用户名: 密码: 验证码:
高速车轮踏面设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮轨型面优化一直是铁路技术研究的主要内容。匹配关系较好的轮轨型面可以提高列车的运行质量,降低铁路及列车维修成本。轮轨几何形状不匹配,或磨耗后匹配性能恶化的轮轨型面将增加轮轨的磨耗与伤损,甚至影响车辆的动力学性能。针对列车运营中存在的具体问题合理设计车轮踏面,可以起到延长车轮踏面镟修周期,降低铁路运营成本的目的。
     本文第1章对轮轨关系的研究历史和现状进行了详细论述,对目前的车轮型面优化设计方法进行了分析,明确了车轮型面优化的意义与研究方向。第2章介绍了轮轨匹配性能参数、轮轨相互作用力及车辆系统动力学性能求解方法,用以分析踏面各项性能指标。对我国现有高速踏面性能进行了比较分析,指出了各踏面的优缺点,为踏面设计提供参考。
     高的轮轨接触应力是导致轮轨磨耗与伤损的主要原因之一,减小轮轨接触应力以减小轮轨伤损一直是车轮踏面设计的一项主要任务。第3章以减小轮轨接触应力为目的,以动态轮轨法向间隙最小为目标开发了车轮型面的正解方法。该方法充分考虑了车轮型面不同位置的重要性。利用改进的SQP方法对车轮踏面进行了优化设计,数值分析表明,设计踏面可以在不降低其它性能的情况下,有效降低轮轨接触应力。
     目前高速列车均采用轻量化设计,与轮轨接触应力相比,车轮型面应首先满足列车高速运行时的稳定性及平稳性要求。由于各国铁路运营条件存在差异,无法直接采用国外高速车轮踏面外形,需根据线路运营条件对车轮踏面重新设计。传统经验设计法可以充分考虑目前踏面存在的优缺点,设计结果通常具有较好的推广性。第4章采用经验法对某型车车轮踏面进行了设计,给出了两种减小轮轨游隙的踏面设计方案,以满足列车350km/h~380km/h高速运行需求。
     与经验设计法相比,反求设计法具有较高的踏面设计效率及较低的成本。第5章通过对轮轨接触几何关系的详细推导,获得了根据轮径差反推踏面外形的踏面设计方法,并开发了收敛性较好的高速并行优化算法。根据实测踏面磨耗特性对踏面轮径差进行了调整,反求设计了车轮踏面外形。
     目前绝大多数车轮踏面优化方法只追求踏面运营初期较好的轮轨匹配性能及车辆动力学性能,对踏面磨耗之后的性能考虑较少,且通常将踏面设计与车辆参数的研究相分离。而较好的踏面设计应保证车轮一个镟修周期内具有较好的动力学特性,这就要求车轮踏面设计需适当考虑车辆系统的动态性能。第6章综合利用了前几章介绍的车轮踏面设计方法,提出了车轮踏面“均良设计”方法。此方法可以综合考虑车轮的磨耗状态、车辆的悬挂参数、轨道不平顺以及速度等级等。结合线路列车实测踏面磨耗外形,对车轮踏面进行了优化,取得较好的效果。
     第7章介绍了各高铁线路不同型号列车车轮磨耗状态,详细分析了列车横向失稳与车轮凹形磨耗的关系。以CRH3型车为例,基于车轮踏面均良设计理念设计了新的踏面外形,并对设计前后踏面性能进行了详细分析,结果表明新设计踏面具有较好的轮轨匹配特性及抗凹形磨耗性能,可以有效延长踏面镟修周期。
     最后给出了车轮踏面设计的相关结论与展望。
The wheel/rail profile optimization has always been a focus of railway research. Optimized profiles can increase the quality of the running trains and reduce the related maintenance costs. Deteriorated or mismatched profiles greatly influence the wear and other damages of both wheels and rails, and even drop the vehicle behavior.. Obviously, a wheel-rail profile design, developed on the basis of observations of wheel tread problems, can reduce the frequency of wheel re-profiling, and further the operational cost of the railway.
     Chapter1of this thesis reviews the history and the present situation of the research into wheel profile optimization. Chapter2introduces the methods employed in this thesis to solve the wheel/rail matching performance parameters, the wheel/rail interaction and vehicle system dynamics. In order to create a reference for wheel profile design, the advantages and disadvantages of the wheel profiles of Chinese high-speed trains are also explained.
     Excessive wheel/rail contact stress is the root cause of wheel damages. Therefore, to reduce wheel/rail contact stress is one of the main objectives of the profile optimization. Chapter3develops a forward solution method for designing wheel profile based on the wheel/rail normal gap, the main objective of which is to reduce the wheel/rail contact stress. The improved sequential quadratic programming method is used to solve the optimization model. The results of the numerical analysis show that wheel/rail force stress of the new profile is largely reduced without sacrificing the dynamic performance of the wheelset.
     For the high-speed vehicles with low axle load, however, the riding quality and running stability of the vehicle is more important objective than the wheel/rail contact stress. Because of the differences between the Chinese high-speed railway system and those in other countries, the wheel profiles behaved well at abroad may not be used directly in China, and modifications or further improvements are normally necessary. The traditional method can fully consider the advantages and disadvantages of the old profiles, so that the obtained results can easily be extended. In chapter4, the wheel profile of vehicle is designed by the traditional method. Two design proposals with small wheel/rail clearance are achieved to meet vehicle running requirement at the speed of350km/h~380km/h.
     In comparison with the traditional method, the inverse method has some features such as high production efficiency and low design cost. In chapter5, the wheel/rail contact geometry relationship was derived in detail, the wheel profile inverse design method is developed based on the RRD function, and the parallel algorithm which has high efficiency and good convergence is developed. The RRD function is adjusted based on the measured wheel profile and the new wheel profile is obtained using this method.
     Currently, the vast majority of wheel profile design methods only focuse on the matching performance and dynamic behavior in the beginning stage, and are usually separated from the vehicle dynamics. However, a successful wheel profile should ensure the high dynamic performance of the vehicle, ideally in the whole re-profiling period. Chapter6developed a new wheel profile design method on the basis of the methods introduced in the previous chapters, which is named as "average-fine design method".With this method the wheel profile is optimized with the consideration of contact stress, dynamic performance of the vehicle, wear of wheel tread and so on. For validation, a new profile was designed using this method based on the measured wheel profiles and its sound effects were proved in vehicle operation.
     Chapter7introduces the wear state of wheels in different lines and analyzes the effect of hollow-worn wheel on vehicle stability in detail. Take CRH3as an example, a wheel profile was designed using the average-fine design method and the performances of the new profile are investigated in detail and compared with the original wheel. The results show that the new profile has the better performances and can alleviate the hollow wear on the wheel, thus, the period of re-profiling can effectively be extended.
     Finally, the conclusions and prospect of the wheel profile design method are given.
引文
[1]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断,1998,18(1):1-7.
    [2]严隽耄.车辆工程[M].北京:中国铁道出版社,2005.
    [3]邢纳新.世界高速铁路干线的现状与发展[J].国外铁道车辆,2010,(2):1-5.
    [4]铁路大事记(1997-2011年).中国投资[J],2011,(12):74-75.
    [5]铁正轩.全面实施第六次大面积提速调图促进经济社会又好又快发展[J].中国铁路,2007,(5):7-13.
    [6]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [7]金学松,刘启跃.轮轨摩擦学[M].北京,中国铁道出版社,2004.
    [8]SMITH R A. The wheel-rail interface-some recent accidents[J]. Fatigue Fract Eng Mater Struct,2003,26(10):901-907.
    [9]金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展,2001,31(1):33-46.
    [10]张曙光,顾建国.中国高速车轮自主创新思路及设想[J].铁道车辆,2009,47(3):1-5.
    [11]曾京.国家973计划课题验收总结报告一高速轮轨滚动失效机制及优化匹配[R].西南交通大学,2011.10.
    [12]SMALLWOOD R, SINCLAIR J C, SAWLEY K J. An optimization technique to minimize rail contact stresses[J]. Wear,1991,144(1-2):373-384.
    [13]UEDA M, UCHINO K, KAGEYAMA H, et al. Development of bainitic steel rail with excellent surface damage resistance[C]//Proceeding of IHHA'99, Moscow, Russia,1999: 259-266.
    [14]MARICH S. Major advances in rail technologies achieved in the past 10-20 years [C]//Proceedings of the 8th International Heavy Haul Conference, Brazil,2005:747-760.
    [15]MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue Fract Eng Mater Struct,2003,26(10):921-929.
    [16]张卫华.机车车辆运行动态模拟研究[D].西南交通大学博士论文,1996.
    [17]崔大宾.铁路列车轮轨型面优化研究[D].成都,西南交通大学,2009.
    [18]李立,崔大宾,金学松.车轮型面的优化进展[J].西南交通大学学报,2009,44(1):13-19.
    [19]WICKENS A H. Dynamics of railway vehicles-from Stephenson to Carter[J]. Proc Inst Mech Eng Part F J Rail Rapid Transit,1998,212(3):209-217.
    [20]Heumann H.,Zur Frage des Radreifen-umrisses. Organ fur die Fortschritte des Eisenbahnwesens, v.89, n.18, Sep.1934, pp.336-342.
    [21]HELLER R, LAW E H. Optimizing the wheel profile to improve rail vehicle dynamic performance[J]. Vehicle system dynamics,1979,15(Suppl):179-197.
    [22]杨国桢.车轮踏面形状的初步研究(上)[J].铁道车辆,1978,11:1-6.
    [23]杨国桢.车轮踏面形状的初步研究(下)[J].铁道车辆,1978,12:1-17.
    [24]王文健.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D].成都,2008.
    [25]杨国桢,张孝珂.对磨耗形踏面的研究[J].铁道学报,1983,2:9-19.
    [26]刘新民.机车车辆弧形踏面外形研制[J].铁道车辆,2000,38(2):24-28.
    [27]佐藤荣作.车轮踏面形状设计的科学化[J].国外内燃机车,2000,3:39-43(叶娟译).
    [28]Haque I, Latimer D A, Law E H. Computer-aided wheel profile design for railway vehicles[J]. ASME Journal of Engineering for Industry,1989,111:288-291.
    [29]Smith R E, Kalousek J. A design methodology for wheel and rail profiles for use on steered railway vehicles[J]. Wear,1991,144(1-2):329-342.
    [30]Sato Y. History study on designing Japanese rail profiles. Wear,2005,258(7-8):1064-1070..
    [31]Leary J F, Handal S N, Rajkumar B. Development of freight car wheel profiles-a case study[J]. Wear,1991,144(1-2):353-362.
    [32]Wu H M. Investigations of Wheel/rail Interaction on Wheel Flange Climb Derailment and Wheel/rail profile Compatibility[D]. The Graduate College of the Illinois Institute of Technology.2000.
    [33]张剑,温泽峰,孙丽萍,金学松.基于钢轨型面扩展法的车轮型面设计[J].机械工程学报,2008,44(3):44-49.
    [34]张剑,王玉艳,金学松,崔大宾.改善轮轨接触状态的车轮型面几何设计方法[J].交通运输学报,2011,11(1):36-42.
    [35]金学松.轮轨蠕滑理论及其试验研究[D].成都:西南交通大学,1999.
    [36]金学松,温泽峰,张卫华.两种型面轮轨滚动接触应力分析[J].机械工程学报,2004,40(2):5-11.
    [37]金学松,温泽峰,张卫华.轮对滚动状态对轮轨滚动接触应力的影响[J].工程力学,2004,20(1):165-173.
    [38]温泽峰,金学松.两种型面轮轨滚动接触蠕滑率和磨耗功[J].摩擦学学报,2001,21(4):288-292.
    [39]Timoshenko S. Method of Analysis Static and Dynamical Stresses in Rail[C]\\Proc. Of the 2nd International Congress of Applied Mechanics, Zurich,1927.
    [40]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [41]Xiao Xinbiao, Jin Xuesong, Wen Zefeng. Effect of Disabled Fastening Systems and Ballast on Vehicle Derailment. ASME Journal of Vibration and Acoustic,2006,129(2):217-229.
    [42]Xiao Xinbiao, Jin Xuesong, Deng Yongquan, Zhou Zhongrong. Effect of curved track support failure on vehicle derailment[J]. Vehicle System Dynamic.46(11),2008,1029-1059.
    [43]Xiao Xinbiao, Jin Xuesong, Wen Zefeng, Zhu Minhao, Zhang Weihua. Effect of tangent track buckle on vehicle derailment[J]. Multi-Body Dynamic.25(1),2011,1-41.
    [44]Shevtsov I Y, Markine V L, Esveld C. Optimal design of wheel profile for railway vehicles[J]. Wear,2005(258):1002-1030.
    [45]Markine V.L, Shevtsov I.Y, Esveld C. An inverse shape design method for railway wheel profiles[J]. Struct Multidisc Optim,2007,33:243-253.
    [46]Hamid Jahed, Behrooz Farshi, Mohammad A. Eshraghi, Asghar Nasr A numerical optimization technique for design of wheel profiles[J]. Wear,2008(264):1-10.
    [47]Persson I, Iwnicki S D, Optimisation of railway wheel profiles using a genetic algorithm[J]. Vehicle System Dynamics,2004,41(Suppl):517-526.
    [48]Novales M, Orro A, Bugarin M R. Use of a genetic algorithm to optimize wheel profile geometry[J]. Proc Inst Mech Eng Part F J Rail Rapid Transit,2007,221(4):467-476.
    [49]Polach O. Wheel profile design for target conicity and wide tread wear spreading[J]. Wear, 2011,271:195-201.
    [50]柳拥军.高速轮轨接触几何及高速轮轨几何型面优化的研究[D].博士学位论文,铁道科学研究院,北京,1999.
    [51]Shen G, Ayasse J B, Chollet H, et.al. Aunique design method for wheel profiles by considering the contact angle function[J]. Proceeding of the I MECH E, Part F J. Rail Rapie Transit,2003 (217):25-30.
    [52]沈钢,Chollet H,叶志森.轮轨外形及接触问题的进一步研究[J].铁道学报,2005,27(4):25-29.
    [53]沈钢,钟晓波.铁路车轮踏面外形的逆向设计方法.机械工程学报,2010,16:41-47.
    [54]崔大宾,李立,金学松,肖广文.基于轮轨法向间隙的车轮踏面优化方法[J].机械工程学报,2009,45(12):205-211.
    [55]Cui Dabin, Li Li, Xuesong Jin. Optimal design of wheel profiles based on weighed wheel/rail gap[J]. Wear,2001 271:218-22.
    [56]Cui Dabin, Li Li, Jin Xuesong, LI Ling. Wheel-Rail Profiles Matching Design Considering Railway Track Parameters [J]. Chinese Journal of Mechanical Engineering,2011.
    [57]崔大宾,李立,金学松.重载货车车轮踏面优化研究[J].铁道学报,2011,33(5):31-37.
    [58]崔大宾,李立,金学松,周亮节.铁路钢轨打磨目标型面研究[J].工程力学,2011,28(4):178-184.
    [59]周亮节.钢轨打磨形面研究[D].成都:西南交通大学,2010.
    [60]藤尺孝之等.车轮踏面管理与计划镟修、经济镟修.国外机车车辆工艺,1995(4):13-17.
    [61]奥山雅贵等.车轮踏面镟修量判定的研究[J].国外机车车辆工艺,2009(1):14-18.
    [62]员华,肖胜强,汪洋.基于磨耗量统计的轮对等级镟修可行性分析[J].城市轨道交通,2006(1):43-45.
    [63]许宏,员华,王凌,等.基于高斯过程的地铁车辆轮对磨耗建模及其镟修策略优化[J].机械工程学报,2010,46(24):88-95.
    [64]李秋泽,孙守光,谌亮,等.XP55-28经济型镟修踏面外形设计及动力学性能验证[J].铁道学报,2013,35(1):19-24.
    [65]Cui Dabin, Li Li, Jin Xuesong, et.al. Influence of Vehicle Parameters on Critical Hunting Speed Based on Ruzicka Model[J].2012,25(3):536-542.
    [66]杨国桢.磨耗形踏面的轮轨接触几何参数(上)[J].铁道车辆,1980,(10):6-10.
    [67]张定贤,沈钢,洪晓频,傅佩喜.轮对与轨道接触几何学的研究[J].中国铁道科学,1990,11(2):45-61.
    [68]Polach O. Characteristic parameters of nonlinear wheel/rail contact geometry[C]// Proceedings of the 21st IAVSD Symposium, Stockholm,17-21 August 2009. Paper No.95.
    [69]UIC Code 519:Method for determining the equivalent conicity. International Union of Railways,1st ed, November 2007.
    [70]Anneli Orvnas, Evert Andersson, Rickard Persson. Development of track-friendly bogies for high speed-A simulation study[R]. KTH Railway Group, Pub10703, Stockholm 2007.
    [71]Pearch T. Wheelset guidance-conicity, wheel wear and safety[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit 1996, 210(16):1-9.
    [72]国际重载协会.国际重载铁路最佳应用指南[M].北京:中国铁道出版社,2009.
    [73]张卫华.机车车辆动态模拟[M].北京:中国铁道出版社,2006.
    [74]杨国桢.磨耗形踏面的轮轨接触几何参数(中)[J].铁道车辆,1980,(11):12-17.
    [75]黄照伟,崔大宾,杜星,等.车轮偏磨对高速列车直线运行性能的影响[J].铁道学报,2013,25(2):14-20.
    [76]Cui D B, Huang Z W, Jin X S, Shen P. A new wheel profile design method for high-speed vehicle[C]//Proceedings of the 1st International Workshop on High-Speed and Intercity Railways. Springer 2012 Vol(1):225-241. Verlag Berlin Heidelberg (IWHIR2011)
    [77]徐邵鑫.直钢轨轮对的几何学约束兼及等效锥度和重力刚度[J].西南交通大学学报,1980,(2):57-81.
    [78]杨国桢.磨耗形踏面轮轨接触几何学参数的研究[J].中国铁道科学,1980,(2):83-95
    [79]王开文.车轮接触点及轮轨接触几何参数的计算[J].西南交通大学学报,1984,(1):89-99.
    [80]金鼎昌.磨耗形踏面研究[J].西南交通大学学报,1984,(4):81-88.
    [81]王开文.任意形状轮轨几何关系研究[D].成都:西南交通大学,1982.
    [82]严隽耄.具有任意轮轨形状的轮轨几何约束研究[J].西南交通大学学报,1983,(3):37-42.
    [83]夏富杰,詹斐生,张卫华.轮轨几何接触的通解研究[J].机械工程学报,2000,36(8):51-54.
    [84]金学松,温泽峰,张卫华.两种型面轮轨滚动接触应力分析[J].机械工程学报.2004,40(2):5-11.
    [85]金学松,温泽峰,张卫华.轮对运动状态对轮轨滚动接触应力的影响[J].工程力学,2004,20(1):165-173.
    [86]翟婉明,金学松,赵永翔.高速铁路工程中若干典型力学问题[J].力学进展,2010,40(4):354-373.
    [87]温泽峰.钢轨波浪形磨损研究[D].成都:西南交通大学,2006.
    [88]王文健,郭俊,刘启跃.轨道结构参数对轮轨滚动接触应力影响[J].机械工程学报,2009.
    [89]郭俊,刘启跃,王文健.钢轨打磨对轮轨滚动接触斑行为影响研究[J].铁道建筑,2009.
    [90]Wickens A H, The Dynamics of Railway Vehicles on Straight Tracks Fundamental Considerations of Lateral Stability[C]//Joint Convention on Interaction between Vehicle and Track, Institution of Mechanical Engineers,1965
    [91]Carter F W. On the action of a locomotive driving wheel[C]//Proc, of the Royal Society of London, A112,1926,151-157.
    [92]Vermeulen J K, Johnson K L. Contact of non-spherical bodies transmitting tangential forces[J]. Journal of Applied Mechanics,1964,31:338-340.
    [93]Kalker J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. Delft University, The Netherlands,1967.
    [94]Kalker J J. Simplified theory of rolling contact[R], Delft Progress Report, Delft University Press, Netherlands,1973,1-10
    [95]Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creepforce models for rail vehicles dynamic analysis[C]//Proc.8th IAVSD Symp., Cambridge, MA,1984,591-605.
    [96]Garg V K, Dukkipati R V. Dynamics of railway vehicle systems[M]. New York:Academic Press,1984.
    [97]Knothe K, Grassie S L. Modeling of railway track and vehicle/track interaction at high frequencies [J]. Vehicle System Dynamics,1993,22:209-262.
    [98]Popp K, Kruse H, Kaiser I. Vehicle-track dynamics in the mid-frequency range[J]. Vehicle System Dynamics,1999,31:423-464.
    [99]肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响[J].交通运输工程学报,2006,6(1):10-15.
    [100]赵娜,曹登庆.铁道车辆含故障参数的非线性动力学模型[J].振动与冲击,2009.
    [101]岳三玲.高速客车的半主动悬挂研究[D]成都:西南交通大学,2009.
    [102]何群.客运专线全风化花岗岩改良土隧一隧过渡段动力特性及稳定性研究[D].中南大学,2007.
    [103]倪平涛.磁流变轮对耦合器及其车辆动力学性能研究[D].成都:西南交通大学.
    [104]陆冠东.抗蛇行减振器在高速列车上的应用[J].铁道车辆,2006,44(8):6-8.
    [105]陆冠东.串联刚度对液压减振器特性的影响[J],铁道车辆,2007,45(2):1-4.
    [106]丁文镜.减振理论[M].北京:清华大学出版社,1988,50-55.
    [107]Polach O. On non-linear methods of bogie stability assessment using computer simulations[J]. Proceedings of the Institution of Mechanical Engineers, Part F, Journal of Rail and Rapid Transit 220.2006,13-27.
    [108]Polach O, Vetter A. Methods for running stability prediction and their sensitivity to wheel/rail contact geometry[C]//Extended abstracts of the 6th international conference on railway bogies and running gears, Budapest,13-16 Sept,2004,62-64.
    [109]UIC Code 518. Testing and approval of railway vehicles from the point of view of their dynamic behaviour -safety-track fatigue-ride quality,2nd edition,2003(International Union of Railways, Paris).
    [110]EN 14 363. Railway applications-testing for the acceptance of running characteristics of railway vehicles-testing of running behaviour and stationary tests. CEN, Brussels,2005.
    [111]49CFR238, FRA Regulations, Title 49. Transportation, Part 238-passenger equipment safety standards. Revised October 1,2003. Federal Railroad Administration,2003, Website of CFR (Code of Federal Regulations), available from http://www.gpoaccess. gov/cfr.
    [112]UIC Kodex 515. Reisezugwagen Laufwerke (1),2. Ausgabe,1.1.1984.
    [113]GB5599-85铁道车辆动力学性能评定和试验鉴定规范1985.
    [114]中国铁道科学研究院.200 km/h及以上速度级电动车组动力学性能试验鉴定方法及鉴定标准.北京:中国铁道科学研究院,2004.
    [115]董孝卿.高速动车组车轮踏面服役跟踪研究[R].轮轨外形匹配关系技术研讨会,2012,5月,上海.
    [116]周清跃,刘丰收,田常海,等.高速铁路轮轨型面匹配研究[J].中国铁路,2012,(9):33-36.
    [117]程耿东.形状优化数值方法与自适用运动极限[J].计算结构力学及其用应,1985,2(2):75-82.
    [118]Edgar T F, Himmelblau D M. Optimization of Chemical[C]//Processes. McGraw-Hill, New York,1988.
    [119]赵瑞安,吴方.非线性最优化理论和方法[M].杭州:浙江科学技术出版社,1992.
    [120]Biegler L T. Optimization Methods for Se2quential Modular Simulators[D], University of Wisconsin -Madison,1981.
    [121]许蕴蕾,由丹丹.基于SQP优化算法的滑行艇结构设计[J].船舶,2009.
    [122]杨冀宏.过程系统工程导论[M].北京:烃加工出版社,1989.
    [123]Lucia A, Kumar A. Distillation Optimization[J]. Comput Chem Eng,1988,12 (12):1263.
    [124]Lucia A, Xu J. Chemical Process Optimization Using Newton2Like Methods[J]. Comput Chem Eng,1990,14(2):119.
    [125]刘陶文BFGS方法及其在求解约束优化问题中的应用[D].湖南大学,2006.
    [126]肖广文,肖新标,温泽峰,金学松.高速客车轮对动力学性能比较[J].铁道学报,2008,30(6):29-35.
    [127] #12
    [128] #12
    [134]Avriel M. Nonlinear programming:analysis and methods[M]. Prentice-Hall, Inc.,1976.
    [129]铁道部科学研究院铁道建筑研究所,铁道部标准化研究所,南昌铁路局,等.缩小直线轨距的研究[R].北京:铁道科学研究院,1982.
    [130]张剑,孙丽萍.车轮型面动态高速曲线通过性能比较[J].交通运输工程学报,2007,7(6):6-11.
    [131]陈厚嫦,黄体忠,王群伟,黄成荣.轮对内侧距对机车车辆动力学性能影响的试验研究[J].中国铁道学报,2006,27(5):99-103.
    [132]陈厚嫦,王群伟,黄体忠,黄成荣.客运专线列车轮对内侧距选择的研究[J].铁道机车车辆,2008.
    [133]金守华,曾志平.京津城际铁路博格板式无砟轨道不平顺分析,铁道科学与工程,2009,6(1):48-52.
    [135]陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005:343-349.
    [136]于燕荪,黄文振.新单纯形优化算法—准最优方向搜索法[J].机械设计与研究,1985,2:33-38.
    [137]Frohling R, Ekberg A, Kabo E. The detrimental effects of hollow wear-field experience and numerical simulations[J]. Wear,2008,265:1283-1291.
    [138]Sawley K, Urban C, Walker R. The effect of hollow-worn wheels on vehicle stability in straight track[J]. Wear,2005,258:1100-1108.
    [139]黄照伟,崔大宾,杜星.车轮偏磨对高速列车直线运行性能的影响[J].铁道学报,2013,35(2):14-20.
    [140]黄照伟.车轮磨耗及其对车辆动力学性能的影响[D].成都:西南交通大学.2012.
    [141]朴明伟,梁树林,孔维刚,赵文忠.高速转向架非线性稳定性及安全裕度对策[J].振动与冲击,2011,30(8):161-168.
    [142]何灼馀.高速动车组转向架一系橡胶节点频率-刚度特性及其影响研究[D].成都:西南交通大学.2012.
    [143]池茂儒,张卫华,金学松,等.轮径差对车辆系统稳定性的影响[J].中国铁道科学,2008,29(6):65-70.
    [144]池茂儒,张卫华,金学松,等.轮径差对行车安全性的影响[J].中国铁道科学,2008,8(5):20-22.
    [145]李艳,张卫华,池茂儒,等.车轮踏面外形及轮径差对车辆动力学性能的影响[J].铁道学报,2010,32(1):104-108.
    [146]Johansson A. Out-of-round railway wheels--literature survey, field tests and numerical simulations[D]. Goteborg:Chalmers University of Technology,2003.
    [147]Watanabe N, Maki Y, Shimomura T, at el. Hardware-in-the-loop simulation system for Duplication of actual running conditions of a multiple-car train consist[J]. QR of RTRI,2011, 52(1):1-6.
    [148]Raghunathan R S, Kin H D, Setoguchi T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences,2002,38:469-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700