,17(1):37-41.
    [12]秦大同,朱才朝,李润方.内齿行星传动参数动态优化[J].重庆大学学报,1997(2):89-94.
    [13]沈允文,孙涛.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2000,38(3):610-107.
    [14]李润方,林腾蛟.齿轮啮合内部动态激励数值根据[J].机械传动,2001,25(2):1-3.
    [15]李润方,王立华等.高速重载齿轮的有限元分析[J].中国机械工程,2003,20:1773-1777.
    [16]林腾蛟,李润方等.齿轮箱内部动态激励及系统振动响应数值仿真[J].农业机械报,2002,33(6):20~22.
    [17]杨为,韩国胜.微车变速器的轴承-齿轮轴系非线性三维接触动态特性研究[J].振动与冲击,2007,26(11):9-12.
    [18]Blankenship G W, Kahraman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity[J]. Journal of Sound and Vibration,1995,185(5):743-765.
    [19]Raghothama A, Najayanan S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method[J]. Journal of Sound and Vibration, 1999,226(3):469-473.
    [20]S. Theodossiades and S. Natsiavas. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash[J]. Journal of Sound and vibration,2000, 229(2):287-310.
    [21]A. Al-shyyab, A. Kahraman. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method:Sub-harmonic motions[J]. Journal of Sound and Vibration,2005,279:417-451.
    [22]韩西.齿轮系统耦合振动噪声特性研究[D].重庆:重庆大学,1999.
    [23]孙涛.行星齿轮系统非线性动力学研究[D].西安:西北工业大学,2000.
    [24]孙涛,胡海岩.基于离散博里叶变换与谐波平衡法的行星齿轮系统非线性动力学分析[J].机械工程学报,2002,38(11):58-61.
    [25]Z Tao. R Li. T Lin. Prediction of coupled vibration response for gear system[C]. Nottingham UK:Proceedings of the International Conference on Gearing. Transmission and Mechanical Systems, July 3-6.2000:275-280.
    [26]孙智民.功率分流齿轮传动系统非线性动力学研究[D].西安:西北工业大学,2001.
    [27]孙智民,沈允文,王三民,等.星形齿轮传动系统分岔与混沌的研究[J].机械工程学报,2001,37(12):44-52.
    [28]李润方,韩西,林腾蛟,等.齿轮系统耦合振动的理论分析与实践研究[J].机械工程学报,2000,36(6):79-81.
    [29]Li Run fang. Lin Tengjiao. Tao Zeguang. Han Xi. Study on Coupled Vibration Response of Gear System[C]. Fukuoka Japan:Proceedings of the JSME International Conference on Motion and Power Transmission. Nov.15-17.2001:97-101.
    [30]李润方,林腾蛟,陶泽光.齿轮系统耦合振动响应的预估[J].机械设计与研究,2003,19(2):27-29.
    [31]林腾蛟,李润方,杨成云,等.增速箱内部动态激励及系统振动响应数值仿真[J].农业机械学报,2002,33(6):20-22.
    [32]魏大盛,王延荣.行星轮系动态特性分析[J].航空动力学报,2003,18(3):450-453.
    [33]王立华,李润方,林腾蛟等.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-1146.
    [34]A. Kahrannan. Nonlinear dynamics of a spur gear pair[J]. Journal of Sound and Vibration,1990,103(2):447-459.
    [35]T. Tsuta. Excitation force analysis of helical gear-pair with tolerance in their tooth shape and pitch mounted on flexible shaft[C]. MPT'91 JSME International Conference on Motion and Power Transmission. Hiroshima. Japan. Nov.23-26. 1991:72-77.
    [36]H. Houjoh. K. Umezawa. S. Matsumura. Vibration Analysis of a Pair of Helical Gears Mounted on Elastic Shafts[J]. ASME Power Transmission and Gearing Conference,1996(88):501-508.
    [37]R. G Parker. S.M.Vijayakar. T.Imajo. Non-linear dynamic response of a spur gear pair modeling and experimental comparisons[J]. Journal of Sound and Vibration, 2000,237(3):435-455.
    [38]P. Velei. P. Sainsot. An analytical study of tooth friction excitations in errorless spur and helical gears[J]. Mechanism and Machine Theory,2002,37:641-658.
    [39]L Vedmar. A. Andersson. A method to determine dynamic loads on spur gear teeth and on bearing[J]. Journal of Sound and Vibration,2003,267:1065-1084.
    [40]Yuan H. Guana. Mingfeng Lib. Teik C. Limb. Comparative analysis of actuator concepts for active gear pair vibrat'on control[J]. Journal of Sound and Vibration,2004,269:273-294.
    [41]魏任之,曾鸣.齿轮传动装置动态设计方法研究[J].机械科学与技术,1994,13(10):1-4.
    [42]王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998,9(12):55-58.
    [43]李润方,陶泽光,林腾蛟,等.齿轮啮合内部动态激励数值模拟[J].机械传动,2001,25(2):1-3.
    [44]陈思雨.一种新的齿轮非线性振动数学模型建模与分析求解研究[D].长沙:中南大学,2007.
    [45]杨晓宇.齿轮传动系统动力学特性的有限元分析及试验方法研究[D].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [46]董加礼,孙丽华.工科数学基础[M].北京:高等教育出版社,2002.
    [47]成大先.机械设计手册(第四版)[M].北京:电子工业出版社,2007.
    [48]宋少芳.齿轮副非线性动力学模型的建立与分析[D].长春:吉林大学,2007.
    [49]Jiande Wang, Ian Howard. Error analysis on finite element modeling of involute spur gears [J]. ASME,2006,6.
    [50]夏伯乾,虞烈,谢友柏.齿轮-转子-轴承系统弯扭耦合振动模型研究[J].西安交通大学学报,1997,31(12):93-99.
    [51]崔亚辉,刘占生,叶建槐.齿轮-转子耦合系统的动态响应及齿侧间隙对振幅跳跃特性的影响[J].机械工程学报,2009,45(7):7-15.
    [52]薛家国.齿轮动力学简化模型[J].安徽工业大学学报,2003,20(4):340-344.
    [53]刘国华,李亮玉,李培明,等.含间隙和时变刚度的齿轮系统非线性动力学模型的研究[J].机械设计,2008,25(5):27-30.
    [54]刘国华,李亮玉.基于非线性理论的齿轮机构动力学模型的建立及实验[J].机械设计,2006,23(5):15-17.
    [55]唐进元,陈思雨,钟掘.一种改进的齿轮非线性动力学模型[J].工程力学,2008,25(1):217-223.
    [56]张林.齿轮副啮合传动的动力学特性研究[D].济南:山东大学,2008.
    [57]王建平.齿轮传动系统非线性动力特性及轮齿修缘理论研究[D].上海:同济大学,2005.
    [58]袁卫华.推土机终传动齿轮的模态分析[J].工程机械,2008,39:5-7.
    [59]芮执元,张伟华.铝锭堆垛机传动系统齿轮的有限元模态分析[J].新技术新工艺,2009,01:30-32.
    [60]张楠.基于ANSYS的塔机传动齿轮的模态分析[J].设计研究,2010,03:53-55.
    [61]周海建.基于有限元法的风力发电机齿轮传动系统动态特性研究及优化设计[D].重庆:重庆大学,2008.
    [62]王庆,张以都,黎定仕,等.基于刚度矩阵单元的斜齿轮传动系统耦合振动有限元分析[J].设计与研究,2008,01:14-18.
    [63]杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009.
    [64]罗家元.齿轮箱系统耦合动态特性研究[D].重庆:重庆大学,2004.
    [65]杨成云.齿轮传动系统耦合振动响应及抗冲击性能研究[D].重庆:重庆大学,2006.
    [66]刘梦军.单对齿轮系统间隙非线性动力学研究[D].西安:西北工业大学,2002.
    [67]郑兆昌.机械振动[M].北京:机械工业出版社,1980.
    [68]段继伟,蔡承文.基于加权残值法的高阶直接积分算法[J].浙江大学学报,1990,24(5):744-753.
    [69]胡祖炽,林源渠.数值分析[M].北京:高等教育出版社,1986.
    [70]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2004.
    [71]百度百科.庞加莱截面[EB/OL]. (2008,11,23). http://baike.baidu.com/view/2011866.htm.
    [72]杨献恩,武丽梅,王丹,等.齿轮传动系统非线性动力学特性分析[J].制造业信息化,2008,12:90-92.
    [73]宗节保,段柳云,王莹,等.基于MATLAB GUI软件制作方法的研究与实现[J].电子设计工程,2010,18(7):54-56.
    [74]百度百科.图形用户界面[EB/OL]. (2010,08,03). http://baike.baidu.com/view/185360.htm.
    [75]周长城,胡仁喜,熊立波.ANSYS 11.0基础与典型范例[M].北京:电子工业出版社,2007.
    [76]董振海.精通MATLAB7编程与数据库应用[M].北京:电子工业出版社,2007.
    [77]杜藏,骆源.科学计算语言与MATLAB简明教程[M].天津:南开大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700