用户名: 密码: 验证码:
煤炭地下气化燃空区覆岩裂隙演化及破断规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭地下气化技术是将地下煤炭通过热化学反应原地转化为可燃气体的一种洁净煤综合利用技术。在煤炭地下气化过程中,如何准确地查明燃空区覆岩裂隙演化及破断规律,对于保证煤炭地下气化稳定、安全生产具有重要的意义。本文以国内某煤炭地下气化现场的工程地质条件为背景,综合采用物理相似模拟、数值模拟、理论分析以及现场实测相结合的研究手段和方法,对温度与应力共同作用下的燃空区覆岩变形、破坏以及裂隙扩展规律等进行了深入、系统地研究,取得了如下创新性成果:
     (1)进行了实时高温下(常温~800℃)不同岩性(包括泥岩、砂质泥岩、粉砂岩、细砂岩等)岩石试样的热物理性质和力学性质的实验室试验,获得了岩石比热容、导热系数、弹性模量以及抗压强度等参数随温度的演化规律,为研究温度场和应力场共同作用下燃空区覆岩裂隙演化及破断规律提供了基础试验数据。
     (2)以国内某煤炭地下气化现场的具体工程地质条件为原型,采用相似材料模拟试验手段对煤炭地下气化过程中燃空区扩展过程进行了物理模拟研究,获得了温度场和应力场影响下的燃空区覆岩破断、冒落形态及高度、裂隙扩展演化等规律,为煤炭地下气化现场工程设计提供了重要的指导依据。
     (3)基于实验室试验获得的岩石热物理和力学性质的参数,建立了高温下岩石热传导控制方程以及岩石损伤本构方程,并将其嵌入到RFPA以及COMSOL软件中,对温度和应力耦合作用下的燃空区扩展过程进行了数值模拟,深入研究了燃空区扩展过程中覆岩温度、应力的分布规律及覆岩破断和裂隙扩展演化规律。
     (4)在传统的岩层控制关键层理论的基础上,进一步借助热力学理论和弹性力学理论,建立了温度与应力共同作用下的燃空区覆岩关键层力学模型,从理论上研究了燃空区覆岩关键层的位置、初次破断及周期破断演化规律。
     通过在现场采用钻孔观测试验法对燃空区覆岩裂隙带发育高度进行了现场探测分析,现场探测结果与本文的相似模拟试验、数值模拟及理论分析结果吻合良好,有力地证明了本文试验及模型结果的合理性。本文的研究成果对于指导煤炭地下气化燃空区覆岩稳定性控制具有重要的理论与工程意义。
     该论文有图127幅,表20个,参考文献195篇。
Aiming at turning the underground coal into a combustible gas by thermal chemicalreaction in situ, underground coal gasification technology is comprehensive utilizationclean coal technology. It is important to guarantee the stability of underground coalgasification and safety production by understating how to accurately find out the burningzone and breaking law of overburden rock fracture evolution in the process of undergroundcoal gasification. Based on the engineering geological condition of a domesticunderground coal gasification field, systematic methods, including physical analogsimulation, numerical simulation, theoretical analysis and measurements in suite wereimployed to investigate deeply and systematically the deformation, damage and fractureextension rules of the overlying rock under the action of temperature and stress. The maininnovative observations are as follows:
     (1)By conducting a real-time high temperature (room temperature~800℃) thermalphysical properties and thermodynamic properties of lab tests of different lithology sample(Including mudstone, sandy mudstone, siltstone and fine sandstone), the evolution lawsof the rock parameters, including specific heat, thermal conductivity, compressive strengthand elastic modulus with change in temperature, were obtained. These provide thefoundation data for the research on the combustion zone of overlying rock crack evolutionand breaking rules under the combined action of the temperature field and stress field.
     (2) Taking the specific engineering geological conditions of a underground coalgasification in domestic field as the prototype, the extension process of the combustioncavity in the process of the underground coal gasification was studied by using the physicalanalog simulation test. The laws of the combustion zone strata breaking, cavingmorphology and height, crack extension evolution under the influence of the temperaturefield and stress field were obtained, which provide an important guidance for practicalengineering design.
     (3) Accordin to the laboratory rock thermal physical and mechanical properties test,rock heat transfer control equations under the high temperature and the rock damageconstitutive equation wrew established, which were combined with RFPA and COMSOLsoftware to simulate the combustion cavity expansion process under the coupling action ofthe temperature and stress. The results deeply revealed the dynamic evolution laws oftemperature and stress of strata and the expansion laws of overburden rock fracture andfracture in the process of extensing burning zone.
     (4) Based on the traditional key strata theory in ground control, further by using the theory of thermodynamics and elastic mechanics, combustion cavity overburden rockfracture mechanics model under the action of temperature and stress was established. Theposition of key strata above the combustion cavity and the first weighting interval andperiodic weighting interval were anlysed in theory.
     Through the method of borehole and observation on the spot to analysis the height ofthe combustion zone overburden rock fracture zone, the measurements data in suite aregood aggrement with our results from similar simulation experiment, numerical simulationand theory analysis, which powerfully proves that the test results and the model isreasonable in this paper. The research results in this paper provid an important significanceguideance in theory and practical engineering of underground coal gasification combustioncavity strata stability control.
     There are127figures,20tables and195references in this paper.
引文
[1] Yang L H, Liang J, Yu L. Clean coal technology—Study on the pilot project experiment of undergroundcoal gasification[J]. Energy,2003,28(14):1445-1460.
    [2] Liu H T, Chen F, Pan X, et al. Method of oxygen-enriched two-stage underground coal gasification[J].Mining Science and Technology (China),2011,21:191-196.
    [3] Prabu V, Jayanti S. Laboratory scale studies on simulated underground coal gasification of high ashcoals for carbon-neutral power generation[J]. Energy,2012,46(1):351-358.
    [4] Chen L, Hou C H, Chen J S, et al. A back analysis of the temperature field in the combustion volumespace during underground coal gasification[J]. Mining Science and Technology (China),2011,21(4):581-585.
    [5] Prabu V, Jayanti S. Simulation of cavity formation in underground coal gasification using bore holecombustion experiments[J]. Energy,2011,36(10):5854-5864.
    [6] Sateesh D, Ramesh N M, Sanjay M M, et al. Laboratory studies on cavity growth and product gascomposition in the context of underground coal gasification[J].Energy,2011,36(3):1776-1784.
    [7] Stańczyk K, Kapusta K, Wiatowski M, et al. Experimental simulation of hard coal undergroundgasification for hydrogen production[J].Fuel,2012,91:40-50.
    [8] Stańczyk K, Howaniec N, Smoliński A, et al.Gasification of lignite and hard coal with air and oxygenenriched air in a pilot scale ex situ reactor for underground gasification[J]. Fuel,2011,90(5):1953-1962.
    [9] Kreynin E V. An analysis of new generation coal gasification projects[J]. International Journal ofMining Science and Technology,2012,22(4):509-515.
    [10]梁杰.煤炭地下气化过程稳定性及控制技术[M].徐州:中国矿业大学出版社,2002,1-15.
    [11]万志军.非均质岩体热力耦合理论与煤炭地下气化通道稳定性[M].徐州:中国矿业大学出版社,2009,1-4.
    [12]梁杰,余力.“长通道,大断面”煤炭地下气化新工艺[J].中国煤炭,2002,28(12):8-10.
    [13] Yang L H, Zhang X, Liu S Q, et al. Field test of large-scale hydrogen manufacturing from undergroundcoal gasification (UCG)[J]. International Journal of Hydrogen Energy,2008,33(4):1275-1285.
    [14] Bhutto A W, Bazmi A A, Zahedi G. Underground coal gasification: From fundamentals toapplications[J]. Progress in Energy and Combustion Science,2013,39(1):189-214.
    [15]王志国.深部开采上覆岩层中采动裂隙网络演化规律研究[D].北京:中国矿业大学(北京),2010.
    [16]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003,66-70.
    [17]钱鸣高,张顶立,黎良杰,等.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,3:6-11.
    [18]钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关健块分析[J].煤炭学报,1994,19(6):557-563.
    [19]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-106.
    [20]李鸿昌,钱鸣高.孔庄矿上行开采的研究[J].中国矿业学院学报,1982,(2):12-24.
    [21]钱鸣高.岩层控制与煤炭科学开采文集[M].徐州:中国矿业大学出版社,2011,145-308.
    [22]陆坤权,刘寄星.颗粒物质(上)[J].物理,2004,33(09):629-635.
    [23]石平五.采场矿山压力理论研究的述评[J].西安矿业学院学报,1984,(1):48-59.
    [24]翟英达.采场上覆岩层结构的面接触类型及稳定性力学机理[D].北京:煤炭科学研究总院,2002.
    [25]史红,姜福兴.采场上覆岩层结构理论及其新进展[J].山东科技大学学报(自然科学版),2005,24(1):21-25.
    [26]李振华.薄基岩突水威胁煤层围岩破坏机理及应用研究[D].北京:中国矿业大学(北京),2010.
    [27]宋振骐,蒋宇静.采场顶板控制设计中几个问题的分析探讨[J].矿山压力,1986,(1):1-9.
    [28]蒋宇静,宋振骐,宋扬.采场支架与老顶总体运动间的力学关系[J].山东矿业学院学报,1988,7(1):73-81.
    [29]宋振骐,宋扬,蒋宇静,等.回采工作面顶板控制设计的方法与步骤[J].煤炭科学技术,1989,(9):6-11.
    [30]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995,(3-4):3-12.
    [31]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [32]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [33]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135-139.
    [34]钱鸣高.采场围岩控制理论与实践[J].矿山压力与顶板管理,1999,(3-4):12-15.
    [35]缪协兴,茅献彪,钱鸣高.采动覆岩中关键层的复合效应分析[J].矿山压力与顶板管理,1999,(3-4):19-21.
    [36]缪协兴,陈荣华,浦海,等.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [37]茅献彪,缪协兴,钱鸣高.软岩层厚度对关键层上载荷与支承压力的影响[J].矿山压力与顶板管理,1997,(3-4):1-3.
    [38]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39-42.
    [39]茅献彪,缪协兴,钱鸣高.采高及复合关键层效应对采场来压步距的影响[J].湘潭矿业学院学报,1999,14(1):1-5.
    [40]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1-4.
    [41]陈荣华,浦海,缪协兴,等.相邻亚关键层破断对采场来压的影响分析[J].煤炭学报,2004,29(3):257-259.
    [42]曹胜根,刘长友,钱鸣高.采场直接顶岩体刚度的研究[J].矿山压力与顶板管理,1997,(3-4):16-19.
    [43]曹胜根,缪协兴,钱鸣高.“砌体梁”结构的稳定性及其应用[J].东北煤炭技术,1998,(5):21-25.
    [44]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467.
    [45]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[J].中国矿业,2001,10(6):54-56.
    [46]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,26(5):632-636.
    [47]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态影响研究[J].岩石力学与工程学报,2005,24(5):787-791.
    [48]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(1):1-14.
    [49]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报,1999,24(6):581-585.
    [50]贾喜荣,翟英达.采场薄板矿压理论与实践综述[J].几矿山压力与顶板管理,l999,3(4):25-29.
    [51]陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005,30(2):172-176.
    [52]石平五,张幼振.急斜煤层放顶煤开采“跨层拱”结构分析[J].岩石力学与工程学报,2006,25(1):79-82.
    [53]古全忠,史元伟,齐庆新.放顶煤采场顶板运动规律[J].矿山压力与顶板管理,1995,(3-4):76-80.
    [54]张顶立,王悦汉.综采放顶煤工作面岩层结构分析[J].中国矿业大学学报,1998,27(4):340-343.
    [55]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [56]姜福兴,Luo X,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [57]史红,姜福兴.采场上覆大厚度坚硬岩层破断规律的力学分析[J].岩石力学与工程学报,2004,23(18):3066-3069.
    [58]姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报,2006,23(1):30-33.
    [59]侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(4):359-363.
    [60]张俊云,侯忠杰,田瑞云.浅埋采场矿压及覆岩破断规律[J].矿山压力与顶板管理,1998,(3):9-11.
    [61]黄庆享.浅埋煤层长壁工作而开采项板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.
    [62]康建荣,王金庄.采动覆岩力学模型及断裂破坏条件分析[J].煤炭学报,2002,27(1):16-20.
    [63]王悦汉,邓喀中,吴侃,等.采动岩体动态力学模型[J].岩石力学与工程学报,2003,22(3):352-357.
    [64]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1):7-11.
    [65]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
    [66]许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(05):762-769.
    [67]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996,21(l):51-56.
    [68]马庆云.采动支承压力及上覆岩层运动规律研究[D].江苏徐州:中国矿业大学,1997.
    [69]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004:1-14.
    [70]王绳祖.高温高压岩石力学——历史、现状、展望[J].地球物理学进展,1995,10(4):1-31.
    [71] Ferrero A M, Marini P. Experimental studies on the mechanical behaviour of two thermal crackedmarbles[J]. Rock Mechanics and Rock Engineering,2001,34(1):57-66.
    [72]吴刚,翟松韬,李玉寿,等.高温下大理岩受压破坏的细观结构分析[J].岩石力学与工程学报,2012,31(S2):3579-3585.
    [73] David C, Menéndez B, Darot M. Influence of stress-induced and thermal cracking on physicalproperties and microstructure of La Peyratte granite[J]. International Journal of Rock Mechanics andMining Sciences,1999,36(4):433-448.
    [74] Hajpál M. Changes in sandstone of historical monuments exposed to fire or high temperature[J]. FireTechnology,2002,38(4):373-382.
    [75]徐小丽,高峰,沈晓明,等.高温后花岗岩力学性质及微孔隙结构特征研究[J].岩土力学,2010,31(06):1752-1758.
    [76]北野晃一,新孝一,木下直人,等.高温下岩石の力学特性熱特性ぉょび透水特性に関すゐ文献調查[J].応用地質,1988,29(3):36-47.
    [77]陈颙,吴晓东,张福勤.岩石热开裂的实验研究[J].科学通报,1999,44(8):880-883.
    [78] Wai R S C, Lo K Y, Rowe R K. Thermal stress analysis in rocks with nonlinear properties[J]. Int. J.Rock Mech. Min. Sci.&Geomech. Abstr,1982,19(5):211-220.
    [79] Jobmann M, Buntebarth G. Influence of graphite and quartz addition on the thermo-physical propertiesof bentonite for sealing heat-generating radioactive waste[J]. Applied Clay Science,2009,44(3-4):206-210.
    [80] Vosteen H D, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity andthermal diffusivity for different types of rock[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(9-11):499-509.
    [81] El Sayed A M A. Thermophysical study of sandstone reservoir rocks[J]. Journal of Petroleum Scienceand Engineering,2011,76(3-4):138-147.
    [82] Alishaev M G, Abdulagatov I M, Abdulagatova Z Z. Effective thermal conductivity of fluid-saturatedrocks: Experiment and modeling[J]. Engineering Geology,2012,135-136:24-39.
    [83] Büttner R, Zimanowski B, Blumm J, et. al. Thermal conductivity of a volcanic rock material(olivine-melilitite) in the temperature range between288and1470K[J]. Journal of Volcanology andGeothermal Research,1998,80(3-4):293-302.
    [84] Wall T F, Mai-Viet T, Becker H B, et. al. Fireside deposits and their effect on heat transfer in p.f.boilers: the emissivity and thermal conductivity of deposits and their components[M]. In: ProceedingsPulverised Coal firing-The Effects of Mineral Matter. University of Newcastle,1979, p. L8.1-L8.16.
    [85] Rezaei H R, Gupta R P, Bryant G W, et. al., Thermal conductivity of coal ash and slags and modelsused[J]. Fuel,2000,79:1697-1710.
    [86]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332-335.
    [87]杜守继,刘华,职洪涛,等.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364.
    [88]朱合华,闫治国,邓涛,等.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1950.
    [89]任松,白月明,姜德义,等.温度对盐岩疲劳特性影响的试验研究[J].岩石力学与工程学报,2012,31(9):1839-1845.
    [90]吴刚,王德咏,翟松韬,等.高温下大理岩力学性质的试验研究[J].岩石力学与工程学报,2012,31(6):1237-1244.
    [91]王成虎,王红才,刘立鹏,等.高温对玄武质凝灰岩力学性能的影响及其机理分析[J].岩土工程学报.2012,34(10):1827-1835.
    [92] Zhang L Y,Mao X B,Lu A H. Experimental study on the mechanical properties of rocks at hightemperature[J]. Science in China(Series E):Technological Sciences,2009,52(3):641-646.
    [93]张连英,茅献彪,卢爱红.高温作用下岩石力学性能的实验研究[J].中国科学:技术科学,2010,40(2):157-162.
    [94]张连英,茅献彪,李天珍.高温环境下大理岩热损伤特性的试验研究[J].采矿与安全工程学报.2010,27(4):505-511.
    [95]张连英,张树娟,茅献彪,等.考虑温度效应的泥岩损伤特性试验研究[J].采矿与安全工程学报.2012,29(6):852-858.
    [96]张连英.高温作用下泥岩的损伤演化及破裂机理研究[D].中国矿业大学,2012.
    [97]吴忠,秦本东,谌论建,等.煤层顶板砂岩高温状态下力学特征试验研究[J].岩石力学与工程学报,2005,24(11):1863-1867.
    [98]尹土兵,李夕兵,王斌,等.高温后砂岩动态压缩条件下力学特性研究[J].岩土工程学报,2011,33(05):777-784.
    [99] Ranjith P G, Viete D R, Chen B J, et. al. Transformation plasticity and the effect of temperature on themechanical behaviour of Hawkesbury sandstone at atmospheric pressure[J]. Engineering Geology,2012,151:120-127.
    [100]秦本东,罗运军,门玉明,等.高温下石灰岩和砂岩膨胀特性的试验研究[J].岩土力学,2011,32(2):417-422.
    [101]王子潮,王绳祖.地壳温压条件下的迁安石英岩强度特性[M].第一届高温高压岩石力学学术讨论会论文集,北京:学术期刊出版社,1988,85-38
    [102]张宁,赵阳升,万志军.高温作用下花岗岩三轴蠕变特征的实验研究[J].岩土工程学报,1999,51(1):1-3.
    [103]张宁,赵阳升,万志军,等.高温三维应力下鲁灰花岗岩蠕变本构关系的研究[J].岩土工程学报,2009,31(11):1757-1762.
    [104] Leiss B, Molli G.“High-temperature”texture in naturally deformed Carrara marble from the AlpiApuane Italy[J]. Journal of Structural Geology,2003,25(4):649-658.
    [105] Kirby S H. Rheology of the lithosphere[J]. Reviews of Geophysics and Space Physics,1983,21:1458-1487.
    [106] Kirby S H, Krooenberg A K. Deformation of clinopyroxenite: Evidence for a transition in flowmechanisms and semi-brittle behavior[J], J. geophys. Res.,1984,89:3177-3192.
    [107] Kirby S H, Kronenberg A K, Rheology of the lithosphere: selected topics[J]. Rev Geophys,1987,25:1219-1244.
    [108] Carter N L, Tsenn M C, Flow properties of continental lithosphere[J]. Tectonophysics,1987,136:27-63.
    [109]王成虎,王红才,刘立鹏,等.高温对玄武质凝灰岩力学性能的影响及其机理分析[J].岩土工程学报,2012,34(10):1827-1835.
    [110]赵阳升,万志军,张渊,等.20MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报,2008,27(1):1-8.
    [111]万志军,赵阳升,董付科,等.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,2008,27(1):72-77.
    [112]赵阳升,孟巧荣,康天河.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27(1):28-33.
    [113]郤保平,赵阳升,万志军,等.热力耦合作用下花岗岩流变模型的本构关系研究[J].岩石力学与工程学报,2009,28(5):957-967.
    [114]郤保平,赵阳升,万志军,等.高温静水应力状态花岗岩中钻孔围岩的流变实验研究[J].岩石力学与工程学报,2008,27(8):1559-1666.
    [115]徐小丽,高峰,高亚楠,等.高温后花岗岩力学性质变化及结构效应研究[J].中国矿业大学学报.2008,37(3):402-406.
    [116]徐小丽.温度载荷作用下花岗岩力学性质演化及其微观机制研究[D].徐州:中国矿业大学,2008.
    [117]黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,24(S2):203-206.
    [118]宋娟,周永胜,何昌荣.石英岩脆塑性转化的实验研究[J].高压物理学报.2008,22(2):167-174.
    [119] Rocchi V,Sammonds P R,Kilburn C R J. Fracturing of Etnean and Vesuvian rocks at hightemperatures and low pressures[J].Journal of Volcanology and Geothermal Research,2004,132(2/3):137-157.
    [120]谢卫红,高峰,谢和平.细观尺度下岩石热变形破坏的实验研究[J].实验力学,2005,20(4):628-634.
    [121]梁卫国,徐素国,赵阳升.损伤岩盐高温再结晶剪切特性的试验研究[J].岩石力学与工程学报,2004,23(20):3413-3417.
    [122]李道伟,朱珍德,蒋志坚,等.温度对大理岩力学性质影响的细观研究[J].河海大学学报:自然科学版,2008,36(3):375-378.
    [123]谌伦建,赵洪宝,顾海涛,等.煤层顶板砂岩在高温下微观结构变化的研究[J].中国矿业大学学报.2005,34(4):443-446.
    [124]谌伦建,吴忠,秦本东.煤层顶板砂岩在高温下的力学特性及破坏机理[J].重庆大学学报,2005,28(5):123-126.
    [125]秦本东,晁俊奇,谌伦建,等.高温双向约束条件下石灰岩的组构分析[J].采矿与安全工程学报.2009,26(2):244-248.
    [126]赵洪宝,谌伦建.石灰岩热膨胀特性试验研究[J].岩土力学,2011,32(6):1725-1730.
    [127]秦本东,何军,谌伦建.石灰岩和砂岩高温力学特性的试验研究[J].地质力学学报,2009,15(3):253-261.
    [128]万志军,冯子军,赵阳升,等.高温三轴应力下煤体弹性模量的演化规律[J].煤炭学报,2011,36(10):1736-1740.
    [129]张渊,张贤,赵阳升.砂岩的热破裂过程[J].地球物理学报,2005,48(3):656-659.
    [130] Daggupati S, Mandapati R N, Mahajani S M, et. al. Laboratory studies on combustion cavity growthin lignite coal blocks in the context of underground coal gasification[J]. Energy,2010,35(6):2374-2386.
    [131] Liu S Q, Li J G, Mei M, Dong D L. Groundwater Pollution from Underground Coal Gasification[J].Journal of China University of Mining and Technology,2007,17(4):467-472.
    [132] Kapusta K, Stańczyk K. Pollution of water during underground coal gasification of hard coal andlignite[J]. Fuel,2011,90(5):1927-1934.
    [133] Prabu V, Jayanti S. Integration of underground coal gasification with a solid oxide fuel cell systemfor clean coal utilization[J]. International Journal of Hydrogen Energy,2012,37(2):1677-1688.
    [134] Prabu V, Jayanti S. Underground coal-air gasification based solid oxide fuel cell system[J]. AppliedEnergy,2012,94:406-414.
    [135] Eftekhari A A, Van Der Kooi H, Bruining H. Exergy analysis of underground coal gasification withsimultaneous storage of carbon dioxide[J]. Energy,2012,45(1):729-745.
    [136] Selivanova T, Grebenyuk I, Belov A. Control of combustion area using electrical resistivity methodfor underground coal gasification[J]. International Journal of Mining Science and Technology,2012,22(3):351-355.
    [137] Yang L H. Study on the model experiment and numerical simulation for underground coalgasification[J]. Fuel,2004,83(4-5):573-584.
    [138] Blinderman M S, Saulov D N, Klimenko A Y. Forward and reverse combustion linking inunderground coal gasification[J]. Energy,2008,33(3):446-454.
    [139] Kariznovi M, Nourozieh H, Abedi J, et. al. Simulation study and kinetic parameter estimation ofunderground coal gasification in Alberta reservoirs[J]. Chemical Engineering Research and Design,2013,91(3):464-476.
    [140] Liu S Q, Wang Y T, Yu L, et. al. Volatilization of mercury, arsenic and selenium during undergroundcoal gasification[J]. Fuel,2006,85(10-11):1550-1558.
    [141] Pirard J P, Brasseur A, Co me A, et. al. Results of the tracer tests during the El Tremedalunderground coal gasification at great depth[J]. Fuel,2000,79(5):471-478.
    [142] Shackley S, Mander S, Reiche A. Public perceptions of underground coal gasification in the UnitedKingdom[J]. Energy Policy,2006,34(18):3423-3433.
    [143] Liu S Q, Wang Y T, Yu L, et. al. Thermodynamic equilibrium study of trace element transformationduring underground coal gasification[J]. Fuel Processing Technology,2006,87(3):209-215.
    [144] Perkins G, Sahajwalla V. Modelling of Heat and Mass Transport Phenomena and Chemical Reactionin Underground Coal Gasification[J]. Chemical Engineering Research and Design,2007,85(3):329-343.
    [145] Brasseur A, Antenucci D, Bouquegneau J M, et. al. Carbon stable isotope analysis as a tool fortracing temperature during the El Tremedal underground coal gasification at great depth[J].Fuel,2002,81(1):109-117.
    [146] Khadse A, Qayyumi M, Mahajani S, et. al. Underground coal gasification: A new clean coalutilization technique for India[J]. Energy,2007,32(11):2061-2071.
    [147] Wiatowski M, Stańczyk K, wi drowski J, et. al. Semi-technical underground coal gasification(UCG) using the shaft method in Experimental Mine “Barbara”[J]. Fuel,2012,99:170-179.
    [148] Kempka T, Pl tz M L, Schlüter R, et. al. Carbon dioxide utilisation for carbamide production byapplication of the coupled UCG-urea process[J]. Energy Procedia,2011,4:2200-2205.
    [149] Taku Ide S, Orr Jr F M. Comparison of methods to estimate the rate of CO2emissions and coalconsumption from a coal fire near Durango, CO [J]. International Journal of Coal Geology,2011,86(1):95-107.
    [150] Stańczyk K, Smoliński A, Kapusta K, et. al.Dynamic experimental simulation of hydrogen orientedunderground gasification of lignite[J]. Fuel,2010,89(11):3307-3314.
    [151] Klimenko A Y. Early Ideas in Underground Coal Gasification and Their Evolution[J]. Energies,2009,2:456-476.
    [152] olcová O, Soukup K, Rogut J, et. al. Gas transport through porous strata from underground reactionsource; the influence of the gas kind, temperature and transport-pore size[J]. Fuel ProcessingTechnology,2009,90(12):1495-1501.
    [153] Saulov D N, Plumb O A, Klimenko A Y. Flame propagation in a gasification channel[J].Energy,2010,35(3):1264-1273.
    [154] Ide T S, Crook N, Orr Jr F M. Magnetometer measurements to characterize a subsurface coal fire[J].International Journal of Coal Geology,2011,87(3-4):190-196.
    [155] Bl sing M, Müller M. Mass spectrometric investigations on the release of inorganic species duringgasification and combustion of German hard coals[J]. Combustion and Flame,2010,157(7):1374-1381.
    [156] Singh A K, Singh M P, Sharma M, et. al. Srivastava. Microstructures and microtextures of naturalcokes: A case study of heat-affected coking coals from the Jharia coalfield, India[J]. International Journalof Coal Geology,2007,71(2-3):153-175.
    [157] Huang J J, Bruining J, Wolf K H. Modeling of gas flow and temperature fields in underground coalfires[J]. Fire Safety Journal,2001,36(5):477-489.
    [158] Mohr S, H k M, Mudd G, et. al. Projection of long-term paths for Australian coalproduction-Comparisons of four models[J]. International Journal of Coal Geology,2011,86(4):329-341.
    [159] Hettema M H, Wolf K H, De Pater C J. The influence of steam pressure on thermal spalling ofsedimentary rock: Theory and experiments[J]. International Journal of Rock Mechanics and MiningSciences,1998,35(1):3-15.
    [160] Liu H B, Liu Z L. Recycling utilization patterns of coal mining waste in China[J]. Resources,Conservation and Recycling,2010,54(12):1331-1340.
    [161] Liu S Q, Wang Y Y, Zhao K, et. al. Enhanced-hydrogen gas production through undergroundgasification of lignite[J]. Mining Science and Technology (China),2009,19(3):389-394.
    [162] Wolf K H, Bruining H. Modelling the interaction between underground coal fires and their roofrocks[J]. Fuel,2007,86(17-18):2761-2777.
    [163] Detournay M, Hemati M, Andreux R. Biomass steam gasification in fluidized bed of inert or catalyticparticles: Comparison between experimental results and thermodynamic equilibrium predictions[J].Powder Technology,2011,208(2):558-567.
    [164]沈芳,梁新星,毛伟志,等.中国煤炭地下气化的近期研究与发展[J].能源工程,2008,1(1):5-10.
    [165]张祖培.煤炭地下气化技术[J].探矿工程,2000,1:6-9.
    [166] Friedmann S J, Upadhye R, Kong F M. Prospects for underground coal gasification incarbon-constrained world[J]. Energy Procedia,2009,1(1):4551-4557.
    [167]刘宁宁,邱亮亮,敬毅.国内外煤炭地下气化技术发展现状[J].煤炭技术,2009,28(6):5-7.
    [168]王在泉,华安增.煤炭地下气化空间扩展规律及控制方法研究综述[J].岩石力学与工程学报,2001,20(3):379-381.
    [169] Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.
    [170] Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.
    [171] Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.
    [172] Mackinnon R J, Carey G F. Moving-grid finite element modeling of thermal ablation andconsolidation in porous media[J].International Journal for Numerical Methods in Engineering,1993,36(5):717-744.
    [173] Herbert S J. Subsidence and roof stability analysis for the extraction and in situ processing of fossilfuels[J]. Oil Coal Shale Minerals,1986,10(4):313-389.
    [174] Advani S H. Status of technology associated with cavity and subsidence response predicationassociated with UCG [A].In: Proceedings of the7th Underground Coal Gasification Symposium [C].NewYork:[s.n.],1981,271-286.
    [175] Yang T, Thomas L. Structural mechanics simulations associated with UCG [D].USA: The GraduateSchool of West Virginia University,1978.
    [176] Mortazari H H, Emery A F. The effect of moisture on the structural stability of a coal cavity[J].Journal of Energy Resources Technology Transactions of the ASME,1984,108:246-253.
    [177] Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and itsdirect coupling to carbon capture and storage[J]. Mine Water Environ,2011,30:127-140.
    [178]徐永生.论煤炭地下气化对煤层地质条件的适应性[J].天津城市建设学院学报,1995,1(4):6-11.
    [179]杨兰和,梁杰.煤炭地下燃空区范围TEM探测方法[J].南京理工大学学报,2001,25(2):200-204.
    [180]谌伦建.煤炭地下气化炉顶板结构模型及其对气化过程的影响[J].矿业安全与环保,2003,30(6):7-9.
    [181]王作棠,付振坤,焦景立,等,地下气化火焰工作面位置微地震探测[J].采矿与安全工程学报,2008,25(4):394-399.
    [182]郑慧慧,张兴华,刘希亮,等.煤炭地下气化过程中覆岩应力场的数值研究[J].煤矿开采,2011,16(04):17-19.
    [183]谭启,李世雄.高温环境中层状岩石热应力场数值分析[J].矿山机械,2008,36(17):6-9.
    [184]谭启.弹性与非线性状态下层状岩石高温热应力场数值对比分析[J].矿业研究与开发,2011,31(3):58-61.
    [185] Chen L, Hou C H, Chen J S, et al. A back analysis of the temperature field in the combustion volumespace during underground coal gasification[J]. Mining Science and Technology (China),2011,21:581-585.
    [186]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [187] Luo J A, Wang L G, Tang F R, et al. Variation in the temperature field of rocks overlying ahigh-temperature cavity during underground coal gasification[J]. Mining Science and Technology(China),2011,21(5):709-713.
    [188]唐芙蓉,王连国,贺岩,等.煤炭地下气化场覆岩运动规律的数值模拟研究[J].煤炭工程,2013,5:79-82
    [189]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [190]陆银龙,王连国,唐芙蓉,等.煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J].煤炭学报,2012,37(8):1292-1298.
    [191] Tang F R, Mao X B, Zhang L Y, et al. Effects of strain rates on mechanical properties of limestoneunder high temperature[J]. Mining Science and Technology (China),2011,21(6):857-861.
    [192]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [193]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [194]朱万成,魏晨慧,田军,等.岩石损伤过程中的热-流-力耦合模型及其应用初探[J].岩土力学,2009,30(12):3851-3857.
    [195]威尔特J R,威克斯C E,威尔逊R E,等.动量、热量和质量传递原理[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700